1
|
Brandt T, Lentes P, Rudtke J, Hösgen M, Näther C, Herges R. Synthesis of N-acetyl diazocine derivatives via cross-coupling reaction. Beilstein J Org Chem 2025; 21:490-499. [PMID: 40079020 PMCID: PMC11897653 DOI: 10.3762/bjoc.21.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Diazocines are photoswitches derived from azobenzenes by bridging the two phenyl rings in ortho position with a CH2CH2 group forming an eight membered (diazocine) ring. Diazocine is superior to most azobenzenes in almost all photophysical properties (switching efficiency, quantum yield, wavelengths etc.). The biggest advantage, especially in photopharmacology and when used in photoswitchable materials, is the inverted thermodynamic stability of the two switching states (isomers). The Z isomer is more stable than the E form. However, one disadvantage that it shares with the frequently used azobenzene is that the switching efficiency decreases sharply with increasing water content in the solvent. In a recently published paper, we reported that replacing one CH2 group in the bridge with NCOCH3 not only confers intrinsic water solubility, but also largely eliminates the problem of reduced switching efficiency in aqueous solutions. In order to investigate the chemistry of this promising photoswitch and to unlock further applications, we now investigate strategies for the synthesis of derivatives, which are based on cross-coupling reactions. Fourteen vinyl-, aryl-, cyano-, and amino-substituted diazocines were prepared via Stille, Suzuki, and Buchwald-Hartwig reactions. X-ray structures are presented for derivatives 1, 2 and 7.
Collapse
Affiliation(s)
- Thomas Brandt
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Pascal Lentes
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Jeremy Rudtke
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Michael Hösgen
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Christian Näther
- Institute for Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
2
|
Delattre V, Goual N, Retailleau P, Marinetti A, Voituriez A. Synthesis of Halogenated Dibenzo[1,2,6]triazonines and Late-Stage Functionalization of the Triazonine Ring. J Org Chem 2024; 89:10939-10945. [PMID: 39037737 DOI: 10.1021/acs.joc.4c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Dibenzotriazonine represent a new class of nine-membered cyclic azobenzenes with a nitrogen atom embedded in the bridging chain. To enable future applications of this photoactive backbone, we propose in this study the synthesis of mono- and dihalogenated triazonines, that allow the late-stage introduction of different functionalized aryl groups and heteroatoms (N, O, and P) via palladium-catalyzed reactions. Indeed, different diphenylphosphoryl-triazonines were synthesized with functional groups such as aniline or phenol. Bis(diphenylphosphoryl)phenyl mono- and bis-carbamate-triazonines were also isolated in good yields.
Collapse
Affiliation(s)
- Vincent Delattre
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Nawel Goual
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Angela Marinetti
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Arnaud Voituriez
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| |
Collapse
|
3
|
Wages F, Brandt T, Martin HJ, Herges R, Maser E. Light-switchable diazocines as potential inhibitors of testosterone-synthesizing 17β-hydroxysteroid dehydrogenase 3. Chem Biol Interact 2024; 390:110872. [PMID: 38244963 DOI: 10.1016/j.cbi.2024.110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/24/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
In patients with prostate carcinoma as well as in some other cancer types, the reduction of testosterone levels is desired because the hormone stimulates cancer cell growth. One molecular target for this goal is the inhibition of 17β-hydroxysteroid dehydrogenase type 3 (17βHSD3), which produces testosterone from its direct precursor androstenedione. Recent research in this field is trying to harness photopharmacological properties of certain compounds so that the inhibitory effect could be turned on and off by irradiation. Seven new light-switchable diazocines were investigated with regard to their inhibition of 17βHSD3. For this purpose, transfected HEK-293 cells and isolated microsomes were treated with the substrate and the potential inhibitors with and without irradiation for an incubation period of 3 or 5 h. The amount of generated testosterone was measured by UHPLC and compared between samples and control as well as between irradiated and non-irradiated samples. There was no significant difference between samples with and without irradiation. However, four of the seven diazocines led to a significantly lower testosterone production both in cell and in microsome assays. In some of the irradiated samples, a partial destruction of the diazocines was observed, indicated by an additional UHPLC peak. However, the influence on the inhibition is negligible, because the majority of the substance remained intact. In conclusion, new inhibitors of 17βHSD3 have been found, but so far without the feature of a light switch, since the configurational alteration of the diazocines by irradiation did not lead to a change in bioactivity. Further modification might help to find a light-switching molecule that inhibits only in one configuration.
Collapse
Affiliation(s)
- F Wages
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel, Germany
| | - T Brandt
- Otto Diels Institute of Organic Chemistry, Christian-Albrecht University of Kiel, Otto Hahn Platz 4, 24118 Kiel, Germany
| | - H-J Martin
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel, Germany
| | - R Herges
- Otto Diels Institute of Organic Chemistry, Christian-Albrecht University of Kiel, Otto Hahn Platz 4, 24118 Kiel, Germany
| | - E Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel, Germany.
| |
Collapse
|
4
|
Mukherjee A, Seyfried MD, Ravoo BJ. Azoheteroarene and Diazocine Molecular Photoswitches: Self-Assembly, Responsive Materials and Photopharmacology. Angew Chem Int Ed Engl 2023; 62:e202304437. [PMID: 37212536 DOI: 10.1002/anie.202304437] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/23/2023]
Abstract
Aromatic units tethered with an azo (-N=N-) functionality comprise a unique class of compounds, known as molecular photoswitches, exhibiting a reversible transformation between their E- and Z-isomers in response to photo-irradiation. Photoswitches have been explored extensively in the recent past to prepare dynamic self-assembled materials, optoelectronic devices, responsive biomaterials, and more. Most of such materials involve azobenzenes as the molecular photoswitch and to date, SciFinder lists more than 7000 articles and 1000 patents. Subsequently, a great deal of effort has been invested to improve the photo-isomerization efficiency and related mesoscopic properties of azobenzenes. Recently, azoheteroarenes and cyclic azobenzenes, such as arylazopyrazoles, arylazoisoxazoles, arylazopyridines, and diazocines, have emerged as second generation molecular photoswitches beyond conventional azobenzenes. These photoswitches offer distinct photoswitching behavior and responsive properties which make them highly promising candidates for multifaceted applications ranging from photoresponsive materials to photopharmacophores. In this minireview, we introduce the structural refinement and photoresponsive properties of azoheteroarenes and diazocines and summarize the state-of-the-art on utilizing these photoswitches as responsive building blocks in supramolecular assembly, material science and photopharmacology, highlighting their versatile photochemical behavior, enhanced functionality, and latest applications.
Collapse
Affiliation(s)
- Anurag Mukherjee
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany
| | - Maximilian D Seyfried
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
5
|
Gödtel P, Starrett J, Pianowski ZL. Heterocyclic Hemipiperazines: Water-Compatible Peptide-Derived Photoswitches. Chemistry 2023; 29:e202204009. [PMID: 36790823 DOI: 10.1002/chem.202204009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/16/2023]
Abstract
Hemipiperazines are a recently discovered class of peptide-derived molecular photoswitches with high biocompatibility and therapeutic potential. Here, for the first time we describe photochromism of heterocyclic hemipiperazines. They demonstrate long thermal lifetimes, and enlarged band separation between photoisomers. Efficient photoisomerization occurs under aqueous conditions, although with a need for organic co-solvent. Bidirectional switching with visible light is observed for an extended aromatic system.
Collapse
Affiliation(s)
- Peter Gödtel
- Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, 76131, Karlsruhe, Germany
| | - Jessica Starrett
- Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, 76131, Karlsruhe, Germany
| | - Zbigniew L Pianowski
- Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems - FMS, Karlsruhe Institute of Technology KIT, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Shen X, Zhang C, Lan F, Su Z, Zheng Y, Zheng T, Xiong Q, Xie X, Du G, Zhao X, Hu C, Deng P, Yu Z. Dibenzo[
b
,
f
][1,4,5]chalcogenadiazepine Photoswitches: Conversion of Excitation Energy into Ring Strain. Angew Chem Int Ed Engl 2022; 61:e202209441. [DOI: 10.1002/anie.202209441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Xin Shen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Cefei Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Fengying Lan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yuanqin Zheng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Tingting Zheng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Qin Xiong
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xinyu Xie
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Guangxi Du
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xiaohu Zhao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Pengchi Deng
- Analytical & Testing Center Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
7
|
Shen X, Zhang C, Lan F, Su Z, Zheng Y, Zheng T, Xiong Q, Xie X, Du G, Zhao X, Hu C, Deng P, Yu Z. Dibenzo[b,f][1,4,5]chalcogenadiazepine Photoswitches: Conversion of Excitation Energy into Ring Strain. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xin Shen
- Sichuan University Department of Chemistry 610000 Chengdu CHINA
| | - Cefei Zhang
- Sichuan University College of Chemistry CHINA
| | - Fengying Lan
- Sichuan University Department of Chemistry CHINA
| | - Zhishan Su
- Sichuan University College of Chemistry CHINA
| | | | | | - Qin Xiong
- Sichuan University Department of Chemistry CHINA
| | - Xinyu Xie
- Sichuan University Department of Chemistry CHINA
| | - Guangxi Du
- Sichuan University Department of Chemistry CHINA
| | - Xiaohu Zhao
- Sichuan University Department of Chemistry CHINA
| | - Changwei Hu
- Sichuan University College of Chemistry CHINA
| | - Pengchi Deng
- Sichuan University Analytical & Testing Center CHINA
| | - Zhipeng Yu
- Sichuan University - Wangjiang Campus: Sichuan University College of Chemistry College of Chemistry29 Wangjianglu, Jiuyanqiao 610064 Chengdu CHINA
| |
Collapse
|
8
|
Leistner AL, Pianowski Z. Smart photochromic materials triggered with visible light. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anna-Lena Leistner
- KIT: Karlsruher Institut fur Technologie Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| | - Zbigniew Pianowski
- Karlsruher Institut fur Technologie Fakultat fur Chemie und Biowissenschaften Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| |
Collapse
|
9
|
Wages F, Lentes P, Griebenow T, Herges R, Peifer C, Maser E. Reduction of photoswitched, nitrogen bridged N-acetyl diazocines limits inhibition of 17βHSD3 activity in transfected human embryonic kidney 293 cells. Chem Biol Interact 2022; 354:109822. [PMID: 35074339 DOI: 10.1016/j.cbi.2022.109822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 11/03/2022]
Abstract
Testosterone depletion is a common aim in the treatment of hormone-dependent prostate cancer, since the steroid boosts the tumor's proliferation. Therefore, inhibition of 17β-hydroxysteroid dehydrogenase type 3 (17βHSD3), which catalyzes the carbonyl reduction of androstenedione to testosterone, represents an expedient therapeutic drug target. Among the compounds targeting 17βHSD3, tetrahydrodibenzazocines have been reported to be highly potent inhibitors. Thus, we hypothesized that structural analogs to the tetrahydrodibenzazocine scaffold, namely diazocines, which contain an azo group instead of the ethylene moiety, are also able to inhibit 17βHSD3. Diazocines consist of a photoresponsive core and can be isomerized from Z into E configuration by irradiation with a specific wavelength. In the present study, 17βHSD3 inhibition by diazocine photoisomers was examined in transfected human embryonic kidney 293 cells (HEK-293) and isolated microsomes. For this purpose, cells or microsomes were treated with androstenedione and incubated for 2 or 24 h in the presence or absence of irradiated and non-irradiated diazocines. Testosterone formation was determined by uHPLC. We report a weak inhibition of 17βHSD3 activity by diazocines in HEK-293 cells and microsomes. Furthermore, we found no significant difference between samples treated with irradiated and non-irradiated diazocines in terms of inhibition. However, we detected a new compound by HPLC analysis, which only appeared in light-treated samples, indicating a chemical modification of the photoswitched diazocines, presumably rendering them ineffective. Further investigations revealed that this modification occurs in the presence of reducing agents like dithiothreitol and glutathione. A preliminary mass-spectrometric analysis suggests that the N-N double bond is reduced, resulting in a dianiline derivative. Nevertheless, optimized photoswitchable diazocine derivatives, which are stable in a cellular environment, might serve as potent 17βHSD3 inhibitors, effective only in irradiated tissue.
Collapse
Affiliation(s)
- F Wages
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany
| | - P Lentes
- Otto Diels Institute of Organic Chemistry, Christian Albrechts University Kiel, Otto Hahn Platz 4, 24118, Kiel, Germany
| | - T Griebenow
- Otto Diels Institute of Organic Chemistry, Christian Albrechts University Kiel, Otto Hahn Platz 4, 24118, Kiel, Germany
| | - R Herges
- Otto Diels Institute of Organic Chemistry, Christian Albrechts University Kiel, Otto Hahn Platz 4, 24118, Kiel, Germany
| | - C Peifer
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, 24118, Kiel, Germany
| | - E Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany.
| |
Collapse
|