1
|
Sakla AP, Aaghaz S, Ahmed S, Neshat N, Kamal A. Recent Advancements in the Cyclization Strategies of 1,3-Enynes Towards the Synthesis of Heterocyclic/Carbocyclic Frameworks. Chem Asian J 2025; 20:e202401657. [PMID: 39976556 PMCID: PMC12005587 DOI: 10.1002/asia.202401657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/05/2025]
Abstract
1,3-Enynes have demonstrated their utility as valuable precursors to furnish a diverse range of heterocycles and carbocycles. Their unique structural characteristics enable a new toolbox to introduce requisite complexity in the molecular framework. Cyclization reaction is usually a simple and straightforward way to afford complex organic frameworks. Herein, we collated versatile cyclization strategies that have been developed by employing 1,3-enynes for the synthesis of heterocyclic and carbocyclic scaffolds. Divergent synthesis and mechanistic perspectives to define stereo-, regio- and chemo-selective outcomes of such reactions have also been highlighted.
Collapse
Affiliation(s)
- Akash P. Sakla
- National Institute of Pharmaceutical Education and Research (NIPER)Hyderabad500037India
| | - Shams Aaghaz
- National Institute of Pharmaceutical Education and Research (NIPER)Hyderabad500037India
| | - Shujauddin Ahmed
- GITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra Pradesh530045India
| | - Naziya Neshat
- School of Pharmaceutical Education and Research (SPER)Jamia HamdardNew Delhi110062India
| | - Ahmed Kamal
- Birla Institute of Technology & Science (BITS)Pilani Hyderabad CampusHyderabadTelangana500078India
| |
Collapse
|
2
|
Hsu CK, Liu YH, Liu ST. Preparation of Benzo[ a]fluorenes via Pd-Catalyzed Annulation of 5-(2-Bromophenyl)pent-3-en-1-ynes. J Org Chem 2024; 89:12341-12348. [PMID: 39121450 PMCID: PMC11382150 DOI: 10.1021/acs.joc.4c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
A palladium-promoted cascade cyclization of 5-(2-bromophenyl)pent-3-en-1-ynes is developed for the synthesis of benzo[a]fluorene derivatives. The reaction proceeds with oxidative addition of C-Br, insertion, C-H activation, and reductive elimination in sequential steps.
Collapse
Affiliation(s)
- Cheng-Kai Hsu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Shiuh-Tzung Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
3
|
Medvedkov IA, Nikolayev AA, Yang Z, Goettl SJ, Mebel AM, Kaiser RI. Elucidating the chemical dynamics of the elementary reactions of the 1-propynyl radical (CH 3CC; X 2A 1) with 2-methylpropene ((CH 3) 2CCH 2; X 1A 1). Phys Chem Chem Phys 2024; 26:6448-6457. [PMID: 38319693 DOI: 10.1039/d3cp05872g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Exploiting the crossed molecular beam technique, we studied the reaction of the 1-propynyl radical (CH3CC; X2A1) with 2-methylpropene (isobutylene; (CH3)2CCH2; X1A1) at a collision energy of 38 ± 3 kJ mol-1. The experimental results along with ab initio and statistical calculations revealed that the reaction has no entrance barrier and proceeds via indirect scattering dynamics involving C7H11 intermediates with lifetimes longer than their rotation period(s). The reaction is initiated by the addition of the 1-propynyl radical with its radical center to the π-electron density at the C1 and/or C2 position in 2-methylpropene. Further, the C7H11 intermediate formed from the C1 addition either emits atomic hydrogen or undergoes isomerization via [1,2-H] shift from the CH3 or CH2 group prior to atomic hydrogen loss preferentially leading to 1,2,4-trimethylvinylacetylene (2-methylhex-2-en-4-yne) as the dominant product. The molecular structures of the collisional complexes promote hydrogen atom loss channels. RRKM results show that hydrogen elimination channels dominate in this reaction, with a branching ratio exceeding 70%. Since the reaction of the 1-propynyl radical with 2-methylpropene has no entrance barrier, is exoergic, and all transition states involved are located below the energy of the separated reactants, bimolecular collisions are feasible to form trimethylsubstituted 1,3-enyne (p1) via a single collision event even at temperatures as low as 10 K prevailing in cold molecular clouds such as G+0.693. The formation of trimethylsubstituted vinylacetylene could serve as the starting point of fundamental molecular mass growth processes leading to di- and trimethylsubstituted naphthalenes via the HAVA mechanism.
Collapse
Affiliation(s)
- Iakov A Medvedkov
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| | | | - Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| | - Shane J Goettl
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
4
|
Yu Z, Li J, Cao Y, Dong T, Xiao Y. 3-Trifluoromethyl Pyrrole Synthesis Based on β-CF 3-1,3-Enynamides. J Org Chem 2023; 88:15501-15506. [PMID: 37852275 DOI: 10.1021/acs.joc.3c01790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A new metal-free method for the rapid, productive, and scalable preparation of 3-trifluoromethyl pyrroles has been developed. It is based on the electrophilic nature of the double bond of β-CF3-1,3-enynamides due to the electron-withdrawing characteristics of the trifluoromethyl groups and the strong nucleophilic nature of alkyl primary amines. Evidence for the highly regioselective 1,4-hydroamination was observed after the isolation and characterization of the allenamide intermediate.
Collapse
Affiliation(s)
- Zongxiang Yu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Jintong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yuxuan Cao
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Tingwei Dong
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yuanjing Xiao
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| |
Collapse
|
5
|
Li S, Yang W, Shi J, Dan T, Han Y, Cao ZC, Yang M. Synthesis of Trifluoromethyl-Substituted Allenols via Catalytic Trifluoromethylbenzoxylation of 1,3-Enynes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Songrong Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Wenwen Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Junjie Shi
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Tingting Dan
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Yujie Han
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Zhi-Chao Cao
- Anhui Agricultural University, Hefei, Anhui 230036, People’s Republic of China
| | - Mingyu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| |
Collapse
|
6
|
Wang J, Tang M, Gu W, Huang S, Xie LG. Synthesis of Pyrrole via Formal Cycloaddition of Allyl Ketone and Amine under Metal-Free Conditions. J Org Chem 2022; 87:12482-12490. [PMID: 36053128 DOI: 10.1021/acs.joc.2c01565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new metal-free synthesis of pyrrole from allyl ketone and amine has been established. The reaction proceeds via an thiolative activation of the C-C double bond with dimethyl(methylthio)sulfonium trifluoromethanesulfonate, followed by a nucleophilic ring-opening addition of primary amine to the generated episulfonium intermediate, and then an internal condensation and aromatization. This mild procedure provides a novel strategy to the construction of substituted pyrroles through a formal [4 + 1] cycloaddition reaction.
Collapse
Affiliation(s)
- Jinli Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meizhong Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weijin Gu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
7
|
He ZL, Zhang Y, Chen ZC, Du W, Chen YC. Cascade Multicomponent Assemblies Involving 1,3-Enynes via Auto-Tandem Palladium Catalysis. Org Lett 2022; 24:6326-6330. [PMID: 35997593 DOI: 10.1021/acs.orglett.2c02544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we report a three-component auto-tandem reaction of 1,3-enyne-tethered carbonyls, organoboronic reagents, and suitable nucleophiles catalyzed by palladium, proceeding through consecutive intramolecular vinylogous addition, Suzuki coupling, and allylic alkylation. This process exhibited high chemo- and regioselectivity with 1,3,4-trifunctionalization of the 1,3-enyne motif, and a wide range of 2H-chromenes, 1,2-dihydroquinolines, benzo[b]oxepines, 1,7-annulated indoles, and other frameworks were efficiently constructed in fair to good yields and E/Z selectivity.
Collapse
Affiliation(s)
- Ze-Liang He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
8
|
Miao H, Wang ZX. Ruthenium‐Catalyzed Oxidative Cross Coupling of Alkenes with Triisopropylsilylacetylene. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hong Miao
- University of Science and Technology of China Department of Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| | - Zhong-Xia Wang
- University of Science & Technology of China Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
9
|
Patel RI, Singh J, Sharma A. Visible Light‐Mediated Manipulation of 1,n‐Enynes in Organic Synthesis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Roshan I. Patel
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Jitender Singh
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Anuj Sharma
- Indian Institute of Technoology Roorkee Deptartment of Chemistry Room 303DDepartment of Chemistry, IIT Roorkee 247667 Roorkee INDIA
| |
Collapse
|
10
|
Nakamura M, Yoshida K, Togo H. Novel preparation of 2,5-diarylpyrroles from aromatic nitriles with 3-arylpropylmagnesium bromides, 1,3-diiodo-5,5-dimethylhydantoin, and BuOK. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Bacheley L, Llopis Q, Westermeyer A, Guillamot G, Phansavath P, Ratovelomanana-Vidal V. Synthesis of 2-acetal-1,3-enynes by Sonogashira reaction of bromovinyl acetals with alkynes: application to the formal synthesis of a glucagon antagonist. NEW J CHEM 2022. [DOI: 10.1039/d2nj01541b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of functionalized 1,3-enynes bearing an acetal moiety at the 2-position has been studied through Sonogashira reaction of bromovinyl acetals with various alkyl- and aryl-substituted terminal alkynes.
Collapse
Affiliation(s)
- Lucas Bacheley
- PSL University, Chimie ParisTech, Institute of Chemistry for Life & Health Sciences, CNRS UMR8060, CSB2D Team, 11 rue Pierre et Marie Curie, 75005, Paris, France
- SEQENS, 2-8 rue de Rouen, ZI de Limay-Porcheville, 78440, Porcheville, France
| | - Quentin Llopis
- PSL University, Chimie ParisTech, Institute of Chemistry for Life & Health Sciences, CNRS UMR8060, CSB2D Team, 11 rue Pierre et Marie Curie, 75005, Paris, France
- SEQENS, 2-8 rue de Rouen, ZI de Limay-Porcheville, 78440, Porcheville, France
| | - Anne Westermeyer
- PSL University, Chimie ParisTech, Institute of Chemistry for Life & Health Sciences, CNRS UMR8060, CSB2D Team, 11 rue Pierre et Marie Curie, 75005, Paris, France
- SEQENS, 2-8 rue de Rouen, ZI de Limay-Porcheville, 78440, Porcheville, France
| | - Gérard Guillamot
- SEQENS, 2-8 rue de Rouen, ZI de Limay-Porcheville, 78440, Porcheville, France
| | - Phannarath Phansavath
- PSL University, Chimie ParisTech, Institute of Chemistry for Life & Health Sciences, CNRS UMR8060, CSB2D Team, 11 rue Pierre et Marie Curie, 75005, Paris, France
| | - Virginie Ratovelomanana-Vidal
- PSL University, Chimie ParisTech, Institute of Chemistry for Life & Health Sciences, CNRS UMR8060, CSB2D Team, 11 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|