1
|
Chisholm TS, Hunter CA. Ligands for Protein Fibrils of Amyloid-β, α-Synuclein, and Tau. Chem Rev 2025. [PMID: 40327808 DOI: 10.1021/acs.chemrev.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Amyloid fibrils are characteristic features of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. The use of small molecule ligands that bind to amyloid fibrils underpins both fundamental research aiming to better understand the pathology of neurodegenerative disease, and clinical research aiming to develop diagnostic tools for these diseases. To date, a large number of amyloid-binding ligands have been reported in the literature, predominantly targeting protein fibrils composed of amyloid-β (Aβ), tau, and α-synuclein (αSyn) fibrils. Fibrils formed by a particular protein can adopt a range of possible morphologies, but protein fibrils formed in vivo possess disease-specific morphologies, highlighting the need for morphology-specific amyloid-binding ligands. This review details the morphologies of Aβ, tau, and αSyn fibril polymorphs that have been reported as a result of structural work and describes a database of amyloid-binding ligands containing 4,288 binding measurements for 2,404 unique compounds targeting Aβ, tau, or αSyn fibrils.
Collapse
Affiliation(s)
- Timothy S Chisholm
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
2
|
Tayarani-Najaran Z, Dehghanpour Farashah M, Emami SA, Ramazani E, Shahraki N, Hadipour E. Protective effects of betanin, a novel acetylcholinesterase inhibitor, against H 2O 2-induced apoptosis in PC12 cells. Mol Biol Rep 2024; 51:986. [PMID: 39283367 DOI: 10.1007/s11033-024-09923-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/06/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Dysfunction of the cholinergic system and increased oxidative stress have a crucial role in cognitive disorders including Alzheimer's disease (AD). Here, we have investigated the protective effects of betanin, a novel acetylcholinesterase (AChE) inhibitor, on hydrogen peroxide (H2O2)-induced cell death in PC12 cells. METHODS AND RESULTS The protective effects were assessed by measuring cell viability, the amount of reactive oxygen species (ROS) production, AChE activity, cell damage, and apoptosis using resazurin, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), Ellman method, lactate dehydrogenase (LDH) release, propidium iodide (PI) staining and flow cytometry, and Western blot analysis. H2O2 (150 µM) resulted in cell viability reduction and apoptosis induction while, pretreatment with the betanin (10, 20, and 50 μM) and N-Acetyl-L-cysteine (NAC) (2.5 and 5 mM) significantly increased the viability (P < 0.05, P < 0.01 and P < 0.001) and at 5-50 μM betanin decreased ROS amount (P < 0.05, P < 0.01 and P < 0.001). Whereas, pretreatment with the betanin (10, 20, and 50 μM) decreased AChE activity (P < 0.001), also at 20 and 50 μM betanin reduced the release of LDH (P < 0.001), and at 10-50 μM decreased the percentage of apoptotic cells (P < 0.001). Apoptosis biomarkers such as cleaved poly (ADP-ribose) polymerase (PARP) (P < 0.01 and P < 0.001) and cytochrome c (P < 0.05 and P < 0.001) were attenuated after pretreatment of PC12 cells with betanin at 10-20 μM and 10-50 μM respectively. Indeed, survivin (P < 0.001) increased after pretreatment of cells with betanin at 10-20 μM. CONCLUSIONS Overall, betanin may use the potential to delay or prevent cell death caused by AD through decreasing the activity of AChE as well as attenuating the expression of proteins involved in the apoptosis pathway.
Collapse
Affiliation(s)
- Zahra Tayarani-Najaran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Naghmeh Shahraki
- Medical Toxicology Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Hadipour
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
3
|
Pijeira MSO, Nunes PSG, Chaviano SL, Diaz AMA, DaSilva JN, Ricci-Junior E, Alencar LMR, Chen X, Santos-Oliveira R. Medicinal (Radio) Chemistry: Building Radiopharmaceuticals for the Future. Curr Med Chem 2024; 31:5481-5534. [PMID: 37594105 DOI: 10.2174/0929867331666230818092634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Radiopharmaceuticals are increasingly playing a leading role in diagnosing, monitoring, and treating disease. In comparison with conventional pharmaceuticals, the development of radiopharmaceuticals does follow the principles of medicinal chemistry in the context of imaging-altered physiological processes. The design of a novel radiopharmaceutical has several steps similar to conventional drug discovery and some particularity. In the present work, we revisited the insights of medicinal chemistry in the current radiopharmaceutical development giving examples in oncology, neurology, and cardiology. In this regard, we overviewed the literature on radiopharmaceutical development to study overexpressed targets such as prostate-specific membrane antigen and fibroblast activation protein in cancer; β-amyloid plaques and tau protein in brain disorders; and angiotensin II type 1 receptor in cardiac disease. The work addresses concepts in the field of radiopharmacy with a special focus on the potential use of radiopharmaceuticals for nuclear imaging and theranostics.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
| | - Paulo Sérgio Gonçalves Nunes
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas SP13083-970, Brazil
| | - Samila Leon Chaviano
- Laboratoire de Biomatériaux pour l'Imagerie Médicale, Axe Médicine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada
| | - Aida M Abreu Diaz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Eduardo Ricci-Junior
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís MA65080-805, Brazil
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| |
Collapse
|
4
|
Rai H, Gupta S, Kumar S, Yang J, Singh SK, Ran C, Modi G. Near-Infrared Fluorescent Probes as Imaging and Theranostic Modalities for Amyloid-Beta and Tau Aggregates in Alzheimer's Disease. J Med Chem 2022; 65:8550-8595. [PMID: 35759679 DOI: 10.1021/acs.jmedchem.1c01619] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A person suspected of having Alzheimer's disease (AD) is clinically diagnosed for the presence of principal biomarkers, especially misfolded amyloid-beta (Aβ) and tau proteins in the brain regions. Existing radiotracer diagnostic tools, such as PET imaging, are expensive and have limited availability for primary patient screening and pre-clinical animal studies. To change the status quo, small-molecular near-infrared (NIR) probes have been rapidly developed, which may serve as an inexpensive, handy imaging tool to comprehend the dynamics of pathogenic progression in AD and assess therapeutic efficacy in vivo. This Perspective summarizes the biochemistry of Aβ and tau proteins and then focuses on structurally diverse NIR probes with coverages of their spectroscopic properties, binding affinity toward Aβ and tau species, and theranostic effectiveness. With the summarized information and perspective discussions, we hope that this paper may serve as a guiding tool for designing novel in vivo imaging fluoroprobes with theranostic capabilities in the future.
Collapse
Affiliation(s)
- Himanshu Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| | - Sarika Gupta
- Molecular Science Laboratory, National Institute of Immunology, New Delhi-110067, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Jian Yang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Sushil K Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| | - Chongzhao Ran
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| |
Collapse
|
5
|
Huynh TT, Wang Y, Terpstra K, Cho HJ, Mirica LM, Rogers BE. 68Ga-Labeled Benzothiazole Derivatives for Imaging Aβ Plaques in Cerebral Amyloid Angiopathy. ACS OMEGA 2022; 7:20339-20346. [PMID: 35721913 PMCID: PMC9202065 DOI: 10.1021/acsomega.2c02369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/20/2022] [Indexed: 05/17/2023]
Abstract
Timely diagnostic imaging plays a crucial role in managing cerebral amyloid angiopathy (CAA)-the condition in which amyloid β is deposited on blood vessels. To selectively map these amyloid plaques, we have designed amyloid-targeting ligands that can effectively complex with 68Ga3+ while maintaining good affinity for amyloid β. In this study, we introduced novel 1,4,7-triazacyclononane-based bifunctional chelators (BFCs) that incorporate a benzothiazole moiety as the Aβ-binding fragment and form charged and neutral species with 68Ga3+. In vitro autoradiography using 5xFAD and WT mouse brain sections (11-month-old) suggested strong and specific binding of the 68Ga complexes to amyloid β. Biodistribution studies in CD-1 mice revealed a low brain uptake of 0.10-0.33% ID/g, thus suggesting 68Ga-labeled novel BFCs as promising candidates for detecting CAA.
Collapse
Affiliation(s)
- Truc T. Huynh
- Department
of Radiation Oncology, Washington University
School of Medicine, 4511
Forest Park Avenue, St. Louis, Missouri 63108, United
States
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Yujue Wang
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Karna Terpstra
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Hong-Jun Cho
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Liviu M. Mirica
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United
States
- Hope
Center for Neurological Disorders, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Buck E. Rogers
- Department
of Radiation Oncology, Washington University
School of Medicine, 4511
Forest Park Avenue, St. Louis, Missouri 63108, United
States
| |
Collapse
|
6
|
Kim B, Jha S, Seo JH, Jeong CH, Lee S, Lee S, Seo YH, Park B. MeBib Suppressed Methamphetamine Self-Administration Response via Inhibition of BDNF/ERK/CREB Signal Pathway in the Hippocampus. Biomol Ther (Seoul) 2020; 28:519-526. [PMID: 32466633 PMCID: PMC7585641 DOI: 10.4062/biomolther.2020.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/23/2020] [Accepted: 05/09/2020] [Indexed: 02/01/2023] Open
Abstract
Methamphetamine (MA) is one of the most commonly abused drugs in the world by illegal drug users. Addiction to MA is a serious public health problem and effective therapies do not exist to date. It has also been reported that behavior induced by psychostimulants such as MA is related to histone deacetylase (HDAC). MeBib is an HDAC6 inhibitor derived from a benzimidazole scaffold. Many benzimidazole-containing compounds exhibit a wide range of pharmacological activity. In this study, we investigated whether HDAC6 inhibitor MeBib modulates the behavioral response in MA self-administered rats. Our results demonstrated that the number of active lever presses in MA self-administered rats was reduced by pretreatment with MeBib. In the hippocampus of rats, we also found MA administration promotes GluN2B, an NMDA receptor subunit, expression, which results in sequential activation of ERK/CREB/BDNF pathway, however, MeBib abrogated it. Collectively, we suggest that MeBib prevents the MA seeking response induced by MA administration and therefore, represents a potent candidate as an MA addiction inhibitor.
Collapse
Affiliation(s)
- Buyun Kim
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Sonam Jha
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
7
|
Pravin N, Kumar R, Tripathi S, Kumar P, Mohite GM, Navalkar A, Panigrahi R, Singh N, Gadhe LG, Manchanda S, Shimozawa M, Nilsson P, Johansson J, Kumar A, Maji SK, Shanmugam M. Benzimidazole-based fluorophores for the detection of amyloid fibrils with higher sensitivity than Thioflavin-T. J Neurochem 2020; 156:1003-1019. [PMID: 32750740 DOI: 10.1111/jnc.15138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022]
Abstract
Protein aggregation into amyloid fibrils is a key feature of a multitude of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Prion disease. To detect amyloid fibrils, fluorophores with high sensitivity and better efficiency coupled with the low toxicity are in high demand even to date. In this pursuit, we have unveiled two benzimidazole-based fluorescence sensors ([C15 H15 N3 ] (C1) and [C16 H16 N3 O2 ] (C2), which possess exceptional affinity toward different amyloid fibrils in its submicromolar concentration (8 × 10-9 M), whereas under a similar concentration, the gold standard Thioflavin-T (ThT) fails to bind with amyloid fibrils. These fluorescent markers bind to α-Syn amyloid fibrils as well as amyloid fibrils forming other proteins/peptides including Aβ42 amyloid fibrils. The 1 H-15 N heteronuclear quantum correlation spectroscopy nuclear magnetic resonance data collected on wild-type α-Syn monomer with and without the fluorophores (C1 and C2) reveal that there is weak or no interactions between C1 or C2 with residues in α-Syn monomer, which indirectly reflects the specific binding ability of C1 and C2 to the α-Syn amyloid fibrils. Detailed studies further suggest that C1 and C2 can detect/bind with the α-Syn amyloid fibril as low as 100 × 10-9 M. Extremely low or no cytotoxicity is observed for C1 and C2 and they do not interfere with α-Syn fibrillation kinetics, unlike ThT. Both C1/C2 not only shows selective binding with amyloid fibrils forming various proteins/peptides but also displays excellent affinity and selectivity toward α-Syn amyloid aggregates in SH-SY5Y cells and Aβ42 amyloid plaques in animal brain tissues. Overall, our data show that the developed dyes could be used for the detection of amyloid fibrils including α-Syn and Aβ42 amyloids with higher sensitivity as compared to currently used ThT.
Collapse
Affiliation(s)
- Narayanaperumal Pravin
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Shalini Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Pardeep Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ganesh M Mohite
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Rajlaxmi Panigrahi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Namrata Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Laxmikant G Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Shaffi Manchanda
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Makoto Shimozawa
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Per Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Jan Johansson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
8
|
Kaur A, New EJ, Sunde M. Strategies for the Molecular Imaging of Amyloid and the Value of a Multimodal Approach. ACS Sens 2020; 5:2268-2282. [PMID: 32627533 DOI: 10.1021/acssensors.0c01101] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein aggregation has been widely implicated in neurodegenerative diseases such as Alzheimer's disease, frontotemporal dementia, Parkinson's disease, and Huntington disease, as well as in systemic amyloidoses and conditions associated with localized amyloid deposits, such as type-II diabetes. The pressing need for a better understanding of the factors governing protein assembly has driven research for the development of molecular sensors for amyloidogenic proteins. To date, a number of sensors have been developed that report on the presence of protein aggregates utilizing various modalities, and their utility demonstrated for imaging protein aggregation in vitro and in vivo. Analysis of these sensors highlights the various advantages and disadvantages of the different imaging modalities and makes clear that multimodal sensors with properties amenable to more than one imaging technique need to be developed. This critical review highlights the key molecular scaffolds reported for molecular imaging modalities such as fluorescence, positron emission tomography, single photon emission computed tomography, and magnetic resonance imaging and includes discussion of the advantages and disadvantages of each modality, and future directions for the design of amyloid sensors. We also discuss the recent efforts focused on the design and development of multimodal sensors and the value of cross-validation across multiple modalities.
Collapse
Affiliation(s)
- Amandeep Kaur
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales 2006, Australia
- The University of Sydney, Nano Institute (Sydney Nano), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Elizabeth J. New
- The University of Sydney, Nano Institute (Sydney Nano), The University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney, School of Chemistry, Faculty of Science, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Margaret Sunde
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales 2006, Australia
- The University of Sydney, Nano Institute (Sydney Nano), The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
9
|
Multifunctional imaging of amyloid-beta peptides with a new gadolinium-based contrast agent in Alzheimer’s disease. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Choi MA, Park SY, Chae HY, Song Y, Sharma C, Seo YH. Design, synthesis and biological evaluation of a series of CNS penetrant HDAC inhibitors structurally derived from amyloid-β probes. Sci Rep 2019; 9:13187. [PMID: 31515509 PMCID: PMC6742641 DOI: 10.1038/s41598-019-49784-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
To develop novel CNS penetrant HDAC inhibitors, a new series of HDAC inhibitors having benzoheterocycle were designed, synthesized, and biologically evaluated. Among the synthesized compounds, benzothiazole derivative 9b exhibited a remarkable anti-proliferative activity (GI50 = 2.01 μM) against SH-SY5Y cancer cell line in a dose and time-dependent manner, better than the reference drug SAHA (GI50 = 2.90 μM). Moreover, compound 9b effectively promoted the accumulation of acetylated Histone H3 and α-tubulin through inhibition of HDAC1 and HDAC6 enzymes, respectively. HDAC enzyme assay also confirmed that compound 9b efficiently inhibited HDAC1 and HDAC6 isoforms with IC50 values of 84.9 nM and 95.9 nM. Furthermore, compound 9b inhibited colony formation capacity of SH-SY5Y cells, which is considered a hallmark of cell carcinogenesis and metastatic potential. The theoretical prediction, in vitro PAMPA-BBB assay, and in vivo brain pharmacokinetic studies confirmed that compound 9b had much higher BBB permeability than SAHA. In silico docking study demonstrated that compound 9b fitted in the substrate binding pocket of HDAC1 and HDAC6. Taken together, compound 9b provided a novel scaffold for developing CNS penetrant HDAC inhibitors and therapeutic potential for CNS-related diseases.
Collapse
Affiliation(s)
- Myeong A Choi
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea
| | - Sun You Park
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea
| | - Hye Yun Chae
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea
| | - Yoojin Song
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea
| | | | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea.
| |
Collapse
|
11
|
Preparation of Benzothiazolyl-Decorated Nanoliposomes. Molecules 2019; 24:molecules24081540. [PMID: 31003552 PMCID: PMC6514897 DOI: 10.3390/molecules24081540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 11/17/2022] Open
Abstract
Amyloid β (Aβ) species are considered as potential targets for the development of diagnostics/therapeutics towards Alzheimer’s disease (AD). Nanoliposomes which are decorated with molecules having high affinity for Aβ species may be considered as potential carriers for AD theragnostics. Herein, benzothiazolyl (BTH) decorated nanoliposomes were prepared for the first time, after synthesis of a lipidic BTH derivative (lipid-BTH). The synthetic pathway included acylation of bis(2-aminophenyl) disulfide with palmitic acid or palmitoyl chloride and subsequent reduction of the oxidized dithiol derivative. The liberated thiols were able to cyclize to the corresponding benzothiazolyl derivatives only after acidification of the reaction mixture. Each step of the procedure was monitored by HPLC analysis in order to identify all the important parameters for the formation of the BTH-group. Finally, the optimal methodology was identified, and was applied for the synthesis of the lipid-BTH derivative. BTH-decorated nanoliposomes were then prepared and characterized for physicochemical properties (size distribution, surface charge, physical stability, and membrane integrity during incubation in presence of buffer and plasma proteins). Pegylated BTH-nanoliposomes were demonstrated to have high integrity in the presence of proteins (in comparison to non-peglated ones) justifying their further exploitation as potential theragnostic systems for AD.
Collapse
|
12
|
Josephson L, Stratman N, Liu Y, Qian F, Liang SH, Vasdev N, Patel S. The Binding of BF-227-Like Benzoxazoles to Human α-Synuclein and Amyloid β Peptide Fibrils. Mol Imaging 2019; 17:1536012118796297. [PMID: 30213230 PMCID: PMC6144582 DOI: 10.1177/1536012118796297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Development of an α-synuclein (α-Syn) positron emission tomography agent for the
diagnosis and evaluation of Parkinson disease therapy is a key goal of neurodegenerative
disease research. BF-227 has been described as an α-Syn binder and hence was employed as a
lead to generate a library of α-Syn-binding compounds. [3H]BF-227 bound to
α-Syn and amyloid β peptide (Aβ) fibrils with affinities (KD) of 46.0 nM and
15.7 nM, respectively. Affinities of BF-227-like compounds (expressed as Ki)
for α-Syn and Aβ fibrils were determined, along with 5 reference compounds (flutafuranol,
flutemetamol, florbetapir, BF-227, and PiB). Selectivity for α-Syn binding, defined as the
Ki(Aβ)/Ki(α-Syn) ratio, was 0.23 for BF-227. A similar or lower
ratio was measured for analogues decorated with alkyl or oxyethylene chains attached to
the oxygen at the 6 position of BF-227, suggesting a lack of involvement of the side chain
in fibril binding. BF-227-like iodobenzoxazoles had lower affinities and poor α-Syn
selectivity. However, BF-227-like fluorobenzoxazoles had improved α-Syn selectively having
Ki(Aβ)/Ki(α-Syn) ranging from 2.2 to 5.1 with appreciable fibril
affinity, although not sufficient to warrant further investigation. Compounds based on
fluorobenzoxazoles might offer an approach to obtaining an α-Syn imaging agent with an
appropriate affinity and selectivity.
Collapse
Affiliation(s)
- Lee Josephson
- 1 MedChem Imaging, LLC, Boston, MA, USA.,2 Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nancy Stratman
- 3 Biomarkers Preclinical Imaging and Pharmacology, Research and Early Development, Biogen, MA, USA
| | - YuTing Liu
- 4 Biologics Drug Discovery, Biogen, Cambridge, MA, USA
| | - Fang Qian
- 4 Biologics Drug Discovery, Biogen, Cambridge, MA, USA
| | - Steven H Liang
- 2 Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Neil Vasdev
- 1 MedChem Imaging, LLC, Boston, MA, USA.,2 Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shil Patel
- 5 Translational Imaging Engine, Eisai AiM Institute, MA, USA. Vasdev is now with Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Multifunctional Donepezil Analogues as Cholinesterase and BACE1 Inhibitors. Molecules 2018; 23:molecules23123252. [PMID: 30544832 PMCID: PMC6321525 DOI: 10.3390/molecules23123252] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/27/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022] Open
Abstract
A series of 22 donepezil analogues were synthesized through alkylation/benzylation and compared to donepezil and its 6-O-desmethyl adduct. All the compounds were found to be potent inhibitors of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), two enzymes responsible for the hydrolysis of the neurotransmitter acetylcholine in Alzheimer’s disease patient brains. Many of them displayed lower inhibitory concentrations of EeAChE (IC50 = 0.016 ± 0.001 µM to 0.23 ± 0.03 µM) and EfBChE (IC50 = 0.11 ± 0.01 µM to 1.3 ± 0.2 µM) than donepezil. One of the better compounds was tested against HsAChE and was found to be even more active than donepezil and inhibited HsAChE better than EeAChE. The analogues with the aromatic substituents were generally more potent than the ones with aliphatic substituents. Five of the analogues also inhibited the action of β-secretase (BACE1) enzyme.
Collapse
|
14
|
Fändrich M, Nyström S, Nilsson KPR, Böckmann A, LeVine H, Hammarström P. Amyloid fibril polymorphism: a challenge for molecular imaging and therapy. J Intern Med 2018; 283:218-237. [PMID: 29360284 PMCID: PMC5820168 DOI: 10.1111/joim.12732] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The accumulation of misfolded proteins (MPs), both unique and common, for different diseases is central for many chronic degenerative diseases. In certain patients, MP accumulation is systemic (e.g. TTR amyloid), and in others, this is localized to a specific cell type (e.g. Alzheimer's disease). In neurodegenerative diseases, NDs, it is noticeable that the accumulation of MP progressively spreads throughout the nervous system. Our main hypothesis of this article is that MPs are not only markers but also active carriers of pathogenicity. Here, we discuss studies from comprehensive molecular approaches aimed at understanding MP conformational variations (polymorphism) and their bearing on spreading of MPs, MP toxicity, as well as MP targeting in imaging and therapy. Neurodegenerative disease (ND) represents a major and growing societal challenge, with millions of people worldwide suffering from Alzheimer's or Parkinson's diseases alone. For all NDs, current treatment is palliative without addressing the primary cause and is not curative. Over recent years, particularly the shape-shifting properties of misfolded proteins and their spreading pathways have been intensively researched. The difficulty in addressing ND has prompted most major pharma companies to severely downsize their nervous system disorder research. Increased academic research is pivotal for filling this void and to translate basic research into tools for medical professionals. Recent discoveries of targeting drug design against MPs and improved model systems to study structure, pathology spreading and toxicity strongly encourage future studies along these lines to provide an opportunity for selective imaging, prognostic diagnosis and therapy.
Collapse
Affiliation(s)
- Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Sofie Nyström
- Department of Physics, Chemistry and Biology, division of Chemistry, Linköping University, Linköping, Sweden
| | - K. Peter R. Nilsson
- Department of Physics, Chemistry and Biology, division of Chemistry, Linköping University, Linköping, Sweden
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Harry LeVine
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Per Hammarström
- Department of Physics, Chemistry and Biology, division of Chemistry, Linköping University, Linköping, Sweden
| |
Collapse
|
15
|
Nigam S, Jayashree BS. Limitation of Algar–Flynn–Oyamada reaction using methoxy substituted chalcones as reactants and evaluation of the newly transformed aurones for their biological activities. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2797-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Walji AM, Hostetler ED, Selnick H, Zeng Z, Miller P, Bennacef I, Salinas C, Connolly B, Gantert L, Holahan M, O’Malley S, Purcell M, Riffel K, Li J, Balsells J, OBrien JA, Melquist S, Soriano A, Zhang X, Ogawa A, Xu S, Joshi E, Della Rocca J, Hess FJ, Schachter J, Hesk D, Schenk D, Struyk A, Babaoglu K, Lohith TG, Wang Y, Yang K, Fu J, Evelhoch JL, Coleman PJ. Discovery of 6-(Fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]-MK-6240): A Positron Emission Tomography (PET) Imaging Agent for Quantification of Neurofibrillary Tangles (NFTs). J Med Chem 2016; 59:4778-89. [PMID: 27088900 DOI: 10.1021/acs.jmedchem.6b00166] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Abbas M. Walji
- Discovery Chemistry, Merck & Co., Inc., West Point Pennsylvania 19486, United States
| | - Eric D. Hostetler
- Imaging, Merck & Co., Inc., West Point Pennsylvania 19486, United States
| | - Harold Selnick
- Discovery Chemistry, Merck & Co., Inc., West Point Pennsylvania 19486, United States
| | - Zhizhen Zeng
- Imaging, Merck & Co., Inc., West Point Pennsylvania 19486, United States
| | - Patricia Miller
- Imaging, Merck & Co., Inc., West Point Pennsylvania 19486, United States
| | - Idriss Bennacef
- Imaging, Merck & Co., Inc., West Point Pennsylvania 19486, United States
| | - Cristian Salinas
- Imaging, Merck & Co., Inc., West Point Pennsylvania 19486, United States
| | - Brett Connolly
- Imaging, Merck & Co., Inc., West Point Pennsylvania 19486, United States
| | - Liza Gantert
- Imaging, Merck & Co., Inc., West Point Pennsylvania 19486, United States
| | - Marie Holahan
- Imaging, Merck & Co., Inc., West Point Pennsylvania 19486, United States
| | - Stacey O’Malley
- Imaging, Merck & Co., Inc., West Point Pennsylvania 19486, United States
| | - Mona Purcell
- Imaging, Merck & Co., Inc., West Point Pennsylvania 19486, United States
| | - Kerry Riffel
- Imaging, Merck & Co., Inc., West Point Pennsylvania 19486, United States
| | - Jing Li
- Process Chemistry, Merck & Co., Inc., West Point Pennsylvania 19486, United States
| | - Jaume Balsells
- Process Chemistry, Merck & Co., Inc., West Point Pennsylvania 19486, United States
| | - Julie A. OBrien
- Pharmacology, Merck & Co., Inc., West Point Pennsylvania 19486, United States
| | - Stacey Melquist
- Pharmacology, Merck & Co., Inc., West Point Pennsylvania 19486, United States
| | - Aileen Soriano
- Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Xiaoping Zhang
- Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Aimie Ogawa
- Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Serena Xu
- Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Elizabeth Joshi
- Drug Metabolism, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Joseph Della Rocca
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Fred J. Hess
- Neuroscience, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Joel Schachter
- Neuroscience, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - David Hesk
- Labelled Compound Synthesis, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| | - David Schenk
- Labelled Compound Synthesis, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| | - Arie Struyk
- Clinical Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Kerim Babaoglu
- Computational Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Talakad G. Lohith
- Imaging, Merck & Co., Inc., West Point Pennsylvania 19486, United States
| | - Yaode Wang
- Pharmaron Beijing Co., Ltd., Beijing 100176, China
| | - Kun Yang
- Pharmaron Beijing Co., Ltd., Beijing 100176, China
| | - Jianmin Fu
- Pharmaron Beijing Co., Ltd., Beijing 100176, China
| | | | - Paul J. Coleman
- Discovery Chemistry, Merck & Co., Inc., West Point Pennsylvania 19486, United States
| |
Collapse
|
17
|
Heo CH, Sarkar AR, Baik SH, Jung TS, Kim JJ, Kang H, Mook-Jung I, Kim HM. A quadrupolar two-photon fluorescent probe for in vivo imaging of amyloid-β plaques. Chem Sci 2016; 7:4600-4606. [PMID: 30155107 PMCID: PMC6016450 DOI: 10.1039/c6sc00355a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/07/2016] [Indexed: 01/22/2023] Open
Abstract
A quadrupolar two-photon fluorescent probe for in vivo imaging of amyloid-β plaques is reported.
The formation of beta amyloid (Aβ) plaques in specific brain regions is one of the early pathological hallmarks of Alzheimer's disease (AD). To enable the early detection of AD and related applications, a method for real-time, clear 3D visualization of Aβ plaques in vivo is highly desirable. Two-photon microscopy (TPM) which utilizes two near-infrared photons is an attractive tool for such applications. However, this technique needs a sensitive and photostable two-photon (TP) probe possessing bright TP exited fluorescence to impart high signal-to-noise (S/N) visualization of Aβ plaques. Herein, we report a quadrupolar TP fluorescent probe (QAD1) having large TP action cross section (Φδmax = 420 GM) and its application for in vivo TPM imaging of Aβ plaques. This probe, designed with a centrosymmetric D–A–D motif with a cyclic conjugating bridge and solubilizing unit, displays bright TP excited fluorescence, appreciable water solubility, robust photostability, and high sensitivity and selectivity for Aβ plaques. Using the real-time TPM imaging of transgenic 5XFAD mice after intravenous injection of QAD1, we show that this probe readily enters the blood brain barrier and provides high S/N ratio images of individual Aβ plaques in vivo. We also used QAD1 in dual-color TPM imaging for 3D visualization of Aβ plaques along with blood vessels and cerebral amyloid angiopathy (CAA) inside living mouse brains. These findings demonstrate that this probe will be useful in biomedical applications including early diagnosis and treatments of AD.
Collapse
Affiliation(s)
- Cheol Ho Heo
- Department of Chemistry , Department of Energy Systems Research , Ajou University , Suwon 443-749 , Korea .
| | - Avik Ranjan Sarkar
- Department of Chemistry , Department of Energy Systems Research , Ajou University , Suwon 443-749 , Korea .
| | - Sung Hoon Baik
- Department of Biochemistry , Biomedical Sciences College of Medicine , Seoul National University , Seoul , 110-799 , Korea .
| | - Tae Sung Jung
- Department of Chemistry , Department of Energy Systems Research , Ajou University , Suwon 443-749 , Korea .
| | - Jeong Jin Kim
- Department of Chemistry , Department of Energy Systems Research , Ajou University , Suwon 443-749 , Korea .
| | - Hyuk Kang
- Department of Chemistry , Department of Energy Systems Research , Ajou University , Suwon 443-749 , Korea .
| | - Inhee Mook-Jung
- Department of Biochemistry , Biomedical Sciences College of Medicine , Seoul National University , Seoul , 110-799 , Korea .
| | - Hwan Myung Kim
- Department of Chemistry , Department of Energy Systems Research , Ajou University , Suwon 443-749 , Korea .
| |
Collapse
|
18
|
LeVine H, Walker LC. What amyloid ligands can tell us about molecular polymorphism and disease. Neurobiol Aging 2016; 42:205-12. [PMID: 27143437 DOI: 10.1016/j.neurobiolaging.2016.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/19/2022]
Abstract
Brain-penetrant positron emission tomography imaging ligands selective for amyloid pathology in living subjects have sparked a revolution in presymptomatic biomarkers for Alzheimer's disease progression. As additional chemical structures were investigated, the heterogeneity of ligand-binding sites became apparent, as did discrepancies in binding of some ligands between human disease and animal models. These differences and their implications have received little attention. This review discusses the impact of different ligand-binding sites and misfolded protein conformational polymorphism on the interpretation of imaging data acquired with different ligands. Investigation of the differences in binding in animal models may identify pathologic processes informing improvements to these models for more faithful recapitulation of this uniquely human disease. The differential selectivity for binding of particular ligands to different conformational states could potentially be harnessed to better define disease progression and improve the prediction of clinical outcomes.
Collapse
Affiliation(s)
- Harry LeVine
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, KY, USA.
| | - Lary C Walker
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Department of Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
19
|
Fosso MY, McCarty K, Head E, Garneau-Tsodikova S, LeVine H. Differential Effects of Structural Modifications on the Competition of Chalcones for the PIB Amyloid Imaging Ligand-Binding Site in Alzheimer's Disease Brain and Synthetic Aβ Fibrils. ACS Chem Neurosci 2016; 7:171-6. [PMID: 26682772 DOI: 10.1021/acschemneuro.5b00266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) is a complex brain disorder that still remains ill defined. In order to understand the significance of binding of different clinical in vivo imaging ligands to the polymorphic pathological features of AD brain, the molecular characteristics of the ligand interacting with its specific binding site need to be defined. Herein, we observed that tritiated Pittsburgh Compound B ((3)H-PIB) can be displaced from synthetic Aβ(1-40) and Aβ(1-42) fibrils and from the PIB binding complex purified from human AD brain (ADPBC) by molecules containing a chalcone structural scaffold. We evaluated how substitution on the chalcone scaffold alters its ability to displace (3)H-PIB from the synthetic fibrils and ADPBC. By comparing unsubstituted core chalcone scaffolds along with the effects of bromine and methyl substitution at various positions, we found that attaching a hydroxyl group on the ring adjacent to the carbonyl group (ring I) of the parent member of the chalcone family generally improved the binding affinity of chalcones toward ADPBC and synthetic fibrils F40 and F42. Furthermore, any substitution on ring I at the ortho-position of the carbonyl group greatly decreases the binding affinity of the chalcones, potentially as a result of steric hindrance. Together with the finding that neither our chalcones nor PIB interact with the Congo Red/X-34 binding site, these molecules provide new tools to selectively probe the PIB binding site that is found in human AD brain, but not in brains of AD pathology animal models. Our chalcone derivatives also provide important information on the effects of fibril polymorphism on ligand binding.
Collapse
Affiliation(s)
- Marina Y. Fosso
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | | | | | - Sylvie Garneau-Tsodikova
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | | |
Collapse
|
20
|
Pan ML, Mukherjee MT, Patel HH, Patel B, Constantinescu CC, Mirbolooki MR, Liang C, Mukherjee J. Evaluation of [11C]TAZA for amyloid β plaque imaging in postmortem human Alzheimer's disease brain region and whole body distribution in rodent PET/CT. Synapse 2016; 70:163-76. [PMID: 26806100 DOI: 10.1002/syn.21893] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a neurodegenerative disease characterized by Aβ plaques in the brain. The aim of this study was to evaluate the effectiveness of a novel radiotracer, 4-[(11) C]methylamino-4'-N,N-dimethylaminoazobenzene ([(11)C]TAZA), for binding to Aβ plaques in postmortem human brain (AD and normal control (NC)). METHODS Radiosyntheses of [(11)C]TAZA, related [(11)C]Dalene ((11)C-methylamino-4'-dimethylaminostyrylbenzene), and reference [(11)C]PIB were carried out using [(11)C]methyltriflate prepared from [(11) C]CO(2) and purified using HPLC. In vitro binding affinities were carried out in human AD brain homogenate with Aβ plaques labeled with [(3) H]PIB. In vitro autoradiography studies with the three radiotracers were performed on hippocampus of AD and NC brains. PET/CT studies were carried out in normal rats to study brain and whole body distribution. RESULTS The three radiotracers were produced in high radiochemical yields (>40%) and had specific activities >37 GBq/μmol. TAZA had an affinity, K(i) = 0.84 nM and was five times more potent than PIB. [(11)C]TAZA bound specifically to Aβ plaques present in AD brains with gray matter to white matter ratios >20. [(11)C]TAZA was displaced by PIB (>90%), suggesting similar binding site for [(11)C]TAZA and [(11)C]PIB. [(11)C]TAZA exhibited slow kinetics of uptake in the rat brain and whole body images showed uptake in interscapular brown adipose tissue (IBAT). Binding in brain and IBAT were affected by preinjection of atomoxetine, a norepinephrine transporter blocker. CONCLUSION [(11)C]TAZA exhibited high binding to Aβ plaques in human AD hippocampus. Rat brain kinetics was slow and peripheral binding to IBAT needs to be further evaluated.
Collapse
Affiliation(s)
- Min-Liang Pan
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California, 92697
| | - Meenakshi T Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California, 92697
| | - Himika H Patel
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California, 92697
| | - Bhavin Patel
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California, 92697
| | - Cristian C Constantinescu
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California, 92697
| | - M Reza Mirbolooki
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California, 92697
| | - Christopher Liang
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California, 92697
| | - Jogeshwar Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California, 92697
| |
Collapse
|
21
|
Fosso MY, LeVine H, Green KD, Tsodikov OV, Garneau-Tsodikova S. Effects of structural modifications on the metal binding, anti-amyloid activity, and cholinesterase inhibitory activity of chalcones. Org Biomol Chem 2015; 13:9418-26. [PMID: 26248214 DOI: 10.1039/c5ob01478f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As the number of individuals affected with Alzheimer's disease (AD) increases and the availability of drugs for AD treatment remains limited, the need to develop effective therapeutics for AD becomes more and more pressing. Strategies currently pursued include inhibiting acetylcholinesterase (AChE) and targeting amyloid-β (Aβ) peptides and metal-Aβ complexes. This work presents the design, synthesis, and biochemical evaluation of a series of chalcones, and assesses the relationship between their structures and their ability to bind metal ions and/or Aβ species, and inhibit AChE/BChE activity. Several chalcones were found to exhibit potent disaggregation of pre-formed N-biotinyl Aβ1-42 (bioAβ42) aggregates in vitro in the absence and presence of Cu(2+)/Zn(2+), while others were effective at inhibiting the action of AChE.
Collapse
Affiliation(s)
- Marina Y Fosso
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA.
| | | | | | | | | |
Collapse
|
22
|
Venkatachalam TK, Pierens GK, Bernhardt PV, Reutens DC. Heteronuclear NMR spectroscopic investigations of hydrogen bonding in 2-(benzo[d]thiazole-2'-yl)-N-alkylanilines. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:448-453. [PMID: 25865956 DOI: 10.1002/mrc.4228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/18/2015] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
The 2-(benzo[d]thiazole-2'-yl)-N-alkylanilines have previously revealed the presence of a strong intramolecular hydrogen bond. This in turn gives rise to a more complicated multiplet for the protons attached to the carbon adjacent to the amino group. This intramolecular hydrogen bond was investigated by a deuterium exchange experiment using heteronuclear NMR spectroscopy (1H, 13C, 15N and 2H). We observed changes in the multiplet structure and chemical shifts providing further evidence that the deuterium replaces the hydrogen in the intramolecular hydrogen bond. A time course study of the D2O exchange confirmed the presence of a strong hydrogen bond. The comparison of the structures obtained by X-ray crystallography showed a very small difference in planarity between the two-substituted and four-substituted amino compounds. In both the cases, the phenyl ring is not absolutely coplanar with the thiazole unit. The existence of this intramolecular hydrogen bond in 2-(benzo[d]thiazole-2'-yl)-N-alkylanilines was further confirmed by single crystal X-ray crystallography.
Collapse
Affiliation(s)
- T K Venkatachalam
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - G K Pierens
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - P V Bernhardt
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - D C Reutens
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
23
|
Ariza M, Kolb HC, Moechars D, Rombouts F, Andrés JI. Tau Positron Emission Tomography (PET) Imaging: Past, Present, and Future. J Med Chem 2015; 58:4365-82. [DOI: 10.1021/jm5017544] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Manuela Ariza
- Neuroscience Medicinal Chemistry, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Hartmuth C. Kolb
- Neuroscience Biomarkers, Janssen Research and Development, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Dieder Moechars
- Neuroscience Discovery Biology, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Frederik Rombouts
- Neuroscience Medicinal Chemistry, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - José Ignacio Andrés
- Discovery Sciences, Janssen Research and Development, a Division of Janssen-Cilag, Jarama 75, 45007 Toledo, Spain
| |
Collapse
|
24
|
Dai Y, Xie C, Wu L, Mei H, Soloshonok VA, Han J, Pan Y. Asymmetric synthesis of amino-benzothiazol derivatives by additions of 2-lithiated benzothiazoles to (S)-N-t-butylsulfinyl-ketimines. RSC Adv 2015. [DOI: 10.1039/c4ra15405c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We reported the asymmetric Mannich reactions between lithium-benzothiazoles and (S)-N-tert-butanesulfinylketimines, which gave unknown type of amino-benzothiazol derivatives of high pharmaceutical potential with up to 96% yields and 99 : 1 diastereoselectivities.
Collapse
Affiliation(s)
- Yanling Dai
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Coordination Chemistry
- Nanjing University
- Nanjing
- China
| | - Chen Xie
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Coordination Chemistry
- Nanjing University
- Nanjing
- China
| | - Lingmin Wu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Coordination Chemistry
- Nanjing University
- Nanjing
- China
| | - Haibo Mei
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Coordination Chemistry
- Nanjing University
- Nanjing
- China
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I
- Faculty of Chemistry
- University of the Basque Country UPV/EHU
- 20018 San Sebastian
- Spain
| | - Jianlin Han
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Coordination Chemistry
- Nanjing University
- Nanjing
- China
| | - Yi Pan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Coordination Chemistry
- Nanjing University
- Nanjing
- China
| |
Collapse
|
25
|
Matveev SV, Kwiatkowski S, Sviripa VM, Fazio RC, Watt DS, LeVine H. Tritium-labeled (E,E)-2,5-bis(4'-hydroxy-3'-carboxystyryl)benzene as a probe for β-amyloid fibrils. Bioorg Med Chem Lett 2014; 24:5534-6. [PMID: 25452000 PMCID: PMC4254541 DOI: 10.1016/j.bmcl.2014.09.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/11/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022]
Abstract
Accumulation of Aβ in the brains of Alzheimer disease (AD) patients reflects an imbalance between Aβ production and clearance from their brains. Alternative cleavage of amyloid precursor protein (APP) by processing proteases generates soluble APP fragments including the neurotoxic amyloid Aβ40 and Aβ42 peptides that assemble into fibrils and form plaques. Plaque-buildup occurs over an extended time-frame, and the early detection and modulation of plaque formation are areas of active research. Radiolabeled probes for the detection of amyloid plaques and fibrils in living subjects are important for noninvasive evaluation of AD diagnosis, progression, and differentiation of AD from other neurodegenerative diseases and age-related cognitive decline. Tritium-labeled (E,E)-1-[(3)H]-2,5-bis(4'-hydroxy-3'-carbomethoxystyryl)benzene possesses an improved level of chemical stability relative to a previously reported radioiodinated analog for radiometric quantification of Aβ plaque and tau pathology in brain tissue and in vitro studies with synthetic Aβ and tau fibrils.
Collapse
Affiliation(s)
- Sergey V Matveev
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, United States; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, United States
| | - Stefan Kwiatkowski
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, United States; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, United States
| | - Vitaliy M Sviripa
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, United States; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, United States
| | - Robert C Fazio
- ViTrax Radiochemicals, 660 S. Jefferson Street, Unit E, Placentia, CA 92870, United States
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, United States; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, United States; Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093, United States.
| | - Harry LeVine
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, United States; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, United States.
| |
Collapse
|
26
|
Yang Y, Cui M. Radiolabeled bioactive benzoheterocycles for imaging β-amyloid plaques in Alzheimer's disease. Eur J Med Chem 2014; 87:703-21. [DOI: 10.1016/j.ejmech.2014.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/29/2014] [Accepted: 10/04/2014] [Indexed: 01/30/2023]
|
27
|
Pierens GK, Venkatachalam TK, Reutens D. A comparative study between para-aminophenyl and ortho-aminophenyl benzothiazoles using NMR and DFT calculations. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2014; 52:453-459. [PMID: 24890025 DOI: 10.1002/mrc.4088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/11/2014] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
Ortho-substituted and para-substituted aminophenyl benzothiazoles were synthesised and characterised using NMR spectroscopy. A comparison of the proton chemical shift values reveals significant differences in the observed chemical shift values for the NH protons indicating the presence of a hydrogen bond in all ortho-substituted compounds as compared to the para compounds. The presence of intramolecular hydrogen bond in the ortho amino substituted aminophenyl benzothiazole forces the molecule to be planar which may be an additional advantage in developing these compounds as Alzheimer's imaging agent because the binding to amyloid fibrils prefers planar compounds. The splitting pattern of the methylene proton next to the amino group also showed significant coupling to the amino proton consistent with the notion of the existence of slow exchange and hydrogen bond in the ortho-substituted compounds. This is further verified by density functional theory calculations which yielded a near planar low energy conformer for all the o-aminophenyl benzothiazoles and displayed a hydrogen bond from the amine proton to the nitrogen of the thiazole ring. A detailed analysis of the (1)H, (13)C and (15)N NMR chemical shifts and density functional theory calculated structures of the compounds are described.
Collapse
Affiliation(s)
- G K Pierens
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | | | | |
Collapse
|
28
|
Yang Y, Cui M, Zhang X, Dai J, Zhang Z, Lin C, Guo Y, Liu B. Radioiodinated benzyloxybenzene derivatives: a class of flexible ligands target to β-amyloid plaques in Alzheimer's brains. J Med Chem 2014; 57:6030-42. [PMID: 24936678 DOI: 10.1021/jm5004396] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Benzyloxybenzene, as a novel flexible scaffold without rigid planarity, was synthesized and evaluated as ligand toward Aβ plaques. The binding site calculated for these flexible ligands was the hydrophobic Val18_Phe20 channel on the flat surface of Aβ fiber. Structure-activity relationship analysis generated a common trend that binding affinities declined significantly from para-substituted ligands to ortho-substituted ones, which was also quantitatively illustrated by 3D-QSAR modeling. Autoradiography in vitro further confirmed the high affinities of radioiodinated ligands [125I]4, [125I]24, and [125I]22 (Ki=24.3, 49.4, and 17.6 nM, respectively). In biodistribution, [125I]4 exhibited high initial uptake and rapid washout property in the brain with brain2 min/brain60 min ratio of 16.3. The excellent in vitro and in vivo biostability of [125I]4 enhanced its potential for clinical application in SPECT imaging of Aβ plaques. This approach could also allow the design of a new generation of Aβ targeting ligands without rigid and planar framework.
Collapse
Affiliation(s)
- Yanping Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Venkatachalam TK, Stimson DHR, Bhalla R, Pierens GK, Reutens DC. Synthesis, characterization and (11) C-radiolabeling of aminophenyl benzothiazoles: structural effects on the alkylation of amino group. J Labelled Comp Radiopharm 2014; 57:566-73. [PMID: 24996114 DOI: 10.1002/jlcr.3216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 11/06/2022]
Abstract
Several aminophenyl benzothiazoles were prepared with a view to using them as amyloid binding agents for imaging β-amyloid in Alzheimer's disease. These precursors were radiolabeled with (11) C-positron-emitting radioisotope using an automated synthesizer and selected radiolabeled compounds were further purified by HPLC. Our results demonstrate that changes in structure have a major influence on the radioactive yield and the ease with which the radiolabel can be introduced. Aminophenyl benzothiazoles with an attached isopropyl group resisted dialkylation perhaps due to steric hindrance caused by this group. Straight chain attachment of methyl, ethyl, butyl, and crotyl groups in the structure decreased the radiochemical yield. Notably, the o-aminophenyl benzothiazole derivatives were difficult to alkylate despite stringent experimental conditions. This reactivity difference is attributed to the hydrogen bonding characteristics of the o-amino group with the nitrogen atom of the thiazole ring.
Collapse
Affiliation(s)
- T K Venkatachalam
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | | | | | | | | |
Collapse
|
30
|
Mei H, Dai Y, Wu L, Soloshonok VA, Han J, Pan Y. Mannich-Type Addition Reactions between Lithium Derivatives of Benzo[d]thiazoles andN-tert-Butylsulfinyl-3,3,3-trifluoroacetaldimine: Convenient Generalized Synthesis of Bis(benzothiazole)s. European J Org Chem 2014. [DOI: 10.1002/ejoc.201400118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|