1
|
|
2
|
|
3
|
Zhang H, Wang LL, Pang XY, Yang LP, Jiang W. Molecular recognition and photoprotection of riboflavin in water by a biomimetic host. Chem Commun (Camb) 2021; 57:13724-13727. [PMID: 34871338 DOI: 10.1039/d1cc05818e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A water-soluble tetralactam macrocycle with 2,6-diethoxynaphthalene groups as side walls is able to strongly bind riboflavin (Ka >107 M-1) in water through hydrogen bonding and the hydrophobic effect. The encapsulated riboflavin can be stabilized by the host against photo-degradation under UV-vis irradiation, which may be harnessed to extend the shelf life of riboflavin.
Collapse
Affiliation(s)
- Hong Zhang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China.
| | - Li-Li Wang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China. .,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study&Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China.
| | - Xin-Yu Pang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China.
| | - Liu-Pan Yang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China.
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Liu W, Jones LO, Wu H, Stern CL, Sponenburg RA, Schatz GC, Stoddart JF. Supramolecular Gold Stripping from Activated Carbon Using α-Cyclodextrin. J Am Chem Soc 2021; 143:1984-1992. [PMID: 33378203 DOI: 10.1021/jacs.0c11769] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the molecular recognition of the Au(CN)2- anion, a crucial intermediate in today's gold mining industry, by α-cyclodextrin. Three X-ray single-crystal superstructures-KAu(CN)2⊂α-cyclodextrin, KAu(CN)2⊂(α-cyclodextrin)2, and KAg(CN)2⊂(α-cyclodextrin)2-demonstrate that the binding cavity of α-cyclodextrin is a good fit for metal-coordination complexes, such as Au(CN)2- and Ag(CN)2- with linear geometries, while the K+ ions fulfill the role of linking α-cyclodextrin tori together as a result of [K+···O] ion-dipole interactions. A 1:1 binding stoichiometry between Au(CN)2- and α-cyclodextrin in aqueous solution, revealed by 1H NMR titrations, has produced binding constants in the order of 104 M-1. Isothermal calorimetry titrations indicate that this molecular recognition is driven by a favorable enthalpy change overcoming a small entropic penalty. The adduct formation of KAu(CN)2⊂α-cyclodextrin in aqueous solution is sustained by multiple [C-H···π] and [C-H···anion] interactions in addition to hydrophobic effects. The molecular recognition has also been investigated by DFT calculations, which suggest that the 2:1 binding stoichiometry between α-cyclodextrin and Au(CN)2- is favored in the presence of ethanol. We have demonstrated that this molecular recognition process between α-cyclodextrin and KAu(CN)2 can be applied to the stripping of gold from the surface of activated carbon at room temperature. Moreover, this stripping process is selective for Au(CN)2- in the presence of Ag(CN)2-, which has a lower binding affinity toward α-cyclodextrin. This molecular recognition process could, in principle, be integrated into commercial gold-mining protocols and lead to significantly reduced costs, energy consumption, and environmental impact.
Collapse
Affiliation(s)
- Wenqi Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Rebecca A Sponenburg
- Quantitative Bio-Element Imaging Center, Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Shaffer CC, Smith BD. Macrocyclic and acyclic supramolecular elements for co-precipitation of square-planar gold( iii) tetrahalide complexes. Org Chem Front 2021. [DOI: 10.1039/d0qo01562h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-covalent interactions control the solid-state packing of AuX4− anions (yellow circles) co-precipitated with different supramolecular elements.
Collapse
Affiliation(s)
- Cassandra C. Shaffer
- Department of Chemistry & Biochemistry
- 251 Nieuwland Science Hall
- University of Notre Dame
- USA
| | - Bradley D. Smith
- Department of Chemistry & Biochemistry
- 251 Nieuwland Science Hall
- University of Notre Dame
- USA
| |
Collapse
|
6
|
Pang XY, Zhou H, Yao H, Jiang W. Naphthobox: a selective molecular box for planar aromatic cations. Org Chem Front 2021. [DOI: 10.1039/d1qo00819f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A molecular box with an electron-rich cavity, namely naphthobox, was contructed and showed selective binding to planar aromatic cations.
Collapse
Affiliation(s)
- Xin-Yu Pang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Hang Zhou
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Huan Yao
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| |
Collapse
|
7
|
Yao H, Wang Y, Quan M, Farooq MU, Yang L, Jiang W. Adsorptive Separation of Benzene, Cyclohexene, and Cyclohexane by Amorphous Nonporous Amide Naphthotube Solids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Huan Yao
- School of Chemistry and Chemical Engineering Harbin Institute of Technology No.92 Xidazhi Street Harbin 150001 China
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Yu‐Mei Wang
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences Guangxi Normal University No. 15 Yucai Road Guilin 541004 China
| | - Mao Quan
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - M. Umar Farooq
- Department of Physics Southern University of Science and Technology Shenzhen 518055 China
| | - Liu‐Pan Yang
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Wei Jiang
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
8
|
Yao H, Wang YM, Quan M, Farooq MU, Yang LP, Jiang W. Adsorptive Separation of Benzene, Cyclohexene, and Cyclohexane by Amorphous Nonporous Amide Naphthotube Solids. Angew Chem Int Ed Engl 2020; 59:19945-19950. [PMID: 32696557 DOI: 10.1002/anie.202009436] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/31/2022]
Abstract
Benzene hydrogenation is an important industrial process. The reaction is incomplete, resulting in a mixture of benzene, cyclohexane, and/or cyclohexene that have to be separated before any further reactions. The currently used extractive and azeotropic distillations are operationally complex and energy intensive. Adsorptive separation provides an alternative energy-efficient method. However, the separation of the ternary mixture by adsorptive separation has not yet been reported. In the present research, we report two macrocyclic hosts with hydrogen-bonding sites in their cavities that are able to separate the ternary mixture of benzene, cyclohexene, and cyclohexane. N-H⋅⋅⋅π interactions were found to play a key role in the selective separation. In addition, fast adsorption, high loading ratios, and easy recycling are achieved with the present system, which is promising for practical applications.
Collapse
Affiliation(s)
- Huan Yao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 Xidazhi Street, Harbin, 150001, China.,Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu-Mei Wang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin, 541004, China
| | - Mao Quan
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - M Umar Farooq
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liu-Pan Yang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
9
|
Wang X, Jia F, Yang LP, Zhou H, Jiang W. Conformationally adaptive macrocycles with flipping aromatic sidewalls. Chem Soc Rev 2020; 49:4176-4188. [PMID: 32458888 DOI: 10.1039/d0cs00341g] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Conformationally adaptive macrocycles possess multiple well-defined conformations through quickly flipping their aromatic sidewalls. The macrocycles combine the binding power of all the conformations. Upon binding a guest, one or a combination of conformations are selected to achieve the maximized binding affinity. In addition, the complex conformational network is responsive to changes in temperature or solvent. It has been demonstrated that these macrocycles have unique properties in chirality sensing, stimuli-responsive self-assembly, and molecular switches. In this tutorial review, we summarize recent advances on conformationally adaptive macrocycles with an emphasis on our own research. We believe that this class of macrocycles will have a bright future in supramolecular chemistry and beyond.
Collapse
Affiliation(s)
- Xiaoping Wang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Fei Jia
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China. and Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Liu-Pan Yang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Hang Zhou
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Wang L, Tu Y, Valkonen A, Rissanen K, Jiang W. Selective Recognition of Phenazine by 2,6‐Dibutoxylnaphthalene‐Based Tetralactam Macrocycle. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900233] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Li‐Li Wang
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and Technology, Xueyuan Blvd 1088 Shenzhen Guangdong 518055 China
| | - Yi‐Kuan Tu
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and Technology, Xueyuan Blvd 1088 Shenzhen Guangdong 518055 China
| | - Arto Valkonen
- Department of Chemistry, Nanoscience CenterUniversity of Jyvaskyla, P. O. Box 35 Jyväskylä 40014 Finland
| | - Kari Rissanen
- Department of Chemistry, Nanoscience CenterUniversity of Jyvaskyla, P. O. Box 35 Jyväskylä 40014 Finland
| | - Wei Jiang
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and Technology, Xueyuan Blvd 1088 Shenzhen Guangdong 518055 China
| |
Collapse
|