1
|
Vaishali, Sharma S, Sharma P, Das D, K Vashistha V, Dhiman J, Sharma R, Kumar R, Singh MV, Kumar Y. Magnetic nanoparticle-catalysed synthesis of quinoline derivatives: A green and sustainable method. Heliyon 2024; 10:e40451. [PMID: 39654797 PMCID: PMC11625306 DOI: 10.1016/j.heliyon.2024.e40451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/03/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Greener and sustainable synthetic strategies have been evolving as the demanding domain of organic synthesis during the last decade. Green synthesis involves the development of method that decrease or eliminate the use of hazardous chemicals, and make use of renewable or recyclable resources. By incorporating the fundamentals and methodologies of green synthesis, organic chemists have the ability to develop valuable organic molecular frameworks which also demonstrate a strong commitment to environmental sustainability. In this context, the nanoparticle has garnered significant interest due to its various features, adhering to the principles of green synthesis. Specifically, magnetic nanoparticles have been trending extensive uses in green synthesis throughout the past decade. The role of magnetic nanoparticle has an irreplaceable place in the synthesis of biologically valuable frameworks named as quinoline. Quinoline are considered a privileged structure among organic compounds and offer a promising avenue for identifying lead structures in the search of new synthetic molecules (Saquinavir, Imiquimod and Reabamipide) having potential medicinal values and other important prospects. So, it's always indeed to the organic and medicinal chemist to develop biologically active frameworks by the green synthesis. The current manuscript consolidates the existing research on properties of environment-friendly magnetic nanoparticles for generating an extended range of valuable quinoline derivatives.
Collapse
Affiliation(s)
- Vaishali
- Department of Chemistry, Birla Institute of Higher Education, Pilani, Rajasthan, 333031, India
| | - Shubham Sharma
- Department of Chemistry, GLA University, Mathura, UP, 281406, India
| | - Pooja Sharma
- Department of Chemistry, Lovely Professional University, Jalandhar, Phagwara, Punjab, 144001, India
| | - D.K. Das
- Department of Chemistry, GLA University, Mathura, UP, 281406, India
| | | | - Jitender Dhiman
- Central Instrumentation laboratory, Central Pulp and Paper Research Institute, Saharanpur, Uttar Pradesh, India
| | - Rachna Sharma
- Department of Applied Science, TULA’S Institute Dehradun, Uttarakhand, 248197, India
| | - Rajesh Kumar
- Department of Chemistry, S.S.J. University Campus Almora, Uttarakhand, 263601, India
| | - Man vir Singh
- Department of Chemistry, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand, 248007, India
| | - Yogendra Kumar
- Department of Chemistry, University of Zululand, Corner Guldengracht &, 2 Cent Cir, Road, Richards Bay, 3900, South Africa
| |
Collapse
|
2
|
Chen J, Jiang S, Shi W, Jiang P, Liu X, Huang H, Deng GJ. Three-Component Ring-Expansion Reaction of Indoles Leading to Synthesis of Pyrrolo[2,3- c]quinolines. Org Lett 2023; 25:6886-6890. [PMID: 37676779 DOI: 10.1021/acs.orglett.3c02581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Herein, we have developed an atom- and step-economic three-component cascade reaction that enables a modular platform for the synthesis of pyrrolo[2,3-c]quinoline compounds through ring-expansion/cyclization by way of novel N1-C2 cleavage of indoles. The metal-free catalytic system exhibits a broad functional group tolerance.
Collapse
Affiliation(s)
- Jinjin Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuxin Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Weiliang Shi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Pingyu Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Xinping Liu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Mizuno S, Nishiyama T, Endo M, Sakoguchi K, Yoshiura T, Bessho H, Motoyashiki T, Hatae N, Choshi T. Novel Approach to the Construction of Fused Indolizine Scaffolds: Synthesis of Rosettacin and the Aromathecin Family of Compounds. Molecules 2023; 28:molecules28104059. [PMID: 37241799 DOI: 10.3390/molecules28104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Camptothecin-like compounds are actively employed as anticancer drugs in clinical treatments. The aromathecin family of compounds, which contains the same indazolidine core structure as the camptothecin family of compounds, is also expected to display promising anticancer activity. Therefore, the development of a suitable and scalable synthetic method of aromathecin synthesis is of great research interest. In this study, we report the development of a new synthetic approach for constructing the pentacyclic scaffold of the aromathecin family by forming the indolizidine moiety after synthesizing the isoquinolone moiety. Thermal cyclization of 2-alkynylbenzaldehyde oxime to the isoquinoline N-oxide, followed by a Reissert-Henze-type reaction, forms the key strategy in this isoquinolone synthesis. Under the optimum reaction conditions for the Reissert-Henze-type reaction step, microwave irradiation-assisted heating of the purified N-oxide in acetic anhydride at 50 °C reduced the formation of the 4-acetoxyisoquinoline byproduct to deliver the desired isoquinolone at a 73% yield after just 3.5 h. The eight-step sequence employed afforded rosettacin (simplest member of the aromathecin family) at a 23.8% overall yield. The synthesis of rosettacin analogs was achieved by applying the developed strategy and may be generally applicable to the production of other fused indolizidine compounds.
Collapse
Affiliation(s)
- Shohta Mizuno
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama 729-0292, Japan
| | - Takashi Nishiyama
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama 729-0292, Japan
| | - Mai Endo
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama 729-0292, Japan
| | - Koharu Sakoguchi
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama 729-0292, Japan
| | - Takaki Yoshiura
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama 729-0292, Japan
| | - Hana Bessho
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama 729-0292, Japan
| | - Toshio Motoyashiki
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama 729-0292, Japan
| | - Noriyuki Hatae
- Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601 Matano, Totsuka-ku, Yokohama 245-0066, Japan
| | - Tominari Choshi
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama 729-0292, Japan
| |
Collapse
|
4
|
Alekseyev RS, Aliyev FN, Terenin VI. Methods for the synthesis of 3H-pyrrolo[2,3-c]quinolines. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-021-03036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|