1
|
Tran TV, Marrot J, Yamamoto S, Yoshimura K, Gillaizeau I, Nicolas C, Désiré J, Kato A, Auberger N, Blériot Y. Addition of Lithiated 1,3-Dithiane and Nitronate to Sugar-Derived Imines: Synthesis of Homoiminosugars and Pipecolic Acid Analogues. Org Lett 2025; 27:5068-5073. [PMID: 40346450 DOI: 10.1021/acs.orglett.5c01061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
The one-pot two-step stereoselective synthesis of 1,2-trans-1-C-1,3-dithian-2-yl and 1,2-cis-1-C-nitromethyl iminosugars from sugar lactams is disclosed, exploiting Schwartz's reagent triggered amide to imine reduction followed by Corey-Seebach or nitro-Mannich-mediated functionalizations. Processing of the dithiane moiety provided the naturally occurring β-HNJ and α-HMJ homoiminosugars, while processing of the nitromethyl group gave access to α-HNJ and pipecolic acid derivatives. Epimerization of this function was also successfully examined. Final hydrogenolysis furnished a set of known and new glycomimetics, amongst which two compounds displayed potent glycosidase inhibition.
Collapse
Affiliation(s)
- Thanh Van Tran
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glycochemistry Group, 86073 Poitiers Cedex 9, France
| | - Jérôme Marrot
- Institut Lavoisier de Versailles, UMR-CNRS 8180, Université de Versailles, 78035 Versailles Cedex, France
| | - Suzuka Yamamoto
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kosuke Yoshimura
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Isabelle Gillaizeau
- Institute of Organic and Analytical Chemistry (ICOA), UMR 7311, CNRS, Université d'Orléans, Pôle de Chimie, Rue de Chartres, 45100 Orléans, France
| | - Cyril Nicolas
- Institute of Organic and Analytical Chemistry (ICOA), UMR 7311, CNRS, Université d'Orléans, Pôle de Chimie, Rue de Chartres, 45100 Orléans, France
| | - Jérôme Désiré
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glycochemistry Group, 86073 Poitiers Cedex 9, France
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Nicolas Auberger
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glycochemistry Group, 86073 Poitiers Cedex 9, France
| | - Yves Blériot
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glycochemistry Group, 86073 Poitiers Cedex 9, France
| |
Collapse
|
2
|
Maikhuri VK, Verma V, Mathur D, Prasad AK, Chaudhary A, Kumar R. Sugars in Multicomponent Reactions: A Toolbox for Diversity-Oriented Synthesis. SYNTHESIS-STUTTGART 2023. [DOI: 10.1055/s-0042-1751418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
AbstractMulticomponent reactions (MCRs) cover strategically employed chemical transformations that incorporate three or more reactants in one pot leading to a functionalized final product. Thus, it is an ideal tool to achieve high levels of complexity, diversity, yields of desired products, atom economy, and reduced reaction times. Sugars belong to the class of naturally occurring compounds with fascinating applications in the field of drug discovery due to the presence of various hydroxy groups and well-defined stereochemistry. However, their potential in MCRs has been realized only recently. This account describes recent advances in the synthesis of sugar-derived heterocycles synthesized by MCRs. We hope to encourage the synthetic and medicinal chemistry community to apply this powerful MCR chemistry to generate novel glycoconjugate challenges.1 Introduction2 Synthesis of Various Functionalized Sugar Compounds2.1 Passerini and Ugi Multicomponent Reactions2.2 Petasis Reaction2.3 Hantzsch Reaction2.4 Domino Ferrier–Povarov Reaction2.5 Marckwald Reaction2.6 Groebke–Blackburn–Bienaymé (GBB) Reaction2.7 Prins–Ritter Reaction2.8 Debus–Radziszewski Imidazole Synthesis Reaction2.9 Mannich Reaction2.10 A3-Coupling Reaction2.11 [3+2]-Cycloaddition Reactions2.12 Miscellaneous Reactions3 Conclusion
Collapse
Affiliation(s)
| | - Vineet Verma
- Bioorganic Laboratory, Department of Chemistry, University of Delhi
- Department of Chemistry, Starex University
| | - Divya Mathur
- Bioorganic Laboratory, Department of Chemistry, University of Delhi
- Daulat Ram College, Department of Chemistry, University of Delhi
| | - Ashok K. Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi
| | | | - Rajesh Kumar
- Department of Chemistry, R.D.S. College, B.R.A. Bihar University
| |
Collapse
|
3
|
Flores-Reyes JC, Islas-Jácome A, González-Zamora E. The Ugi three-component reaction and its variants. Org Chem Front 2021. [DOI: 10.1039/d1qo00313e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A broad variety of α-aminoamide-based compounds have been synthesized via the three-component version of the Ugi reaction (U-3CR) or by any of its variants (Ugi-Zhu-3CR, Orru-3CR, Ugi-4C-3CR, Ugi-Joullié-3CR, GBB-3CR, Ugi-Reissert-3CR, and so on).
Collapse
Affiliation(s)
- Julio César Flores-Reyes
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, Ciudad de Mexico
| | - Alejandro Islas-Jácome
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, Ciudad de Mexico
| | - Eduardo González-Zamora
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, Ciudad de Mexico
| |
Collapse
|