1
|
Ahmad I, Kedhim M, Jadeja Y, Sangwan G, V K, Kashyap A, Shomurotova S, Kazemi M, Javahershenas R. A comprehensive review on carbonylation reactions: catalysis by magnetic nanoparticle-supported transition metals. NANOSCALE ADVANCES 2025:d5na00040h. [PMID: 40303976 PMCID: PMC12035756 DOI: 10.1039/d5na00040h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/13/2025] [Indexed: 05/02/2025]
Abstract
Magnetic catalysts have become a crucial innovation in carbonylation reactions, providing a sustainable and highly efficient means of synthesizing compounds that contain carbonyl groups. This review article explores the diverse and significant role of magnetic catalysts in various carbonylation processes, emphasizing their essential contributions to improving reaction rates, selectivity, and recyclability of catalysts. The distinctive magnetic properties of these catalysts enable straightforward separation and recovery, a feature that significantly mitigates waste and reduces environmental impact. As a result, magnetic catalysts' environmental and economic advantages position them as key players in contemporary synthetic chemistry, driving the evolution of green chemistry practices. Particularly noteworthy is the combination of magnetic nanoparticles with transition metals, resulting in the development of robust catalytic systems that exploit the complementary effects of magnetism and catalysis. Recent advances have showcased the adaptability of magnetic nanoparticles supported by transition metal catalysts in various carbonylation reactions, including carbonylative coupling, alkoxy carbonylation, thio carbonylation, and amino carbonylation. This review meticulously examines the mechanistic aspects of how magnetic fields influenced catalytic performance between 2014 and the end of 2024.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Munthar Kedhim
- College of Pharmacy, The Islamic University Najaf Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah Al Diwaniyah Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon Babylon Iraq
| | - Yashwantsinh Jadeja
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University Rajkot 360003 Gujarat India
| | - Gargi Sangwan
- Chitkara Centre for Research and Development, Chitkara University Baddi Himachal Pradesh 174103 India
| | - Kavitha V
- Department of Chemistry, Sathyabama Institute of Science and Technology Chennai Tamil Nadu India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura 140401 Punjab India
| | - Shirin Shomurotova
- Department of Chemistry Teaching Methods, Tashkent State Pedagogical University named after Nizami Bunyodkor Street 27 Tashkent Uzbekistan
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Islamic Azad University Tehran Branch Tehran Iran
| | | |
Collapse
|
2
|
Sead FF, Jain V, Ballal S, Singh A, Devi A, Chandra Sharma G, Joshi KK, Kazemi M, Javahershenas R. Research on transition metals for the multicomponent synthesis of benzo-fused γ-lactams. RSC Adv 2025; 15:2334-2346. [PMID: 39867320 PMCID: PMC11756498 DOI: 10.1039/d4ra08798d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025] Open
Abstract
Benzo-fused γ-lactams are fundamental in medicinal chemistry, acting as essential elements for various therapeutic agents due to their structural adaptability and capability to enhance biological activity. In their synthesis, transition metals play a pivotal role as catalysts, offering more efficient alternatives to traditional methods by facilitating C-N bond formation through mechanisms like intramolecular coupling. Recent advances have especially spotlighted transition-metal-catalyzed C-H amination reactions for directly converting C(sp2)-H to C(sp2)-N bonds, streamlining the creation of these compounds. Furthermore, biocatalytic approaches have emerged, providing asymmetric synthesis of lactams with high yield and enantioselectivity. This review examined the transition metal-catalyzed synthesis techniques for producing benzo-fused γ-lactams, marking a significant leap in organic synthesis by proposing more effective, selective, and greener production methods. It serves as a valuable resource for researchers in the fields of transition metal catalysts and those engaged in synthesizing these lactams.
Collapse
Affiliation(s)
- Fadhil Faez Sead
- Department of Dentistry, College of Dentistry, The Islamic University Najaf Iraq
- Department of medical analysis, Medical laboratory technique college, the Islamic University of Al Diwaniyah Al Diwaniyah Iraq
- Department of medical analysis, Medical laboratory technique college, the Islamic University of Babylon Babylon Iraq
| | - Vicky Jain
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University Rajkot-360003 Gujarat India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University) Bangalore Karnataka India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura Punjab 140401 India
| | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri Mohali140307 Punjab India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan Jaipur India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University Dehradun India
- Graphic Era Deemed to be (b) University Dehradun Uttarakhand India
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Tehran Branch, Islamic Azad University Tehran Iran
| | - Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry Urmia University Urmia Iran
| |
Collapse
|
3
|
Smirnov IV, Biriukov KO, Shvydkiy NV, Perekalin DS, Afanasyev OI, Chusov D. Air-Stable Arene Manganese Complexes as Catalysts for the Syngas-Assisted Direct Reductive Amination, Cyanation of Aldehyde, and CO 2 Fixation by Epoxide with High Functional Groups Tolerance. J Org Chem 2024; 89:10338-10343. [PMID: 38943599 DOI: 10.1021/acs.joc.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Manganese complexes [(arene)Mn(CO)3]+ were prepared in one step from arenes and Mn(CO)5Br. They were found to be efficient catalysts in the carbonyl cyanation with TMSCN, CO2 fixation by epoxides, and direct reductive amination in the presence of syngas. The amination reaction tolerated various reducible functional groups. The synergy of carbon monoxide and hydrogen in syngas provides high efficiency of the catalytic system. The developed protocols do not require an inert atmosphere, and the catalysts can be handled in air.
Collapse
Affiliation(s)
- Ivan V Smirnov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, Moscow 119334, Russia
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Klim O Biriukov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, Moscow 119334, Russia
| | - Nikita V Shvydkiy
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, Moscow 119334, Russia
| | - Dmitry S Perekalin
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, Moscow 119334, Russia
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Oleg I Afanasyev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, Moscow 119334, Russia
- Plekhanov Russian University of Economics, Stremyanny per. 36, Moscow 117997, Russian Federation
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, Moscow 119334, Russia
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| |
Collapse
|
4
|
Kopp A, Oyama T, Ackermann L. Fluorescent coumarin-alkynes for labeling of amino acids and peptides via manganese(I)-catalyzed C-H alkenylation. Chem Commun (Camb) 2024. [PMID: 38683668 DOI: 10.1039/d4cc00361f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The late-stage fluorescent labeling of structurally complex peptides bears immense potential for molecular imaging. Herein, we report on a manganese(I)-catalyzed peptide C-H alkenylation under exceedingly mild conditions with natural fluorophores as coumarin- and chromone-derivatives. The robustness and efficiency of the manganese(I) catalysis regime was reflected by a broad functional group tolerance and low catalyst loading in a resource- and atom-economical fashion.
Collapse
Affiliation(s)
- Adelina Kopp
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany.
| | - Tsuyoshi Oyama
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany.
- Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany
| |
Collapse
|
5
|
Das A, Mandal R, Ravi Sankar HS, Kumaran S, Premkumar JR, Borah D, Sundararaju B. Reversal of Regioselectivity in Asymmetric C-H Bond Annulation with Bromoalkynes under Cobalt Catalysis. Angew Chem Int Ed Engl 2024; 63:e202315005. [PMID: 38095350 DOI: 10.1002/anie.202315005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Indexed: 12/30/2023]
Abstract
Metal-catalyzed asymmetric C-H bond annulation strategy offers a versatile platform, allowing the construction of complex P-chiral molecules through atom- and step-economical fashion. However, regioselective insertion of π-coupling partner between M-C bond with high enantio-induction remain elusive. Using commercially available Co(II) salt and chiral-Salox ligands, we demonstrate an unusual protocol for the regio-reversal, enantioselective C-H bond annulation of phosphinamide with bromoalkyne through desymmetrization. The reaction proceeds through ligand-assisted enantiodetermining cyclocobaltation followed by regioselective insertion of bromoalkyne between Co-C, subsequent reductive elimination, and halogen exchange with carboxylate resulted in P-stereogenic compounds in excellent ee (up to >99 %). The isolation of cobaltacycle involved in the catalytic cycle and the outcome of control experiments provide support for a plausible mechanism.
Collapse
Affiliation(s)
- Abir Das
- Department of Chemistry, Indian Institution of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India
| | - Rajib Mandal
- Department of Chemistry, Indian Institution of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India
| | | | - Subramani Kumaran
- Department of Chemistry, Indian Institution of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India
| | - J Richard Premkumar
- PG & Research Department of Chemistry, Bishop Heber College, 620017, Tiruchirappalli, Tamil Nadu, India
| | - Dipanti Borah
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, Maharashtra, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institution of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India
| |
Collapse
|
6
|
Da Concepción E, Lázaro-Milla C, Fernández I, Mascareñas JL, López F. Cobalt(I)-Catalyzed (3 + 2 + 2) Cycloaddition between Alkylidenecyclopropanes, Alkynes, and Alkenes. Org Lett 2023; 25:8372-8376. [PMID: 37948159 PMCID: PMC10723761 DOI: 10.1021/acs.orglett.3c03511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Cobalt(I) catalysts equipped with bisphosphine ligands can be used to promote formal (3 + 2 + 2) intramolecular cycloadditions of enynylidenecyclopropanes of type 1. The method provides synthetically appealing 5,7,5-fused tricyclic systems in good yields and with complete diastereo- and chemoselectivity. Interestingly, its scope differs from that of previously reported annulations based on precious metal catalysts, specifically rhodium and palladium. Noticeably, density functional theory calculations confirm that the mechanism of the reaction is also different from those proposed for these other catalysts.
Collapse
Affiliation(s)
- Eduardo Da Concepción
- Centro
Singular de Investigación en Química
Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago
de Compostela, Spain
| | - Carlos Lázaro-Milla
- Centro
Singular de Investigación en Química
Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago
de Compostela, Spain
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Israel Fernández
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José L. Mascareñas
- Centro
Singular de Investigación en Química
Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago
de Compostela, Spain
| | - Fernando López
- Centro
Singular de Investigación en Química
Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago
de Compostela, Spain
- Misión
Biológica de Galicia, Consejo Superior
de Investigaciones Científicas (CSIC), 36080 Pontevedra, Spain
| |
Collapse
|
7
|
Jei BB, Yang L, Ackermann L. Selective Labeling of Peptides with o-Carboranes via Manganese(I)-Catalyzed C-H Activation. Chemistry 2022; 28:e202200811. [PMID: 35420234 PMCID: PMC9320968 DOI: 10.1002/chem.202200811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 12/15/2022]
Abstract
A robust method for the selective labeling of peptides via manganese(I) catalysis was devised to achieve the C-2 alkenylation of tryptophan containing peptides with 1-ethynyl-o-carboranes. The manganese-catalyzed C-H activation was accomplished with high catalytic efficiency, and featured low toxicity, high functional group tolerance and excellent E-stereoselectivity. This approach unravels a promising tool for the assembly of o-carborane with structurally complex peptides of relevance to applications in boron neutron capture therapy.
Collapse
Affiliation(s)
- Becky Bongsuiru Jei
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTamannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Long Yang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTamannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTamannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|