1
|
Escudero-Leyva E, Quirós-Guerrero L, Vásquez-Chaves V, Pereira-Reyes R, Chaverri P, Tamayo-Castillo G. Differential Volatile Organic Compound Expression in the Interaction of Daldinia eschscholtzii and Mycena citricolor. ACS OMEGA 2023; 8:31373-31388. [PMID: 37663497 PMCID: PMC10468842 DOI: 10.1021/acsomega.3c03865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
Fungi exhibit a wide range of ecological guilds, but those that live within the inner tissues of plants (also known as endophytes) are particularly relevant due to the benefits they sometimes provide to their hosts, such as herbivory deterrence, disease protection, and growth promotion. Recently, endophytes have gained interest as potential biocontrol agents against crop pathogens, for example, coffee plants (Coffea arabica). Published results from research performed in our laboratory showed that endophytic fungi isolated from wild Rubiaceae plants were effective in reducing the effects of the American leaf spot of coffee (Mycena citricolor). One of these isolates (GU11N) from the plant Randia grandifolia was identified as Daldinia eschscholtzii (Xylariales). Its antagonism mechanisms, effects, and chemistry against M. citricolor were investigated by analyzing its volatile profile alone and in the presence of the pathogen in contactless and dual culture assays. The experimental design involved direct sampling of agar plugs in vials for headspace (HS) and headspace solid-phase microextraction (HS-SPME) gas chromatography-mass spectrometry (GC-MS) analysis. Additionally, we used ultrahigh-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS/MS) to identify nonvolatile compounds from organic extracts of the mycelia involved in the interaction. Results showed that more volatile compounds were identified using HS-SPME (39 components) than those by the HS technique (13 components), sharing only 12 compounds. Statistical tests suggest that D. eschscholtzii inhibited the growth of M. citricolor through the release of VOCs containing a combination of 1,8-dimethoxynapththalene and terpene compounds affecting M. citricolor pseudopilei. The damaging effects of 1,8-dimethoxynaphthalene were corroborated in an in vitro test against M. citricolor pseudopilei; scanning electron microscopy (SEM) photographs confirmed structural damage. After analyzing the UHPLC-HRMS/MS data, a predominance of fatty acid derivatives was found among the putatively identified compounds. However, a considerable proportion of features (37.3%) remained unannotated. In conclusion, our study suggests that D. eschscholtzii has potential as a biocontrol agent against M. citricolor and that 1,8-dimethoxynaphthalene contributes to the observed damage to the pathogen's reproductive structures.
Collapse
Affiliation(s)
- Efraín Escudero-Leyva
- Centro
de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11520-2060 San José, Costa Rica
- Escuela
de Biología, Universidad de Costa
Rica, 11520-2060 San José, Costa Rica
| | - Luis Quirós-Guerrero
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1205 Geneva, Switzerland
- School
of Pharmaceutical Sciences, University of
Geneva, 1205 Geneva, Switzerland
| | - Víctor Vásquez-Chaves
- Centro
de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11520-2060 San José, Costa Rica
| | - Reinaldo Pereira-Reyes
- Laboratorio
Nacional de Nanotecnología (LANOTEC), Centro Nacional de Alta Tecnología, 10109 San Jose, Costa Rica
| | - Priscila Chaverri
- Centro
de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11520-2060 San José, Costa Rica
- Escuela
de Biología, Universidad de Costa
Rica, 11520-2060 San José, Costa Rica
- Department
of Natural Sciences, Bowie State University, Bowie, Maryland 20715, United States
| | - Giselle Tamayo-Castillo
- Centro
de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11520-2060 San José, Costa Rica
- Escuela
de Química, Universidad de Costa
Rica, 11520-2060 San José, Costa Rica
| |
Collapse
|
2
|
De Clerck C, Josselin L, Vangoethem V, Lassois L, Fauconnier ML, Jijakli H. Weapons against Themselves: Identification and Use of Quorum Sensing Volatile Molecules to Control Plant Pathogenic Fungi Growth. Microorganisms 2022; 10:microorganisms10122459. [PMID: 36557712 PMCID: PMC9784989 DOI: 10.3390/microorganisms10122459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing (QS) is often defined as a mechanism of microbial communication that can regulate microbial behaviors in accordance with population density. Much is known about QS mechanisms in bacteria, but fungal QS research is still in its infancy. In this study, the molecules constituting the volatolomes of the plant pathogenic fungi Fusarium culmorum and Cochliobolus sativus have been identified during culture conditions involving low and high spore concentrations, with the high concentration imitating overpopulation conditions (for QS stimulation). We determined that volatolomes emitted by these species in conditions of overpopulation have a negative impact on their mycelial growth, with some of the emitted molecules possibly acting as QSM. Candidate VOCs related to QS have then been identified by testing the effect of individual volatile organic compounds (VOCs) on mycelial growth of their emitting species. The antifungal effect observed for the volatolome of F. culmorum in the overpopulation condition could be attributed to ethyl acetate, 2-methylpropan-1-ol, 3-methylbutyl ethanoate, 3-methylbutan-1-ol, and pentan-1-ol, while it could be attributed to longifolene, 3-methylbutan-1-ol, 2-methylpropan-1-ol, and ethyl acetate for C. sativus in the overpopulation condition. This work could pave the way to a sustainable alternative to chemical fungicides.
Collapse
Affiliation(s)
- Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
- Correspondence:
| | - Laurie Josselin
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Valentine Vangoethem
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Ludivine Lassois
- Plant Genetics and Rhizosphere Processes Lab., Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Haïssam Jijakli
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
3
|
Mitochondrial damage produced by phytotoxic chromenone and chromanone derivatives from endophytic fungus Daldinia eschscholtzii strain GsE13. Appl Microbiol Biotechnol 2021; 105:4225-4239. [PMID: 33970316 DOI: 10.1007/s00253-021-11318-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
Bioassay-guided fractionation of the organic extracts of the endophyte Daldinia eschscholtzii strain GsE13 led to the isolation of several phytotoxic compounds, including two chromenone and two chromanone derivatives: 5-hydroxy-8-methoxy-2-methyl-4H-chromen-4-one, 1; 5-hydroxy-2-methyl-4H-chromen-4-one, 2; 5-methoxy-2-methyl-chroman-4-one, 3; and 5-methoxy-2-methyl-chroman-4-ol, 4; as well as other aromatic compounds: 4,8-dihydroxy-1-tetralone, 5; 1,8-dimethoxynaphthalene, 6; and 4,9-dihydroxy-1,2,11,12-tetrahydroperyl-ene-3,10-quinone, 7. Compounds 1, 4, and 7 were isolated for the first time from D. eschscholtzii. The phytotoxicity of all the compounds was determined on germination, root growth, and oxygen uptake in seedlings of a monocotyledonous (Panicum miliaceum) and three dicotyledonous plants (Medicago sativa, Trifolium pratense, and Amaranthus hypochondriacus). In general, root growth was the most affected process in all four weeds, and chromenones 1 and 2 were the most phytotoxic compounds. Phytotoxins 1-4 inhibited basal oxygen consumption rate in isolated mitochondria from M. sativa seedlings and also caused serious damage to their membrane potential (ΔΨm) in percentages greater than 50% at concentrations lower than 2 mM. Based on these results, compounds 1-4 of endophytic origin could be promising for the development of new herbicides potentially useful in agriculture or for the synthesis of promising new molecules. KEY POINTS: • Endophytic fungus Daldinia eschscholtzii produces phytotoxic compounds. • Phytotoxins inhibit basal oxygen consumption rate in isolated M. sativa mitochondria. • Phytotoxins altered the mitochondrial membrane potential.
Collapse
|
4
|
Becker K, Stadler M. Recent progress in biodiversity research on the Xylariales and their secondary metabolism. J Antibiot (Tokyo) 2021; 74:1-23. [PMID: 33097836 PMCID: PMC7732752 DOI: 10.1038/s41429-020-00376-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 12/18/2022]
Abstract
The families Xylariaceae and Hypoxylaceae (Xylariales, Ascomycota) represent one of the most prolific lineages of secondary metabolite producers. Like many other fungal taxa, they exhibit their highest diversity in the tropics. The stromata as well as the mycelial cultures of these fungi (the latter of which are frequently being isolated as endophytes of seed plants) have given rise to the discovery of many unprecedented secondary metabolites. Some of those served as lead compounds for development of pharmaceuticals and agrochemicals. Recently, the endophytic Xylariales have also come in the focus of biological control, since some of their species show strong antagonistic effects against fungal and other pathogens. New compounds, including volatiles as well as nonvolatiles, are steadily being discovered from these ascomycetes, and polythetic taxonomy now allows for elucidation of the life cycle of the endophytes for the first time. Moreover, recently high-quality genome sequences of some strains have become available, which facilitates phylogenomic studies as well as the elucidation of the biosynthetic gene clusters (BGC) as a starting point for synthetic biotechnology approaches. In this review, we summarize recent findings, focusing on the publications of the past 3 years.
Collapse
Affiliation(s)
- Kevin Becker
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany
- German Centre for Infection Research Association (DZIF), partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany.
- German Centre for Infection Research Association (DZIF), partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| |
Collapse
|
5
|
Phylogenetic Assignment of the Fungicolous Hypoxylon invadens (Ascomycota, Xylariales) and Investigation of its Secondary Metabolites. Microorganisms 2020; 8:microorganisms8091397. [PMID: 32932875 PMCID: PMC7565716 DOI: 10.3390/microorganisms8091397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
The ascomycete Hypoxylon invadens was described in 2014 as a fungicolous species growing on a member of its own genus, H.fragiforme, which is considered a rare lifestyle in the Hypoxylaceae. This renders H.invadens an interesting target in our efforts to find new bioactive secondary metabolites from members of the Xylariales. So far, only volatile organic compounds have been reported from H.invadens, but no investigation of non-volatile compounds had been conducted. Furthermore, a phylogenetic assignment following recent trends in fungal taxonomy via a multiple sequence alignment seemed practical. A culture of H.invadens was thus subjected to submerged cultivation to investigate the produced secondary metabolites, followed by isolation via preparative chromatography and subsequent structure elucidation by means of nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). This approach led to the identification of the known flaviolin (1) and 3,3-biflaviolin (2) as the main components, which had never been reported from the order Xylariales before. Assessment of their antimicrobial and cytotoxic effects via a panel of commonly used microorganisms and cell lines in our laboratory did not yield any effects of relevance. Concurrently, genomic DNA from the fungus was used to construct a multigene phylogeny using ribosomal sequence information from the internal transcribed spacer region (ITS), the 28S large subunit of ribosomal DNA (LSU), and proteinogenic nucleotide sequences from the second largest subunit of the DNA-directed RNA polymerase II (RPB2) and β-tubulin (TUB2) genes. A placement in a newly formed clade with H.trugodes was strongly supported in a maximum-likelihood (ML) phylogeny using sequences derived from well characterized strains, but the exact position of said clade remains unclear. Both, the chemical and the phylogenetic results suggest further inquiries into the lifestyle of this unique fungus to get a better understanding of both, its ecological role and function of its produced secondary metabolites hitherto unique to the Xylariales.
Collapse
|
6
|
Samarakoon MC, Thongbai B, Hyde KD, Brönstrup M, Beutling U, Lambert C, Miller AN, Liu JK(J, Promputtha I, Stadler M. Elucidation of the life cycle of the endophytic genus Muscodor and its transfer to Induratia in Induratiaceae fam. nov., based on a polyphasic taxonomic approach. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00443-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Lauterbach L, Wang T, Stadler M, Dickschat JS. Volatiles from the ascomycete Daldinia cf. childiae (Hypoxylaceae), originating from China. MEDCHEMCOMM 2019; 10:726-734. [PMID: 31191863 PMCID: PMC6533885 DOI: 10.1039/c9md00083f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/22/2019] [Indexed: 01/14/2023]
Abstract
The volatiles from an isolate of the fungus Daldinia cf. childiae, obtained from a specimen collected in China, were collected by use of a closed-loop stripping apparatus and analysed by GC-MS. A total number of 33 compounds from different classes were rigorously identified by comparison of mass spectra to library spectra and of retention indices to tabulated data from the literature. For unknown compounds structural suggestions were delineated from the mass spectra and verified by chemical synthesis of reference materials. Through this approach two 2-alkylated furan derivatives were identified, demonstrating that the genus Daldinia continues to be an interesting source for the discovery of novel secondary metabolites. Feeding experiments with sodium (1,2-13C2)acetate were performed to investigate the biosynthesis of the polyketide 5-hydroxy-2-methyl-4-chromanone that are in favour of a non-enzymatic cyclisation step.
Collapse
Affiliation(s)
- Lukas Lauterbach
- Kekulé-Institut für Organische Chemie , Universität Bonn , Gerhard-Domagk-Straße 1 , 53121 Bonn , Germany .
| | - Tao Wang
- Kekulé-Institut für Organische Chemie , Universität Bonn , Gerhard-Domagk-Straße 1 , 53121 Bonn , Germany .
| | - Marc Stadler
- Abteilung Mikrobielle Wirkstoffe , Helmholtz-Zentrum für Infektionsforschung , Inhoffenstraße 7 , 38124 Braunschweig , Germany
| | - Jeroen S Dickschat
- Kekulé-Institut für Organische Chemie , Universität Bonn , Gerhard-Domagk-Straße 1 , 53121 Bonn , Germany .
| |
Collapse
|