1
|
Kincanon M, Murphy CJ. Nanoparticle Size Influences the Self-Assembly of Gold Nanorods Using Flexible Streptavidin-Biotin Linkages. ACS NANO 2023. [PMID: 38010073 DOI: 10.1021/acsnano.3c09096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The self-assembly of colloidal nanocrystals remains of robust interest due to its potential in creating hierarchical nanomaterials that have advanced function. For gold nanocrystals, junctions between nanoparticles yield large enhancements in local electric fields under resonant illumination, which is suitable for surface-enhanced spectroscopies for molecular sensors. Gold nanorods can provide such plasmonic fields at near-infrared wavelengths of light for longitudinal excitation. Through the use of careful concentration and stoichiometric control, a method is reported herein for selective biotinylation of the ends of gold nanorods for simple, consistent, and high-yielding self-assembly upon addition of the biotin-binding protein streptavidin. This method was applied to four different sized nanorods of similar aspect ratio and analyzed through UV-vis spectroscopy for qualitative confirmation of self-assembly and transmission electron microscopy to determine the degree of self-assembly in end-linked nanorods. The yield of end-linked assemblies approaches 90% for the largest nanorods and approaches 0% for the smallest nanorods. The number of nanorods linked in one chain also increases with an increased nanoparticle size. The results support the notion that the lower ligand density at the ends of the larger nanorods yields preferential substitution reactions at those ends and hence preferential end-to-end assembly, while the smallest nanorods have a relatively uniform ligand density across their surfaces, leading to spatially random substitution reactions.
Collapse
Affiliation(s)
- Maegen Kincanon
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Arndt NB, Adolphs T, Arlinghaus HF, Heidrich B, Ravoo BJ. Arylazopyrazole-Modified Thiolactone Acrylate Copolymer Brushes for Tuneable and Photoresponsive Wettability of Glass Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5342-5351. [PMID: 37011284 DOI: 10.1021/acs.langmuir.2c03400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Photoswitches have long been employed in coatings for surfaces and substrates to harness light as a versatile stimulus to induce responsive behavior. We previously demonstrated the viability of arylazopyrazole (AAP) as a photoswitch in self-assembled monolayers (SAMs) on silicon and glass surfaces for photoresponsive wetting applications. We now aim to transfer the excellent photophysical properties of AAPs to polymer brush coatings. Compared to SAMs, polymer brushes offer enhanced stability and an increase of the thickness and density of the functional organic layer. In this work, we present thiolactone acrylate copolymer brushes which can be post-modified with AAP amines as well as hydrophobic acrylates, making use of the unique chemistry of the thiolactones. This strategy enables photoresponsive wetting with a tuneable range of contact angle change on glass substrates. We show the successful synthesis of thiolactone hydroxyethyl acrylate copolymer brushes by means of surface-initiated atom-transfer radical polymerization with the option to either prepare homogeneous brushes or to prepare micrometer-sized brush patterns by microcontact printing. The polymer brushes were analyzed by atomic force microscopy, time-of-flight secondary ion spectrometry, and X-ray photoelectron spectroscopy. Photoresponsive behavior imparted to the brushes by means of post-modification with AAP is monitored by UV/vis spectroscopy, and wetting behavior of homogeneous brushes is measured by static and dynamic contact angle measurements. The brushes show an average change in static contact angle of around 13° between E and Z isomer of the AAP photoswitch for at least five cycles, while the range of contact angle change can be fine-tuned between 53.5°/66.5° (E/Z) and 81.5°/94.8° (E/Z) by post-modification with hydrophobic acrylates.
Collapse
Affiliation(s)
- Niklas B Arndt
- Center for Soft Nanoscience and Organic Chemistry Institute, University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Thorsten Adolphs
- Center for Soft Nanoscience and Physics Institute, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Heinrich F Arlinghaus
- Center for Soft Nanoscience and Physics Institute, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Bastian Heidrich
- MEET Battery Research Center, University of Münster, Corrensstraße 46, 48149 Münster, Germany
- Institute of Physical Chemistry, University of Münster, Corrensstraße 29, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organic Chemistry Institute, University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| |
Collapse
|
3
|
Wang J, Peled TS, Klajn R. Photocleavable Anionic Glues for Light-Responsive Nanoparticle Aggregates. J Am Chem Soc 2023; 145:4098-4108. [PMID: 36757850 PMCID: PMC9951211 DOI: 10.1021/jacs.2c11973] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Indexed: 02/10/2023]
Abstract
Integrating light-sensitive molecules within nanoparticle (NP) assemblies is an attractive approach to fabricate new photoresponsive nanomaterials. Here, we describe the concept of photocleavable anionic glue (PAG): small trianions capable of mediating interactions between (and inducing the aggregation of) cationic NPs by means of electrostatic interactions. Exposure to light converts PAGs into dianionic products incapable of maintaining the NPs in an assembled state, resulting in light-triggered disassembly of NP aggregates. To demonstrate the proof-of-concept, we work with an organic PAG incorporating the UV-cleavable o-nitrobenzyl moiety and an inorganic PAG, the photosensitive trioxalatocobaltate(III) complex, which absorbs light across the entire visible spectrum. Both PAGs were used to prepare either amorphous NP assemblies or regular superlattices with a long-range NP order. These NP aggregates disassembled rapidly upon light exposure for a specific time, which could be tuned by the incident light wavelength or the amount of PAG used. Selective excitation of the inorganic PAG in a system combining the two PAGs results in a photodecomposition product that deactivates the organic PAG, enabling nontrivial disassembly profiles under a single type of external stimulus.
Collapse
Affiliation(s)
- Jinhua Wang
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tzuf Shay Peled
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
5
|
Niehues M, Engel S, Ravoo BJ. Photo-Responsive Self-Assembly of Plasmonic Magnetic Janus Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11123-11130. [PMID: 34499520 DOI: 10.1021/acs.langmuir.1c01979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stimuli-responsive self-assembly of nanoparticles is a versatile approach for the bottom-up fabrication of adaptive and functional nanomaterials. For this purpose, anisotropic building blocks are of particular importance due to the unique shapes and structures that can be obtained upon self-assembly. Here, we demonstrate the photo-responsive self-assembly of plasmonic magnetic "dumbbell" Janus nanoparticles (Au-Fe3O4) via the host-guest interaction of the supramolecular host cyclodextrin and the molecular photoswitch arylazopyrazole. We developed efficient ligand exchange procedures that enable the introduction of functional ligands, respectively, to the surface of the gold or magnetite core of the dumbbell. Our results indicate that distinct nanoparticle superstructures arise in aqueous solutions if nanoparticle aggregation is crosslinker-induced or self-induced and that the reversible formation and fragmentation of the superstructures can be modulated with light.
Collapse
Affiliation(s)
- Maximilian Niehues
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, D-48149 Münster, Germany
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, D-48149 Münster, Germany
| | - Sabrina Engel
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, D-48149 Münster, Germany
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, D-48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, D-48149 Münster, Germany
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, D-48149 Münster, Germany
| |
Collapse
|
6
|
Kurka DW, Niehues M, Kudruk S, Gerke V, Ravoo BJ. Polythiolactone-Decorated Silica Particles: A Versatile Approach for Surface Functionalization, Catalysis and Encapsulation. Chemistry 2021; 27:7667-7676. [PMID: 33788322 PMCID: PMC8252643 DOI: 10.1002/chem.202100547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 12/29/2022]
Abstract
The surface chemistry of colloidal silica has tremendous effects on its properties and applications. Commonly the design of silica particles is based on their de novo synthesis followed by surface functionalization leading to tailormade properties for a specific purpose. Here, the design of robust "precursor" polymer-decorated silica nano- and microparticles is demonstrated, which allows for easy post-modification by polymer embedded thiolactone chemistry. To obtain this organic-inorganic hybrid material, silica particles (SiO2 P) were functionalized via surface-initiated atom transfer radical polymerization (SI-ATRP) with poly(2-hydroxyethyl acrylate) (PHEA)-poly(thiolactone acrylamide (PThlAm) co-polymer brushes. Exploiting the versatility of thiolactone post-modification, a system was developed that could be used in three exemplary applications: 1) the straightforward molecular post-functionalization to tune the surface polarity, and therefore the dispersibility in various solvents; 2) the immobilization of metal nanoparticles into the polymer brushes via the in situ formation of free thiols that preserved catalytic activity in a model reaction; 3) the formation of redox-responsive, permeable polymer capsules by crosslinking the thiolactone moieties with cystamine dihydrochloride (CDH) followed by dissolution of the silica core.
Collapse
Affiliation(s)
- Dustin Werner Kurka
- Organic Chemistry Institute/Center for Soft NanoscienceWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149Münster
- Busso-Peus-Straße 1048149MünsterGermany
| | - Maximilian Niehues
- Organic Chemistry Institute/Center for Soft NanoscienceWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149Münster
- Busso-Peus-Straße 1048149MünsterGermany
| | - Sergej Kudruk
- Institute of Medical Biochemistry, Center for Molecular Biology of InflammationWestfälische Wilhelms-Universität MünsterVon-Esmarch-Straße 5648149 MünsterGermany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of InflammationWestfälische Wilhelms-Universität MünsterVon-Esmarch-Straße 5648149 MünsterGermany
| | - Bart Jan Ravoo
- Organic Chemistry Institute/Center for Soft NanoscienceWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149Münster
- Busso-Peus-Straße 1048149MünsterGermany
| |
Collapse
|
7
|
Zika A, Gröhn F. Multiswitchable photoacid-hydroxyflavylium-polyelectrolyte nano-assemblies. Beilstein J Org Chem 2021; 17:166-185. [PMID: 33564327 PMCID: PMC7849232 DOI: 10.3762/bjoc.17.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/16/2020] [Indexed: 02/05/2023] Open
Abstract
Light- and pH-responsive nano-assemblies with switchable size and structure are formed by the association of a photoacid, anthocyanidin, and a linear polyelectrolyte in aqueous solution. Specifically, anionic disulfonated naphthol derivatives, neutral hydroxyflavylium, and cationic poly(allylamine) are used as building blocks for the ternary electrostatic self-assembly, forming well-defined supramolecular assemblies with tunable sizes of 50 to 500 nm. Due to the network of possible chemical reactions for the anthocyanidin and the excited-state dissociation of the photoacid upon irradiation, different ways to alter the ternary system through external triggering are accessible. The structure and trigger effects can be controlled through the component ratios of the samples. Dynamic and static light scattering (DLS, SLS) and ζ-potential measurements were applied to study the size and the stability of the particles, and information on the molecular structure was gained by UV-vis spectroscopy. Isothermal titration calorimetry (ITC) provided information on the thermodynamics and interaction forces in the supramolecular assembly formation.
Collapse
Affiliation(s)
- Alexander Zika
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) and Bavarian Polymer Institute (BPI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) and Bavarian Polymer Institute (BPI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| |
Collapse
|
8
|
Krajczewski J, Ambroziak R, Kudelski A. Photo-assembly of plasmonic nanoparticles: methods and applications. RSC Adv 2021; 11:2575-2595. [PMID: 35424232 PMCID: PMC8694033 DOI: 10.1039/d0ra09337h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022] Open
Abstract
In this review article, various methods for the light-induced manipulation of plasmonic nanoobjects are described, and some sample applications of this process are presented. The methods of the photo-induced nanomanipulation analyzed include methods based on: the light-induced isomerization of some compounds attached to the surface of the manipulated object causing formation of electrostatic, host-guest or covalent bonds or other structural changes, the photo-response of a thermo-responsive material attached to the surface of the manipulated nanoparticles, and the photo-catalytic process enhanced by the coupled plasmons in manipulated nanoobjects. Sample applications of the process of the photo-aggregation of plasmonic nanosystems are also presented, including applications in surface-enhanced vibrational spectroscopies, catalysis, chemical analysis, biomedicine, and more. A detailed comparative analysis of the methods that have been applied so far for the light-induced manipulation of nanostructures may be useful for researchers planning to enter this fascinating field.
Collapse
Affiliation(s)
- Jan Krajczewski
- University of Warsaw, Faculty of Chemistry 1 Pasteur St. 02-093 Warsaw Poland
| | - Robert Ambroziak
- University of Warsaw, Faculty of Chemistry 1 Pasteur St. 02-093 Warsaw Poland
| | - Andrzej Kudelski
- University of Warsaw, Faculty of Chemistry 1 Pasteur St. 02-093 Warsaw Poland
| |
Collapse
|
9
|
Affiliation(s)
- Zhiyao Yang
- College of Chemistry Key Laboratory for Radiation Physics Technology of Ministry of Education Sichuan University Chengdu 610064 P. R. China
| | - Zejiang Liu
- College of Chemistry Key Laboratory for Radiation Physics Technology of Ministry of Education Sichuan University Chengdu 610064 P. R. China
| | - Lihua Yuan
- College of Chemistry Key Laboratory for Radiation Physics Technology of Ministry of Education Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
10
|
Bian T, Chu Z, Klajn R. The Many Ways to Assemble Nanoparticles Using Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905866. [PMID: 31709655 DOI: 10.1002/adma.201905866] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The ability to reversibly assemble nanoparticles using light is both fundamentally interesting and important for applications ranging from reversible data storage to controlled drug delivery. Here, the diverse approaches that have so far been developed to control the self-assembly of nanoparticles using light are reviewed and compared. These approaches include functionalizing nanoparticles with monolayers of photoresponsive molecules, placing them in photoresponsive media capable of reversibly protonating the particles under light, and decorating plasmonic nanoparticles with thermoresponsive polymers, to name just a few. The applicability of these methods to larger, micrometer-sized particles is also discussed. Finally, several perspectives on further developments in the field are offered.
Collapse
Affiliation(s)
- Tong Bian
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Zonglin Chu
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
11
|
Hanopolskyi AI, De S, Białek MJ, Diskin-Posner Y, Avram L, Feller M, Klajn R. Reversible switching of arylazopyrazole within a metal-organic cage. Beilstein J Org Chem 2019; 15:2398-2407. [PMID: 31666874 PMCID: PMC6808206 DOI: 10.3762/bjoc.15.232] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022] Open
Abstract
Arylazopyrazoles represent a new family of molecular photoswitches characterized by a near-quantitative conversion between two states and long thermal half-lives of the metastable state. Here, we investigated the behavior of a model arylazopyrazole in the presence of a self-assembled cage based on Pd–imidazole coordination. Owing to its high water solubility, the cage can solubilize the E isomer of arylazopyrazole, which, by itself, is not soluble in water. NMR spectroscopy and X-ray crystallography have independently demonstrated that each cage can encapsulate two molecules of E-arylazopyrazole. UV-induced switching to the Z isomer was accompanied by the release of one of the two guests from the cage and the formation of a 1:1 cage/Z-arylazopyrazole inclusion complex. DFT calculations suggest that this process involves a dramatic change in the conformation of the cage. Back-isomerization was induced with green light and resulted in the initial 1:2 cage/E-arylazopyrazole complex. This back-isomerization reaction also proceeded in the dark, with a rate significantly higher than in the absence of the cage.
Collapse
Affiliation(s)
- Anton I Hanopolskyi
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Soumen De
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michał J Białek
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Diskin-Posner
- Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liat Avram
- Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moran Feller
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|