1
|
Thitla T, Monkai J, Meng W, Khuna S, Xie N, Hongsanan S, Lumyong S. Two new species of Penicillium and a new genus in Xylariomycetidae from the forest dump-sites in Chiang Mai, Thailand. MycoKeys 2025; 116:275-301. [PMID: 40337075 PMCID: PMC12056519 DOI: 10.3897/mycokeys.116.150635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/05/2025] [Indexed: 05/09/2025] Open
Abstract
Waste accumulation in forest regions can have a severe impact on the soil mycobiome. However, research on soil fungi inhabiting forest disposal sites remains limited. Therefore, this study focused on the taxonomy and phylogeny of ascomycetes isolated from soil in forest dump-sites in Chiang Mai, Thailand. The fungal strains were identified using morphological characterisations and multigene phylogenetic reconstruction. A new genus, Pseudoleptodontidium, typified by Ps.chiangmaiense sp. nov. (Amphisphaeriales genera incertae sedis, Xylariomycetidae), along with two new species, Penicilliumchiangmaiense (series Janthinella, section Lanata-Divaricata) and P.terrae (series Erubescentia, section Exilicaulis) (Aspergillaceae, Eurotiales), are described in detail and compared with closely-related species. Our discovery offers valuable insights into the soil ascomycetes associated with forest disturbances.
Collapse
Affiliation(s)
- Tanapol Thitla
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jutamart Monkai
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Weiqian Meng
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Surapong Khuna
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Sinang Hongsanan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Liang RN, Lin XH, An MM, Zhao GZ. Two new species of Penicillium (Eurotiales, Aspergillaceae) from China based on morphological and molecular analyses. MycoKeys 2025; 116:255-274. [PMID: 40321907 PMCID: PMC12048820 DOI: 10.3897/mycokeys.116.149376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/27/2025] [Indexed: 05/08/2025] Open
Abstract
Penicillium is a large and significant genus of fungi, exhibiting widespread distribution across diverse substrates. Ongoing taxonomic and nomenclatural revisions have led to an annual increase in the number of newly described species. This study described two new Penicillium species, i.e., P.lentum and P.tibetense, discovered in China. They have been identified and characterized through morphological examination and both single gene and multigene phylogenetic analyses. Based on these analyses, P.lentum was classified within the section Brevicompacta, while P.tibetense was placed in the section Lanata-Divaricata. Both species exhibited the morphological features typical of their respective sections. Penicilliumlentum is characterized by restricted growth with dense colonies on agar media and predominantly generates terverticillate conidiophores. Penicilliumtibetense demonstrates rapid growth on media and has vigorous growth on CYA at 30 °C, producing biverticillate conidiophores. Comprehensive descriptions and detailed illustrations of these new species were presented. A morphological comparison between the new species and their closely related taxa was provided.
Collapse
Affiliation(s)
- Rui-Na Liang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Xiang-Hao Lin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Miao-Miao An
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Guo-Zhu Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| |
Collapse
|
3
|
Lee HB, Nguyen TTT, Noh SJ, Kim DH, Kang KH, Kim SJ, Kirk PM, Avery SV, Medina A, Hallsworth JE. Aspergillus ullungdoensis sp. nov., Penicillium jeongsukae sp. nov., and other fungi from Korea. Fungal Biol 2024; 128:2479-2492. [PMID: 39653494 DOI: 10.1016/j.funbio.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 01/05/2025]
Abstract
Eurotiales fungi are thought to be distributed worldwide but there is a paucity of information about their occurrence on diverse substrates or hosts and at specific localities. Some of the Eurotiales, including Aspergillus and Penicillium species, produce an array of secondary metabolites of use for agricultural, medicinal, and pharmaceutical applications. Here, we carried out a survey of the Eurotiales in South Korea, focusing on soil, freshwater, and plants (dried persimmon fruits and seeds of Perilla frutescens, known commonly as shiso). We obtained 11 species that-based on morphology, physiology, and multi-locus (ITS, BenA, CaM, and RPB2) phylogenetic analyses-include two new species, Aspergillus ullungdoensis sp. nov. and Penicillium jeongsukae sp. nov., and nine species that were known, but previously not described in South Korea, Aspergillus aculeatinus, Aspergillus aurantiacoflavus, Aspergillus croceiaffinis, Aspergillus pseudoviridinutans, Aspergillus uvarum, Penicillium ferraniaense, Penicillium glaucoroseum, Penicillium sajarovii, and one, Penicillium charlesii, that was isolated from previously unknown host, woodlouse (Porcellio scaber). We believe that biodiversity survey and identifying new species can contribute to set a baseline for future changes in the context of humanitarian crises such as climate change.
Collapse
Affiliation(s)
- Hyang Burm Lee
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Thuong T T Nguyen
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - So Jeong Noh
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Dong Hee Kim
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ki Hyun Kang
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Su Jin Kim
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Paul M Kirk
- Biodiversity Informatics and Spatial Analysis, Jodrell Laboratory, Royal Botanic Gardens Kew, Surrey, TW9 3DS, UK
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Angel Medina
- Applied Mycology, Cranfield University, Cranfield, MK43 0AL, UK
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| |
Collapse
|
4
|
Araújo KS, Alves JL, Pereira OL, de Queiroz MV. Five new species of endophytic Penicillium from rubber trees in the Brazilian Amazon. Braz J Microbiol 2024; 55:3051-3074. [PMID: 39384703 PMCID: PMC11711848 DOI: 10.1007/s42770-024-01478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/28/2024] [Indexed: 10/11/2024] Open
Abstract
The Amazon rainforest is the world's most diverse ecosystem, full of fauna and flora. Among the trees that make up the forest are the rubber trees of the genus Hevea (H. brasiliensis and H. guianensis), which stand out for the industrial use of latex. It was previously shown that endophytic fungi colonize the leaves, stems, and roots of Hevea spp. In this study, 47 Penicillium spp. and three Talaromyces spp. isolates were analyzed using specific DNA barcodes: internal transcribed spacers region (ITS), β-tubulin (BenA), calmodulin (CaM), and the DNA-dependent RNA polymerase II second largest subunit (RPB2) genes and additionally, for species delimitation, the genealogical concordance phylogenetic species recognition (GCPSR) criteria were applied. The phylogenetic analyses placed the Penicillium isolates into four sections Lanata-Divaricata, Sclerotiora, Citrina, and Fasciculata. The morphological and molecular characteristics resulted in the discovery of five new species (P. heveae sp. nov., P. acrean sp. nov., P. aquiri sp. nov., P. amazonense sp. nov., and P. pseudomellis sp. nov.). The five new species were also compared to closely related species, with observations on morphologically distinguishing features and colony appearances. Bayesian inference and maximum likelihood analysis have supported the placement of P. heveae sp. nov. as a sister group to P. globosum; P. acrean sp. nov. and P. aquiri sp. nov. as sister groups to P. sumatrense; P. amazonense sp. nov. closely related to isolates of P. rolfsii, and P. pseudomellis sp. nov. closely related to P. mellis. The study of endophytic Penicillium species of rubber trees and the description of five new taxa of Penicillium sect. Citrina, Lanata-Divaricata, and Sclerotiora as endophytes add to the fungal biodiversity knowledge in native rubber trees. Reports of fungi in native tropical plants may reveal taxonomic novelties, potential pathogen control agents, and producers of molecular bioactive compounds of medical and agronomic interest.
Collapse
Affiliation(s)
- Kaliane Sírio Araújo
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Janaina Lana Alves
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Olinto Liparini Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marisa Vieira de Queiroz
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
5
|
Visagie C, Yilmaz N, Allison J, Barreto R, Boekhout T, Boers J, Delgado M, Dewing C, Fitza K, Furtado E, Gaya E, Hill R, Hobden A, Hu D, Hülsewig T, Khonsanit A, Luangsa-ard J, Mthembu A, Pereira C, Price1 JL, Pringle A, Qikani N, Sandoval-Denis M, Schumacher R, Seifert K, Slippers B, Tennakoon D, Thanakitpipattana D, van Vuuren N, Groenewald J, Crous P. New and Interesting Fungi. 7. Fungal Syst Evol 2024; 13:441-494. [PMID: 39135884 PMCID: PMC11318372 DOI: 10.3114/fuse.2024.13.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024] Open
Abstract
Two new genera, 17 new species, two epitypes, and six interesting new host and / or geographical records are introduced in this study. New genera include: Cadophorella (based on Cadophorella faginea) and Neosatchmopsis (based on Neosatchmopsis ogrovei). New species include: Alternaria halotolerans (from hypersaline sea water, Qatar), Amylostereum stillwellii (from mycangia of Sirex areolatus, USA), Angiopsora anthurii (on leaves of Anthurium andraeanum, Brazil), Anthracocystis zeae-maydis (from pre-stored Zea mays, South Africa), Bisifusarium solicola (from soil, South Africa), Cadophorella faginea (from dead capsule of Fagus sylvatica, Germany), Devriesia mallochii (from house dust, Canada), Fusarium kirstenboschense (from soil, South Africa), Macroconia podocarpi (on ascomata of ascomycete on twigs of Podocarpus falcatus, South Africa), Neosatchmopsis ogrovei (on Eucalyptus leaf litter, Spain), Ophiocordyceps kuchinaraiensis (on Coleoptera larva, Thailand), Penicillium cederbergense (from soil, South Africa), Penicillium pascuigraminis (from pasture mulch, South Africa), Penicillium viridipigmentum (from soil, South Africa), Pleurotheciella acericola (on stem, bark of living tree of Acer sp., Germany), Protocreopsis physciae (on Physcia caesia, Netherlands), and Talaromyces podocarpi (from soil, South Africa). Citation: Visagie CM, Yilmaz N, Allison JD, Barreto RW, Boekhout T, Boers J, Delgado MA, Dewing C, Fitza KNE, Furtado ECA, Gaya E, Hill R, Hobden A, Hu DM, Hülsewig T, Khonsanit A, Kolecka A, Luangsa-ard JJ, Mthembu A, Pereira CM, Price J-L, Pringle A, Qikani N, Sandoval-Denis M, Schumacher RK, Slippers B, Tennakoon DS, Thanakitpipattana D, van Vuuren NI, Groenewald JZ, Crous PW (2024). New and Interesting Fungi. 7. Fungal Systematics and Evolution 13: 441-494. doi: 10.3114/fuse.2024.13.12.
Collapse
Affiliation(s)
- C.M. Visagie
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - N. Yilmaz
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - J.D. Allison
- Natural Resources Canada – Canadian Forest Service, Great Lakes Forestry Centre, P6A 2E5, Sault Ste. Maria, Ontario, Canada
| | - R.W. Barreto
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - J. Boers
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | | | - C. Dewing
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - K.N.E. Fitza
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - E.C.A. Furtado
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - E. Gaya
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - R. Hill
- Earlham Institute, Norwich, NR4 7UZ, UK
| | - A. Hobden
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - D.M. Hu
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang 330045, China
| | | | - A. Khonsanit
- Plant Microbe Interaction Research Team, BIOTEC, National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - J.J. Luangsa-ard
- Plant Microbe Interaction Research Team, BIOTEC, National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - A. Mthembu
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - C.M. Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - J.-L. Price1
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - A. Pringle
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - N. Qikani
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | | | - K.A. Seifert
- Department of Biology, Carleton University, 1125 Colonel By Drive Ottawa, Ontario, Canada K1S 5B6
| | - B. Slippers
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - D.S. Tennakoon
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang 330045, China
| | - D. Thanakitpipattana
- Plant Microbe Interaction Research Team, BIOTEC, National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - N.I. van Vuuren
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - P.W. Crous
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| |
Collapse
|
6
|
Siedlecki I, Piątek M, Majchrowska M, Okrasińska A, Owczarek-Kościelniak M, Pawłowska J. Discovery of Formicomyces microglobosus gen. et sp. nov. strengthens the hypothesis of independent evolution of ant-associated fungi in Trichomeriaceae. Fungal Biol 2023; 127:1466-1474. [PMID: 38097320 DOI: 10.1016/j.funbio.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
Different groups of fungi have been reported to interact with ants. Recent studies have shown that fungi of the order Chaetothyriales are important components of ant-fungus networks, including members of the family Trichomeriaceae, which is particularly rich in fungi isolated from carton ants nests. One of the still understudied ant-related environments are ants' infrabuccal pockets and pellets, which often contain fungal matter. The aim of this work was to determine the systematic and phylogenetic position of two slow growing strains of Trichomeriaceae isolated from infrabuccal pellets of Formica polyctena ants. Molecular analyses based on maximum likelihood and bayesian inference, using sequences of two ribosomal DNA markers: ITS and LSU have shown that the isolated strains form a monophyletic clade within the family Trichomeriaceae, sister to a clade formed by representatives of the genus Trichomerium. Morphological analyses additionally justified distinctiveness of the isolated strains, which have different morphology of conidia and conidiophores than Trichomerium representatives. Therefore, our results show that the isolated strains represent a new species within a not yet described fungal genus. Due to the strains' isolation source and their close relatedness to a fungal strain isolated from a carton nest of Lasius fuliginosus, we propose a name Formicomyces microglobosus Siedlecki & Piątek for this fungus. While our discovery strengthens a hypothesis of the multiple, independent evolution of ant-associated fungi in the family Trichomeriaceae, the ecology of F. microglobosus still remains to be characterized.
Collapse
Affiliation(s)
- Igor Siedlecki
- University of Warsaw Botanic Garden, Aleje Ujazdowskie 4, 00-478, Warsaw, Poland; Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | - Marcin Piątek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland.
| | - Maria Majchrowska
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | - Alicja Okrasińska
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | | | - Julia Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| |
Collapse
|
7
|
Wang XC, Zhang ZK, Zhuang WY. Species Diversity of Penicillium in Southwest China with Discovery of Forty-Three New Species. J Fungi (Basel) 2023; 9:1150. [PMID: 38132751 PMCID: PMC10744262 DOI: 10.3390/jof9121150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Penicillium species are ubiquitous in all kinds of environments, and they are of industrial, agricultural and clinical importance. In this study, soil fungal diversity in Southwestern China was investigated, and that of Penicillium turned out to be unexpectedly high. The survey included a total of 179 cultures of the genus isolated from 33 soil samples. Three-locus phylogenetic analyses and morphological comparisons were carried out. The examinations revealed that they belonged to two subgenera (Aspergilloides and Penicillium), 11 sections (Aspergilloides, Canescentia, Citrina, Exilicaulis, Fasciculata, Gracilenta, Lanata-Divaricata, Penicillium, Ramosum, Robsamsonia, and Sclerotiorum), 25 series, and 74 species. Forty-three species were discovered as new to science, and a new series, Simianshanica, was established in sect. Aspergilloides. Additionally, 11 species were recorded for the first time in China. Species isolation frequency and distribution of the group were also discussed.
Collapse
Affiliation(s)
- Xin-Cun Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Zhi-Kang Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
8
|
Ansari L, Asgari B, Zare R, Zamanizadeh HR. Penicillium rhizophilum, a novel species in the section Exilicaulis isolated from the rhizosphere of sugarcane in Southwest Iran. Int J Syst Evol Microbiol 2023; 73. [PMID: 37676702 DOI: 10.1099/ijsem.0.006028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
During a survey of species diversity of Penicillium and Talaromyces in sugarcane (Saccharum officinarum) rhizosphere in the Khuzestan province of Iran [1], 195 strains were examined, from which 187 belonged to Penicillium (11 species) and eight to Talaromyces (one species). In the present study, three strains of Penicillium belonging to section Exilicaulis series Restricta, identified as P. restrictum by Ansari et al. [1], were subjected to a phylogenetic study. The multilocus phylogeny of partial β-tubulin, calmodulin and RNA polymerase II second largest subunit genes enabled the recognition of one new phylogenetic species that is here formally described as Penicillium rhizophilum sp. nov. This species is phylogenetically distinct in series Restricta, but it does not show significant morphological differences from other species previously classified in the series. Therefore, we here placed bias on the phylogenetic species concept. The holotype of Penicillium rhizophilum sp. nov. is IRAN 18169F and the ex-type culture is LA30T (=IRAN 4042CT=CBS 149737T).
Collapse
Affiliation(s)
- Laleh Ansari
- Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Bita Asgari
- Department of Botany, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Rasoul Zare
- Department of Botany, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Hamid Reza Zamanizadeh
- Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Nicoletti R, Andolfi A, Becchimanzi A, Salvatore MM. Anti-Insect Properties of Penicillium Secondary Metabolites. Microorganisms 2023; 11:1302. [PMID: 37317276 PMCID: PMC10221605 DOI: 10.3390/microorganisms11051302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023] Open
Abstract
In connection with their widespread occurrence in diverse environments and ecosystems, fungi in the genus Penicillium are commonly found in association with insects. In addition to some cases possibly implying a mutualistic relationship, this symbiotic interaction has mainly been investigated to verify the entomopathogenic potential in light of its possible exploitation in ecofriendly strategies for pest control. This perspective relies on the assumption that entomopathogenicity is often mediated by fungal products and that Penicillium species are renowned producers of bioactive secondary metabolites. Indeed, a remarkable number of new compounds have been identified and characterized from these fungi in past decades, the properties and possible applications of which in insect pest management are reviewed in this paper.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy;
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (M.M.S.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (M.M.S.)
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| |
Collapse
|
10
|
da Silva IJS, Sousa TF, de Queiroz CA, dos Santos Castro G, Caniato FF, de Medeiros LS, Angolini CFF, Hanada RE, Koolen HHF, da Silva GF. Penicillium amapaense sp. nov., section Exilicaulis, and new records of Penicillium labradorum in Brazil isolated from Amazon River sediments with potential applications in agriculture and biotechnology. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
11
|
Visagie CM, Yilmaz N. Along the footpath of Penicillium discovery: Six new species from the Woodville Big Tree Forest Trail. Mycologia 2023; 115:87-106. [PMID: 36441981 DOI: 10.1080/00275514.2022.2135915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we studied the diversity of Penicillium occurring in soil collected along the Woodville Big Tree Forest Trail situated close to the coastal town of Wilderness in South Africa. Strains were accessioned into a collection and then identified to species based on β-tubulin DNA sequences, which is the recommended DNA barcode for the genus. The 74 strains were found to represent 18 species, including six we consider undescribed. Here, we introduce them as Penicillium claroviride, P. kalander, P. mattheeae, P. outeniquaense, P. subfuscum, and P. umkhoba. Phylogenetic comparisons were made, and genealogical concordance was demonstrated for these new species using DNA sequences from nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode), β-tubulin, calmodulin, and RNA polymerase II second largest subunit. Notes on morphological characters distinguishing the new species from their close relatives are provided.
Collapse
Affiliation(s)
- Cobus M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Neriman Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
12
|
A Culture-Based Study of Micromycetes Isolated from the Urban Nests of Grey Heron (Ardea cinerea) in SW Poland. Animals (Basel) 2022; 12:ani12060676. [PMID: 35327074 PMCID: PMC8944552 DOI: 10.3390/ani12060676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Fungi inhabiting bird nests may pose a serious threat to living organisms. Therefore, the main goal of the study was to identify cultivable fungi in the nest of grey heron (Ardea cinerea) located near the city centre of Wrocław (Poland). Overall, 10 different fungal species were obtained which were both cosmopolitan and potentially hazardous to humans, homoiothermous animals and plants. The greatest number of fungal species was obtained from the nest fragments with visible fungal growth, and the least from western conifer seed bugs (Leptoglossus occidentalis) inhabiting the nests. The damp chamber allowed isolation of Aspergillus fumigatus, Penicillium coprophilum, and P. griseofulvum as directly related to the occurrence of visible fungal growth on plant fragments of grey heron nests. Abstract There are many positive relationships between micromycetes and birds: They can spread fungal spores, and fungi facilitate cavity woodpecker excavation by preparing and modifying excavation sites. In turn, bird nests are mainly a source of potentially zoopathogenic fungi. The Wrocław city centre hosts the biggest grey heron breeding colony in Poland with at least 240 breeding birds pairs. To assess the possible public health risks associated with bird nests, the goal of the present study was to identify cultivable fungi present in the nests of grey herons (Ardea cinerea) in Wrocław. Additionally, attempts were made to determine whether the obtained species of fungi may pose a potential threat to animal health. Fungi were cultured at 23 and 37 ± 0.5 °C, and identified based on phenotypic and genotypic traits. Moreover, during routine inspection, visible fungal growth in some of the nests was found. Overall, 10 different fungal species were obtained in the study (Alternaria alternata, Aspergillus fumigatus, Botryotrichum piluliferum, Cladosporium cladosporioides, Epicoccum layuense, Mucor circinelloides, M.hiemalis, Penicillium atramentosum, P.coprophilum, and P.griseofulvum). They are both cosmopolitan species and a source of potential threat to humans, homoiothermous animals and plants. The greatest number of fungal species was obtained from the nest fragments with visible fungal growth incubated at 23 °C, and the least from western conifer seed bugs (Leptoglossus occidentalis) inhabiting the nests. The species such as A. fumigatus, P. coprophilum, and P.griseofulvum can be directly related to the occurrence of visible fungal growth on plant fragments of grey heron’s nests.
Collapse
|
13
|
Torres-Garcia D, Gené J, García D. New and interesting species of Penicillium (Eurotiomycetes, Aspergillaceae) in freshwater sediments from Spain. MycoKeys 2022; 86:103-145. [PMID: 35145339 PMCID: PMC8825427 DOI: 10.3897/mycokeys.86.73861] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/10/2022] [Indexed: 11/12/2022] Open
Abstract
Penicillium species are common fungi found worldwide from diverse substrates, including soil, plant debris, food products and air. Their diversity in aquatic environments is still underexplored. With the aim to explore the fungal diversity in Spanish freshwater sediments, numerous Penicillium strains were isolated using various culture-dependent techniques. A preliminary sequence analysis of the β-tubulin (tub2) gene marker allowed us to identify several interesting species of Penicillium, which were later characterized phylogenetically with the barcodes recommended for species delimitation in the genus. Based on the multi-locus phylogeny of the internal transcribed spacer region (ITS) of the ribosomal DNA, and partial fragments of tub2, calmodulin (cmdA), and the RNA polymerase II largest subunit (rpb2) genes, in combination with phenotypic analyses, five novel species are described. These are P.ausonanum in sectionLanata-Divaricata, P.guarroi in sect.Gracilenta, P.irregulare in sect.Canescentia, P.sicoris in sect.Paradoxa and P.submersum in sect.Robsamsonia. The study of several isolates from samples collected in different locations resulted in the reinstatement of P.vaccaeorum into sectionCitrina. Finally, P.heteromorphum (sect.Exilicaulis) and P.tardochrysogenum (sect.Chrysogena) are reported, previously only known from Antarctica and China, respectively.
Collapse
Affiliation(s)
- Daniel Torres-Garcia
- Universitat Rovira i Virgili, Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, 43201-Reus, SpainUniversitat Rovira i VirgiliReusSpain
| | - Josepa Gené
- Universitat Rovira i Virgili, Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, 43201-Reus, SpainUniversitat Rovira i VirgiliReusSpain
| | - Dania García
- Universitat Rovira i Virgili, Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, 43201-Reus, SpainUniversitat Rovira i VirgiliReusSpain
| |
Collapse
|
14
|
Cadelis MM, Nipper NSL, Grey A, Geese S, van de Pas SJ, Weir BS, Copp BR, Wiles S. Antimicrobial Polyketide Metabolites from Penicillium bissettii and P. glabrum. Molecules 2021; 27:240. [PMID: 35011473 PMCID: PMC8746583 DOI: 10.3390/molecules27010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Screening of several fungi from the New Zealand International Collection of Microorganisms from Plants identified two strains of Penicillium, P. bissettii and P. glabrum, which exhibited antimicrobial activity against Escherichia coli,Klebsiella pneumoniae, and Staphylococcus aureus. Further investigation into the natural products of the fungi, through extraction and fractionation, led to the isolation of five known polyketide metabolites, penicillic acid (1), citromycetin (2), penialdin A (3), penialdin F (4), and myxotrichin B (5). Semi-synthetic derivatization of 1 led to the discovery of a novel dihydro (1a) derivative that provided evidence for the existence of the much-speculated open-chained form of 1. Upon investigation of the antimicrobial activities of the natural products and derivatives, both penicillic acid (1) and penialdin F (4) were found to inhibit the growth of Methicillin-resistant S. aureus. Penialdin F (4) was also found to have some inhibitory activity against Mycobacterium abscessus and M. marinum along with citromycetin (2).
Collapse
Affiliation(s)
- Melissa M. Cadelis
- School of Chemical Sciences, University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand; (N.S.L.N.); (B.R.C.)
- Bioluminescent Superbugs Lab, School of Medical Sciences, University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand; (A.G.); (S.G.); (S.J.v.d.P.)
| | - Natasha S. L. Nipper
- School of Chemical Sciences, University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand; (N.S.L.N.); (B.R.C.)
| | - Alex Grey
- Bioluminescent Superbugs Lab, School of Medical Sciences, University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand; (A.G.); (S.G.); (S.J.v.d.P.)
| | - Soeren Geese
- Bioluminescent Superbugs Lab, School of Medical Sciences, University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand; (A.G.); (S.G.); (S.J.v.d.P.)
| | - Shara J. van de Pas
- Bioluminescent Superbugs Lab, School of Medical Sciences, University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand; (A.G.); (S.G.); (S.J.v.d.P.)
| | - Bevan S. Weir
- Manaaki Whenua, Landcare Research, Private Bag 92170, Auckland 1142, New Zealand;
| | - Brent R. Copp
- School of Chemical Sciences, University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand; (N.S.L.N.); (B.R.C.)
| | - Siouxsie Wiles
- Bioluminescent Superbugs Lab, School of Medical Sciences, University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand; (A.G.); (S.G.); (S.J.v.d.P.)
| |
Collapse
|
15
|
Sun BD, Visagie CM, Chen AJ, Houbraken J. A taxonomic review of Penicillium section Charlesia. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01735-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Christiansen JV, Isbrandt T, Petersen C, Sondergaard TE, Nielsen MR, Pedersen TB, Sørensen JL, Larsen TO, Frisvad JC. Fungal quinones: diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. Appl Microbiol Biotechnol 2021; 105:8157-8193. [PMID: 34625822 DOI: 10.1007/s00253-021-11597-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Quinones represent an important group of highly structurally diverse, mainly polyketide-derived secondary metabolites widely distributed among filamentous fungi. Many quinones have been reported to have important biological functions such as inhibition of bacteria or repression of the immune response in insects. Other quinones, such as ubiquinones are known to be essential molecules in cellular respiration, and many quinones are known to protect their producing organisms from exposure to sunlight. Most recently, quinones have also attracted a lot of industrial interest since their electron-donating and -accepting properties make them good candidates as electrolytes in redox flow batteries, like their often highly conjugated double bond systems make them attractive as pigments. On an industrial level, quinones are mainly synthesized from raw components in coal tar. However, the possibility of producing quinones by fungal cultivation has great prospects since fungi can often be grown in industrially scaled bioreactors, producing valuable metabolites on cheap substrates. In order to give a better overview of the secondary metabolite quinones produced by and shared between various fungi, mainly belonging to the genera Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium, this review categorizes quinones into families such as emodins, fumigatins, sorbicillinoids, yanuthones, and xanthomegnins, depending on structural similarities and information about the biosynthetic pathway from which they are derived, whenever applicable. The production of these quinone families is compared between the different genera, based on recently revised taxonomy. KEY POINTS: • Quinones represent an important group of secondary metabolites widely distributed in important fungal genera such as Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. • Quinones are of industrial interest and can be used in pharmacology, as colorants and pigments, and as electrolytes in redox flow batteries. • Quinones are grouped into families and compared between genera according to the revised taxonomy.
Collapse
Affiliation(s)
- J V Christiansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - T Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - C Petersen
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - T E Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - M R Nielsen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T B Pedersen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - J L Sørensen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - J C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
17
|
Pangging M, Nguyen TTT, Lee HB. Seven New Records of Penicillium Species Belonging to Section Lanata- Divaricata in Korea. MYCOBIOLOGY 2021; 49:363-375. [PMID: 34512080 PMCID: PMC8409940 DOI: 10.1080/12298093.2021.1952814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/31/2021] [Accepted: 06/28/2021] [Indexed: 05/04/2023]
Abstract
Penicillium species are known to be ubiquitous environmental saprophytes. In the survey of diversity of genus Penicillium, seven new records of Penicillium species belonging to section Lanata-Divaricata were isolated from freshwater and soil samples collected from different locations in Korea. Based on morphological characteristics and multilocus phylogenetic analysis of the rDNA internal transcribed spacer region (ITS), β-tubulin (BenA), and calmodulin (CaM) genes, the isolated strains were identified as P. annulatum, P. camponotum, P. echinulonalgiovense, P. globosum, P. limosum, P. onobense, and P. yunnanense, respectively. This study presents detailed phylogenetic analyses and morphological descriptions of these species that contribute to section Lanata-Divaricata in Korea.
Collapse
Affiliation(s)
- Monmi Pangging
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Thuong T. T. Nguyen
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| |
Collapse
|
18
|
Rothacker T, Jaffey JA, Rogers ER, Fales WH, Gibas CFC, Wiederhold NP, Sanders C, Mele J, Fan H, Cohn LA, Royal A. Novel Penicillium species causing disseminated disease in a Labrador Retriever dog. Med Mycol 2021; 58:1053-1063. [PMID: 32242628 DOI: 10.1093/mmy/myaa016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
This report describes the phenotypic characteristics of a novel Penicillium species, Penicillium labradorum, isolated from a 3-year-old male, castrated, Labrador retriever with disseminated fungal disease. The dog's presenting clinical signs included lethargy, lymphadenopathy, tachypnea, moderate pitting edema, and nonweight bearing lameness associated with the right hind limb. Fine-needle aspirate biopsies from the sublumbar and prescapular lymph nodes were initially examined. The cytologic findings were consistent with pyogranulomatous inflammation with abundant extracellular and phagocytized fungal fragments and hyphae. Based on the morphology of the organisms and lack of endogenous pigment, hyalohyphomycosis was considered most likely, with Fusarium, Penicillium, and Paecilomyces species being considerations. Fungal isolates were obtained via culture of samples from the lymph nodes, and molecular identification testing originally identified an undescribed Penicillium species belonging to the Penicillium section Exilicaulis. BLAST searches and phylogenetic analyses performed approximately 1 year and 9 months after the isolation date revealed an isolate within the Penicillium parvum clade in the Penicillium section Exilicaulis but phylogenetically distant from the other species in the section, thus representing a new species, Penicillium labradorum. Antifungal susceptibility testing was also performed on the isolate and low minimum inhibitory concentrations were observed with terbinafine, voriconazole, and posaconazole, while in vitro resistance was observed with fluconazole. The dog had been previously treated with fluconazole, itraconazole, amphotericin B lipid complex, voriconazole, and terbinafine. Approximately 587 days after the initial diagnosis, the dog was euthanized due to worsening of clinical signs and concerns for quality of life.
Collapse
Affiliation(s)
- Tatiana Rothacker
- University of Missouri, A345 Clydesdale Hall, Columbia, Missouri, USA
| | - Jared A Jaffey
- Midwestern University, 19555 N 59th Ave, Phoenix, Arizona, USA
| | - Erin R Rogers
- University of Missouri, 2308 Houma Blvd 522, Metairie, Louisiana, USA
| | - William H Fales
- (Emeritus), University of Missouri, 2328 Hamilton Drive, Ames, Iowa, USA
| | - Connie F C Gibas
- Fungus Testing Laboratory & Molecular Diagnostics Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Nathan P Wiederhold
- Fungus Testing Laboratory & Molecular Diagnostics Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Carmita Sanders
- Fungus Testing Laboratory & Molecular Diagnostics Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - James Mele
- Fungus Testing Laboratory & Molecular Diagnostics Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Hongxin Fan
- Fungus Testing Laboratory & Molecular Diagnostics Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Leah A Cohn
- University of Missouri, A344 Clydesdale Hall, Columbia, Missouri, USA
| | - Angela Royal
- University of Missouri, A344 Clydesdale Hall, Columbia, Missouri, USA
| |
Collapse
|
19
|
Chance or Necessity-The Fungi Co-Occurring with Formica polyctena Ants. INSECTS 2021; 12:insects12030204. [PMID: 33670956 PMCID: PMC7997191 DOI: 10.3390/insects12030204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022]
Abstract
Simple Summary There are about 13,800 species of ants living around the world, but only some of them have been extensively studied in the context of their non−antagonistic relationships with fungi. The best−known example is the symbiosis between leaf−cutting ants and fungi serving them as food. Others include the relationship between ants living in carton nests in the trees’ canopy with fungi increasing the durability of the nest. Do ants utilize fungi in the northern hemisphere and cooler climatic zone? This question is still open. Our goal was to study the less−obvious interactions between ants and common fungi in temperate climates. In our study, we characterized the mycobiota of the surroundings of Formica polyctena ants. We identified nearly 600 strains and investigated their taxonomic affinity. The most abundant fungi in F. polyctena nests are strains belonging to Penicillium—a genus well−known as an antibiotic producer. Other common and widespread fungi related to Penicillium, such as the toxin−producing Aspergillus species, were isolated very rarely. Additionally, the high diversity and high frequency of Penicillium colonies isolated from ants in this study suggest that certain representatives of this genus may be adapted to survive in ant nests, or that they are preferentially sustained by the insects. Abstract Studies on carton nesting ants and domatia−dwelling ants have shown that ant–fungi interactions may be much more common and widespread than previously thought. Until now, studies focused predominantly on parasitic and mutualistic fungi–ant interactions occurring mostly in the tropics, neglecting less−obvious interactions involving the fungi common in ants’ surroundings in temperate climates. In our study, we characterized the mycobiota of the surroundings of Formica polyctena ants by identifying nearly 600 fungal colonies that were isolated externally from the bodies of F. polyctena workers. The ants were collected from mounds found in northern and central Poland. Isolated fungi were assigned to 20 genera via molecular identification (ITS rDNA barcoding). Among these, Penicillium strains were the most frequent, belonging to eight different taxonomic sections. Other common and widespread members of Eurotiales, such as Aspergillus spp., were isolated very rarely. In our study, we managed to characterize the genera of fungi commonly present on F. polyctena workers. Our results suggest that Penicillium, Trichoderma, Mucor, Schwanniomyces and Entomortierella are commonly present in F. polyctena surroundings. Additionally, the high diversity and high frequency of Penicillium colonies isolated from ants in this study suggest that representatives of this genus may be adapted to survive in ant nests environment better than the other fungal groups, or that they are preferentially sustained by the insects in nests.
Collapse
|
20
|
Liang LJ, Jeewon R, Dhandevi P, Durairajan SSK, Li H, Lin FC, Wang HK. A Novel Species of Penicillium With Inhibitory Effects Against Pyricularia oryzae and Fungal Pathogens Inducing Citrus Diseases. Front Cell Infect Microbiol 2021; 10:604504. [PMID: 33680979 PMCID: PMC7927426 DOI: 10.3389/fcimb.2020.604504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
A novel species of Penicillium, proposed as P. linzhiense sp.nov was isolated from soil collected in Linzhi Town, Linzhi County, Tibet Autonomous Region, China. DNA sequence analyses from eight different gene regions indicate that the isolate represents a novel species and most closely related to P. janczewskii. The phylogenetic analysis based on a concatenated dataset of three genes, ITS, CaM, and BenA, also confirmed the placement of the novel species within the Canescentia section of the genus Penicillium. Differences in morphology among similar species are detailed and single gene phylogenies based on ITS, CaM and BenA genes as well as a multi-loci gene phylogeny are presented. Cultural studies were performed to study inhibitory activities on plant pathogens. The results reveal a notable antifungal activity against Pyricularia oryzae causing rice blast with an inhibition rate up to 77%, while for other three citrus pathogens, Diaporthe citri, Phyllosticta citrichinaensis, and Colletotrichum gloeosporioides, inhibition rate was 40, 50, and 55% respectively. No noticeable effects were observed for Fusarium graminearum, Botryosphaeria kuwatsukai, and Rhizoctonia solani. Interestingly, unlike other reported members of Canescentia, P. linzhiense showed no antagonistic effect on root rotting fungi. The new taxon isolated here has the potential to be used as a biocontrol agent especially for economically important phytopathogens or emerging pathogens on diseases occurring on citrus or rice.
Collapse
Affiliation(s)
- Li-Juan Liang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Pem Dhandevi
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Siva Sundara Kumar Durairajan
- Division of Mycobiology & Neurodegenerative Disease Research, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Hongye Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fu-Cheng Lin
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Hong-Kai Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Optimization of inulinase production by a newly isolated Penicillium amphipolaria strain using solid-state fermentation of hardy sugarcane stems. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Park MS, Lee JW, Kim SH, Park JH, You YH, Lim YW. Penicillium from Rhizosphere Soil in Terrestrial and Coastal Environments in South Korea. MYCOBIOLOGY 2020; 48:431-442. [PMID: 33312010 PMCID: PMC7717687 DOI: 10.1080/12298093.2020.1823611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 05/20/2023]
Abstract
Penicillium, the most common genus plays an important ecological role in various terrestrial and marine environments. However, only a few species have been reported from rhizosphere soil. As part of a project to excavate Korean indigenous fungi, we investigated rhizosphere soil of six plants in the forest (terrestrial habitat) and sand dunes (coastal habitat) and focused on discovering Penicillium species. A total of 64 strains were isolated and identified as 26 Penicillium species in nine sections based on morphological characteristics and the sequence analysis of β-tubulin and calmodulin. Although this is a small-scale study in a limited rhizosphere soil, eight unrecorded species and four potential new species have been identified. In addition, most Penicillium species from rhizosphere soil were unique to each plant. Penicillium halotolerans, P. scabrosum, P. samsonianum, P. jejuense, and P. janczewskii were commonly isolated from rhizosphere soil. Eight Penicillium species, P. aurantioviolaceum, P. bissettii, P. cairnsense, P. halotolerans, P. kananaskense, P. ortum, P. radiatolobatum, and P. verhagenii were recorded for the first time in Korea. Here, we provide the detailed morphological description of these unrecorded species.
Collapse
Affiliation(s)
- Myung Soo Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Jun Won Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Sung Hyun Kim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hyun Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Young-Hyun You
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Young Woon Lim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
- CONTACT Young Woon Lim
| |
Collapse
|
23
|
Antifungal polyketides from the Picea rubens and Vaccinium angustifolium endophyte Lachnellula calyciformis. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Doilom M, Guo JW, Phookamsak R, Mortimer PE, Karunarathna SC, Dong W, Liao CF, Yan K, Pem D, Suwannarach N, Promputtha I, Lumyong S, Xu JC. Screening of Phosphate-Solubilizing Fungi From Air and Soil in Yunnan, China: Four Novel Species in Aspergillus, Gongronella, Penicillium, and Talaromyces. Front Microbiol 2020; 11:585215. [PMID: 33123114 PMCID: PMC7574596 DOI: 10.3389/fmicb.2020.585215] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 11/25/2022] Open
Abstract
Phosphate-solubilizing fungi (PSF) play an important role in increasing the bioavailability of phosphorus in soils for plants. Thirteen fungal strains, one collected from air and 12 from soil, were screened and described here in detail. These fungal strains were tested for their ability to solubilize tricalcium phosphate (TCP) on both solid and liquid Pikovskaya (PVK) media in vitro. The airborne fungal strain KUMCC 18-0196 (Aspergillus hydei sp. nov.) showed the most significant phosphate solubilizing activity on a solid PVK medium with the solubilization index (SI) (2.58 ± 0.04 cm) and the highest solubilized phosphates (1523.33 ± 47.87 μg/mL) on a liquid PVK medium. To the best of our knowledge, A. hydei sp. nov. is the first phosphate-solubilizing fungus reported from air. We also provide the identification especially for Aspergillus, Penicillium and Talaromyces, generally reported as PSF. It is important to not only screen for PSF but also identify species properly so that researchers have a clearer taxonomic picture for identifying potential taxa for future plant growth-promoting applications. Herein, A. hydei (section Nigri), Gongronella hydei, Penicillium soli (section Lanata-Divaricata) and Talaromyces yunnanensis (section Talaromyces) are fully described and introduced as new to science. These four new species are identified based on both morphological characteristics and multigene phylogenetic analyses, including the genealogical concordance phylogenetic species recognition method where necessary. Penicillium austrosinense is considered to be a synonym of P. guaibinense.
Collapse
Affiliation(s)
- Mingkwan Doilom
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jian-Wei Guo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
| | - Rungtiwa Phookamsak
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Peter E. Mortimer
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Samantha C. Karunarathna
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
| | - Wei Dong
- Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Chun-Fang Liao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
| | - Kai Yan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Dhandevi Pem
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Jian-Chu Xu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
| |
Collapse
|
25
|
O'Callahan D, Vaidya A, Donaldson L, Singh T. Penicillium rotoruae, a new Species from an In-Ground Timber Durability Test Site in New Zealand. Curr Microbiol 2020; 77:4129-4139. [PMID: 32959088 DOI: 10.1007/s00284-020-02204-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/05/2020] [Indexed: 12/23/2022]
Abstract
A Penicillium species isolated during a 1960s study on the ecology of fungi infecting Pinus radiata timber, and subsequently held in an in-house collection in Rotorua, New Zealand, was found to differ morphologically and in growth rate from two closely related Penicillium species. Phylogenetic analysis of the rDNA internal transcribed spacer (ITS), β-tubulin, calmodulin and RNA polymerase II second largest subunit regions (RPB2) confirmed this to be a new species closely related to Penicillium ochrochloron in the Rolfsiorum series of the Lanata-Divaricata section and Aspergilloides sub-genus. Micromorphologically, the new species is characterised by predominantly monoverticilliate and occasional divaricate or biverticilliate conidiophores and smooth-walled subglobose to slightly ovoid conidia with absence of conidiogenesis at 25 °C. This new species is described here as Penicillium rotoruae sp. nov. which has potential applications in biofuel and biorefining industry.
Collapse
Affiliation(s)
- Diahanna O'Callahan
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua, 3046, New Zealand
| | - Alankar Vaidya
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua, 3046, New Zealand.
| | - Lloyd Donaldson
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua, 3046, New Zealand
| | - Tripti Singh
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua, 3046, New Zealand
| |
Collapse
|
26
|
Agnolucci M, Daghio M, Mannelli F, Secci G, Cristani C, Palla M, Giannerini F, Giovannetti M, Buccioni A. Use of chitosan and tannins as alternatives to antibiotics to control mold growth on PDO Pecorino Toscano cheese rind. Food Microbiol 2020; 92:103598. [PMID: 32950139 DOI: 10.1016/j.fm.2020.103598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/02/2020] [Accepted: 07/17/2020] [Indexed: 02/02/2023]
Abstract
The fungal microbiota usually growing on the cheese surface during ripening processes promote rind formation and the development of organoleptic characteristics, imparting positive sensory attributes to cheeses. As cheese contamination may also occur by undesirable molds, specific actions for preventing their growth are usually realized in dairy industries by using the antibiotic natamycin, which may represent a risk factor for human health and environmental sustainability. Here, agroindustrial by-products with natural antimicrobial properties, i.e. tannins and chitosan, were tested in a cheese-making trial producing PDO Tuscan pecorino cheese. Morphological and molecular methods revealed that the main components of rind fungal communities of PDO Tuscan pecorino cheese were represented by P. solitum, P. discolour and P. verrucosum. The use of chitosan on cheese rinds did not significantly affect the composition of rind fungal communities developing during the whole ripening process compared with controls treated with natamycin, whose numbers ranged from 3.4 ± 1.3 × 103 to 3.2 ± 1.8 × 104 and from 6.3 ± 3.5 × 102 to 4.0 ± 1.5 × 104, respectively. Overall, grape marc tannins and chitosan did not significantly affect the number and composition of fungal communities developing during PDO Pecorino Toscano cheese ripening, as well as its physical, chemical and nutritional profiles, showing that they may represent effective alternatives to the antibiotic natamycin.
Collapse
Affiliation(s)
- Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health" University of Pisa, Italy.
| | - Matteo Daghio
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, University of Florence, Piazzale delle Cascine 18, 50144, Firenze, Italy
| | - Federica Mannelli
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, University of Florence, Piazzale delle Cascine 18, 50144, Firenze, Italy
| | - Giulia Secci
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, University of Florence, Piazzale delle Cascine 18, 50144, Firenze, Italy
| | - Caterina Cristani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Michela Palla
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Fabiola Giannerini
- Caseificio Sociale di Manciano Soc. Agr. Coop Località Piano di Cirignano, 58014, Manciano, GR, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health" University of Pisa, Italy
| | - Arianna Buccioni
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, University of Florence, Piazzale delle Cascine 18, 50144, Firenze, Italy; Centro Interdipartimentale di Ricerca per la Valorizzazione degli Alimenti (Ce.R.A.), Viale Pieraccini 6, 50139, Firenze, Italy
| |
Collapse
|
27
|
Crippin T, Limay-Rios V, Renaud J, Schaafsma A, Sumarah M, Miller J. Fusarium graminearum populations from maize and wheat in Ontario, Canada. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2532] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ontario has suffered widespread epidemics of Fusarium Head Blight or Gibberella Ear Rot roughly every five years since the late 1970s. We undertook a study of the chemotype and genotype of Fusarium graminearum isolated from 1,800 samples of wheat and maize collected across the cereal growing areas over three years. 468 isolates obtained were genotyped and 60 were selected for chemotyping. The dominant genotype has remained the native 15-acetyldeoxynivalenol (15-ADON) population. Approximately 20% of the strains tested were of the native chemotype producing only 15-ADON and one strain producing solely 7α-hydroxy,15-deacetylcalonectrin (3ANX) was observed. The majority of the 15-ADON strains were also capable of producing 3ANX. There was consistent mismatch between chemotype and genotype. This reflects the considerable plasticity in the genes associated with trichothecene biosynthesis documented in several Fusarium species. Although there is a large gradient in climate from southern to eastern Ontario, we did not detect differences in the distribution of the chemotypes. Grain from which strains were isolated for chemotyping were analysed. Approximately half of the 53 samples had >2 mg/kg deoxynivalenol with a maximum of 400 mg/kg and median of 14 mg/kg. 7α-hydroxy,3,15-dideacetylcalonectrin (NX toxin) was detected in three of these samples at an average of 4.5 mg/kg. The stability of the F. graminearum genotype in Ontario can be explained by several factors. Since 1980, the area planted to maize has remained stable, however, the area given to wheat has about doubled. Minimum tillage was rare in 1980 but it is now the norm. Increased crop residue on the soil has greatly increased the biomass of ascocarps that overwinter. Overall, these data demonstrate the need to monitor the mycotoxins in Fusarium populations and for the need to consider the potential toxicity of NX in the feed supply.
Collapse
Affiliation(s)
- T. Crippin
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - V. Limay-Rios
- Department of Plant Agriculture, University of Guelph, Ridgetown, ON N0P 2C0, Canada
| | - J.B. Renaud
- London Research and Development Center, Agriculture Agri-Food Canada, London, ON N5V 4T3, Canada
| | - A.W. Schaafsma
- Department of Plant Agriculture, University of Guelph, Ridgetown, ON N0P 2C0, Canada
| | - M.W. Sumarah
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
- London Research and Development Center, Agriculture Agri-Food Canada, London, ON N5V 4T3, Canada
| | - J.D. Miller
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
28
|
Houbraken J, Kocsubé S, Visagie C, Yilmaz N, Wang XC, Meijer M, Kraak B, Hubka V, Bensch K, Samson R, Frisvad J. Classification of Aspergillus, Penicillium, Talaromyces and related genera ( Eurotiales): An overview of families, genera, subgenera, sections, series and species. Stud Mycol 2020; 95:5-169. [PMID: 32855739 PMCID: PMC7426331 DOI: 10.1016/j.simyco.2020.05.002] [Citation(s) in RCA: 311] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Eurotiales is a relatively large order of Ascomycetes with members frequently having positive and negative impact on human activities. Species within this order gain attention from various research fields such as food, indoor and medical mycology and biotechnology. In this article we give an overview of families and genera present in the Eurotiales and introduce an updated subgeneric, sectional and series classification for Aspergillus and Penicillium. Finally, a comprehensive list of accepted species in the Eurotiales is given. The classification of the Eurotiales at family and genus level is traditionally based on phenotypic characters, and this classification has since been challenged using sequence-based approaches. Here, we re-evaluated the relationships between families and genera of the Eurotiales using a nine-gene sequence dataset. Based on this analysis, the new family Penicillaginaceae is introduced and four known families are accepted: Aspergillaceae, Elaphomycetaceae, Thermoascaceae and Trichocomaceae. The Eurotiales includes 28 genera: 15 genera are accommodated in the Aspergillaceae (Aspergillago, Aspergillus, Evansstolkia, Hamigera, Leiothecium, Monascus, Penicilliopsis, Penicillium, Phialomyces, Pseudohamigera, Pseudopenicillium, Sclerocleista, Warcupiella, Xerochrysium and Xeromyces), eight in the Trichocomaceae (Acidotalaromyces, Ascospirella, Dendrosphaera, Rasamsonia, Sagenomella, Talaromyces, Thermomyces, Trichocoma), two in the Thermoascaceae (Paecilomyces, Thermoascus) and one in the Penicillaginaceae (Penicillago). The classification of the Elaphomycetaceae was not part of this study, but according to literature two genera are present in this family (Elaphomyces and Pseudotulostoma). The use of an infrageneric classification system has a long tradition in Aspergillus and Penicillium. Most recent taxonomic studies focused on the sectional level, resulting in a well-established sectional classification in these genera. In contrast, a series classification in Aspergillus and Penicillium is often outdated or lacking, but is still relevant, e.g., the allocation of a species to a series can be highly predictive in what functional characters the species might have and might be useful when using a phenotype-based identification. The majority of the series in Aspergillus and Penicillium are invalidly described and here we introduce a new series classification. Using a phylogenetic approach, often supported by phenotypic, physiologic and/or extrolite data, Aspergillus is subdivided in six subgenera, 27 sections (five new) and 75 series (73 new, one new combination), and Penicillium in two subgenera, 32 sections (seven new) and 89 series (57 new, six new combinations). Correct identification of species belonging to the Eurotiales is difficult, but crucial, as the species name is the linking pin to information. Lists of accepted species are a helpful aid for researchers to obtain a correct identification using the current taxonomic schemes. In the most recent list from 2014, 339 Aspergillus, 354 Penicillium and 88 Talaromyces species were accepted. These numbers increased significantly, and the current list includes 446 Aspergillus (32 % increase), 483 Penicillium (36 % increase) and 171 Talaromyces (94 % increase) species, showing the large diversity and high interest in these genera. We expanded this list with all genera and species belonging to the Eurotiales (except those belonging to Elaphomycetaceae). The list includes 1 187 species, distributed over 27 genera, and contains MycoBank numbers, collection numbers of type and ex-type cultures, subgenus, section and series classification data, information on the mode of reproduction, and GenBank accession numbers of ITS, beta-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) gene sequences.
Collapse
Key Words
- Acidotalaromyces Houbraken, Frisvad & Samson
- Acidotalaromyces lignorum (Stolk) Houbraken, Frisvad & Samson
- Ascospirella Houbraken, Frisvad & Samson
- Ascospirella lutea (Zukal) Houbraken, Frisvad & Samson
- Aspergillus chaetosartoryae Hubka, Kocsubé & Houbraken
- Classification
- Evansstolkia Houbraken, Frisvad & Samson
- Evansstolkia leycettana (H.C. Evans & Stolk) Houbraken, Frisvad & Samson
- Hamigera brevicompacta (H.Z. Kong) Houbraken, Frisvad & Samson
- Infrageneric classification
- New combinations, series
- New combinations, species
- New genera
- New names
- New sections
- New series
- New taxa
- Nomenclature
- Paecilomyces lagunculariae (C. Ram) Houbraken, Frisvad & Samson
- Penicillaginaceae Houbraken, Frisvad & Samson
- Penicillago kabunica (Baghd.) Houbraken, Frisvad & Samson
- Penicillago mirabilis (Beliakova & Milko) Houbraken, Frisvad & Samson
- Penicillago moldavica (Milko & Beliakova) Houbraken, Frisvad & Samson
- Phialomyces arenicola (Chalab.) Houbraken, Frisvad & Samson
- Phialomyces humicoloides (Bills & Heredia) Houbraken, Frisvad & Samson
- Phylogeny
- Polythetic classes
- Pseudohamigera Houbraken, Frisvad & Samson
- Pseudohamigera striata (Raper & Fennell) Houbraken, Frisvad & Samson
- Talaromyces resinae (Z.T. Qi & H.Z. Kong) Houbraken & X.C. Wang
- Talaromyces striatoconidius Houbraken, Frisvad & Samson
- Taxonomic novelties: New family
- Thermoascus verrucosus (Samson & Tansey) Houbraken, Frisvad & Samson
- Thermoascus yaguchii Houbraken, Frisvad & Samson
- in Aspergillus: sect. Bispori S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- in Aspergillus: ser. Acidohumorum Houbraken & Frisvad
- in Aspergillus: ser. Inflati (Stolk & Samson) Houbraken & Frisvad
- in Penicillium: sect. Alfrediorum Houbraken & Frisvad
- in Penicillium: ser. Adametziorum Houbraken & Frisvad
- in Penicillium: ser. Alutacea (Pitt) Houbraken & Frisvad
- sect. Crypta Houbraken & Frisvad
- sect. Eremophila Houbraken & Frisvad
- sect. Formosana Houbraken & Frisvad
- sect. Griseola Houbraken & Frisvad
- sect. Inusitata Houbraken & Frisvad
- sect. Lasseniorum Houbraken & Frisvad
- sect. Polypaecilum Houbraken & Frisvad
- sect. Raperorum S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- sect. Silvatici S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- sect. Vargarum Houbraken & Frisvad
- ser. Alliacei Houbraken & Frisvad
- ser. Ambigui Houbraken & Frisvad
- ser. Angustiporcata Houbraken & Frisvad
- ser. Arxiorum Houbraken & Frisvad
- ser. Atramentosa Houbraken & Frisvad
- ser. Aurantiobrunnei Houbraken & Frisvad
- ser. Avenacei Houbraken & Frisvad
- ser. Bertholletiarum Houbraken & Frisvad
- ser. Biplani Houbraken & Frisvad
- ser. Brevicompacta Houbraken & Frisvad
- ser. Brevipedes Houbraken & Frisvad
- ser. Brunneouniseriati Houbraken & Frisvad
- ser. Buchwaldiorum Houbraken & Frisvad
- ser. Calidousti Houbraken & Frisvad
- ser. Canini Houbraken & Frisvad
- ser. Carbonarii Houbraken & Frisvad
- ser. Cavernicolarum Houbraken & Frisvad
- ser. Cervini Houbraken & Frisvad
- ser. Chevalierorum Houbraken & Frisvad
- ser. Cinnamopurpurea Houbraken & Frisvad
- ser. Circumdati Houbraken & Frisvad
- ser. Clavigera Houbraken & Frisvad
- ser. Conjuncti Houbraken & Frisvad
- ser. Copticolarum Houbraken & Frisvad
- ser. Coremiiformes Houbraken & Frisvad
- ser. Corylophila Houbraken & Frisvad
- ser. Costaricensia Houbraken & Frisvad
- ser. Cremei Houbraken & Frisvad
- ser. Crustacea (Pitt) Houbraken & Frisvad
- ser. Dalearum Houbraken & Frisvad
- ser. Deflecti Houbraken & Frisvad
- ser. Egyptiaci Houbraken & Frisvad
- ser. Erubescentia (Pitt) Houbraken & Frisvad
- ser. Estinogena Houbraken & Frisvad
- ser. Euglauca Houbraken & Frisvad
- ser. Fennelliarum Houbraken & Frisvad
- ser. Flavi Houbraken & Frisvad
- ser. Flavipedes Houbraken & Frisvad
- ser. Fortuita Houbraken & Frisvad
- ser. Fumigati Houbraken & Frisvad
- ser. Funiculosi Houbraken & Frisvad
- ser. Gallaica Houbraken & Frisvad
- ser. Georgiensia Houbraken & Frisvad
- ser. Goetziorum Houbraken & Frisvad
- ser. Gracilenta Houbraken & Frisvad
- ser. Halophilici Houbraken & Frisvad
- ser. Herqueorum Houbraken & Frisvad
- ser. Heteromorphi Houbraken & Frisvad
- ser. Hoeksiorum Houbraken & Frisvad
- ser. Homomorphi Houbraken & Frisvad
- ser. Idahoensia Houbraken & Frisvad
- ser. Implicati Houbraken & Frisvad
- ser. Improvisa Houbraken & Frisvad
- ser. Indica Houbraken & Frisvad
- ser. Japonici Houbraken & Frisvad
- ser. Jiangxiensia Houbraken & Frisvad
- ser. Kalimarum Houbraken & Frisvad
- ser. Kiamaensia Houbraken & Frisvad
- ser. Kitamyces Houbraken & Frisvad
- ser. Lapidosa (Pitt) Houbraken & Frisvad
- ser. Leporum Houbraken & Frisvad
- ser. Leucocarpi Houbraken & Frisvad
- ser. Livida Houbraken & Frisvad
- ser. Longicatenata Houbraken & Frisvad
- ser. Macrosclerotiorum Houbraken & Frisvad
- ser. Monodiorum Houbraken & Frisvad
- ser. Multicolores Houbraken & Frisvad
- ser. Neoglabri Houbraken & Frisvad
- ser. Neonivei Houbraken & Frisvad
- ser. Nidulantes Houbraken & Frisvad
- ser. Nigri Houbraken & Frisvad
- ser. Nivei Houbraken & Frisvad
- ser. Nodula Houbraken & Frisvad
- ser. Nomiarum Houbraken & Frisvad
- ser. Noonimiarum Houbraken & Frisvad
- ser. Ochraceorosei Houbraken & Frisvad
- ser. Olivimuriarum Houbraken & Frisvad
- ser. Osmophila Houbraken & Frisvad
- ser. Paradoxa Houbraken & Frisvad
- ser. Paxillorum Houbraken & Frisvad
- ser. Penicillioides Houbraken & Frisvad
- ser. Phoenicea Houbraken & Frisvad
- ser. Pinetorum (Pitt) Houbraken & Frisvad
- ser. Polypaecilum Houbraken & Frisvad
- ser. Pulvini Houbraken & Frisvad
- ser. Quercetorum Houbraken & Frisvad
- ser. Raistrickiorum Houbraken & Frisvad
- ser. Ramigena Houbraken & Frisvad
- ser. Restricti Houbraken & Frisvad
- ser. Robsamsonia Houbraken & Frisvad
- ser. Rolfsiorum Houbraken & Frisvad
- ser. Roseopurpurea Houbraken & Frisvad
- ser. Rubri Houbraken & Frisvad
- ser. Salinarum Houbraken & Frisvad
- ser. Samsoniorum Houbraken & Frisvad
- ser. Saturniformia Houbraken & Frisvad
- ser. Scabrosa Houbraken & Frisvad
- ser. Sclerotigena Houbraken & Frisvad
- ser. Sclerotiorum Houbraken & Frisvad
- ser. Sheariorum Houbraken & Frisvad
- ser. Simplicissima Houbraken & Frisvad
- ser. Soppiorum Houbraken & Frisvad
- ser. Sparsi Houbraken & Frisvad
- ser. Spathulati Houbraken & Frisvad
- ser. Spelaei Houbraken & Frisvad
- ser. Speluncei Houbraken & Frisvad
- ser. Spinulosa Houbraken & Frisvad
- ser. Stellati Houbraken & Frisvad
- ser. Steyniorum Houbraken & Frisvad
- ser. Sublectatica Houbraken & Frisvad
- ser. Sumatraensia Houbraken & Frisvad
- ser. Tamarindosolorum Houbraken & Frisvad
- ser. Teporium Houbraken & Frisvad
- ser. Terrei Houbraken & Frisvad
- ser. Thermomutati Houbraken & Frisvad
- ser. Thiersiorum Houbraken & Frisvad
- ser. Thomiorum Houbraken & Frisvad
- ser. Unguium Houbraken & Frisvad
- ser. Unilaterales Houbraken & Frisvad
- ser. Usti Houbraken & Frisvad
- ser. Verhageniorum Houbraken & Frisvad
- ser. Versicolores Houbraken & Frisvad
- ser. Virgata Houbraken & Frisvad
- ser. Viridinutantes Houbraken & Frisvad
- ser. Vitricolarum Houbraken & Frisvad
- ser. Wentiorum Houbraken & Frisvad
- ser. Westlingiorum Houbraken & Frisvad
- ser. Whitfieldiorum Houbraken & Frisvad
- ser. Xerophili Houbraken & Frisvad
- series Tularensia (Pitt) Houbraken & Frisvad
Collapse
Affiliation(s)
- J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - S. Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - X.-C. Wang
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - M. Meijer
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - B. Kraak
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - V. Hubka
- Department of Botany, Charles University in Prague, Prague, Czech Republic
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine Technical University of Denmark, Søltofts Plads, B. 221, Kongens Lyngby, DK 2800, Denmark
| |
Collapse
|
29
|
Occurrence and Properties of Thiosilvatins. Mar Drugs 2019; 17:md17120664. [PMID: 31779089 PMCID: PMC6950259 DOI: 10.3390/md17120664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/02/2022] Open
Abstract
The spread of studies on biodiversity in different environmental contexts is particularly fruitful for natural product discovery, with the finding of novel secondary metabolites and structural models, which are sometimes specific to certain organisms. Within the large class of the epipolythiodioxopiperazines, which are typical of fungi, thiosilvatins represent a homogeneous family that, so far, has been reported in low frequency in both marine and terrestrial contexts. However, recent observations indicate that these compounds have been possibly neglected in the metabolomic characterization of fungi, particularly from marine sources. Aspects concerning occurrence, bioactivities, structural, and biosynthetic properties of thiosilvatins are reviewed in this paper.
Collapse
|
30
|
Herrera H, Soto J, de Bashan LE, Sampedro I, Arriagada C. Root-Associated Fungal Communities in Two Populations of the Fully Mycoheterotrophic Plant Arachnitis uniflora Phil. (Corsiaceae) in Southern Chile. Microorganisms 2019; 7:E586. [PMID: 31756978 PMCID: PMC6955791 DOI: 10.3390/microorganisms7120586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/03/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
The microbiological interactions of the roots of non-photosynthetic plants in South America have been scarcely explored. This study analyzes culturable fungal diversity associated with the mycoheterotrophic plant Arachnitis uniflora Phil. (Corsiaceae) in southern Chile, growing in two different understoreys of native (Nothofagus-dominated) and mixed forest (native, Cupressus sempervirens, and Pinus radiata). Rhizospheric and endophytic fungi were isolated, cultured, and purified to identify microorganisms associated with A. uniflora roots. We showed the different fungi associated with the plant, and that these distributions are influenced by the sampling site. We isolated 410 fungal strains (144 endophytic and 266 from the rhizosphere). We identified 13 operative taxonomical units from plants sampled in the mixed forest, while 15 were from the native forest. Rhizospheric microorganisms were mainly related to Penicillium spp., whereas some pathogenic and saprophytic strains were more frequent inside the roots. Our results have also shown that the fungal strains are weak for phosphate solubilization, but other pathways such as organic acid exudation and indole acetic acid production can be considered as major mechanisms to stimulate plant growth. Our results point to new fungal associates of A. uniflora plants reported in Andean ecosystems, identifying new beneficial endophytic fungi associated with roots of this fully mycoheterotrophic plant.
Collapse
Affiliation(s)
- Hector Herrera
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, 01145 Temuco, Chile; (H.H.); (J.S.)
| | - Javiera Soto
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, 01145 Temuco, Chile; (H.H.); (J.S.)
| | - Luz E. de Bashan
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL 36830, USA;
- Department of Entomology and Plant Pathology, 301 Funchess Hall, Auburn University, Auburn, AL 36849, USA
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Calle IPN 195, 23096 La Paz, B.C.S., Mexico
| | - Inmaculada Sampedro
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain;
| | - Cesar Arriagada
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, 01145 Temuco, Chile; (H.H.); (J.S.)
| |
Collapse
|
31
|
George TK, Devadasan D, Jisha MS. Chemotaxonomic profiling of Penicillium setosum using high-resolution mass spectrometry (LC-Q-ToF-MS). Heliyon 2019; 5:e02484. [PMID: 31687578 PMCID: PMC6819834 DOI: 10.1016/j.heliyon.2019.e02484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 08/22/2019] [Accepted: 09/12/2019] [Indexed: 11/29/2022] Open
Abstract
In the present study, secondary metabolites produced by an endophytic fungus Penicillium setosum were extracted using colony agar plug and culture broth extraction methods. High resolution LC-MS was used to explore the chemical nature of the secondary metabolites, as well, compare the reliability of the methods. P. setosum was chemotaxonomically distinguished from other members of section Lanata-divaricata, by its ability to produce mycotoxin, patulin and also by the presence of certain phenol-derived compounds, like quercetin, dihydroflavonols (dihydroquercetin and dihydromyricetin), kaempferol, luteolin, while some Penicillium specific compounds such as, citromycetin and andrastin D reveal its similarity towards section Lanata-Divaricata members. For the first time, the presence of dihydroquercetin is remarkably and spectrometrically confirmed from a microbial source. In addition, a few polyketides, anthroquinone compounds, hydrocarbons, and fatty acids were also detected in the culture extract. Being the first report on the production of polyphenolic compounds by an endophytic fungus of Penicillium species, the current research is crucial, and moreover the starin itself is a novel species.
Collapse
Affiliation(s)
- Tijith K George
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Dineep Devadasan
- Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam, India
| | - M S Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| |
Collapse
|
32
|
Diao YZ, Chen Q, Jiang XZ, Houbraken J, Barbosa RN, Cai L, Wu WP. Penicillium section Lanata-divaricata from acidic soil. Cladistics 2019; 35:514-549. [PMID: 34633696 DOI: 10.1111/cla.12365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2018] [Indexed: 11/30/2022] Open
Abstract
Penicillium species in section Lanata-divaricata are common soil-inhabiting fungi, but their presence in acidic soil has rarely been investigated. In an ongoing survey of Penicillium species occurring in China, 465 strains were isolated from soil, and of which 60 belonged to section Lanata-divaricata. The majority of these strains were isolated from acidic soil. The phylogenetic relationship between these 60 isolates and accepted species of section Lanata-divaricata was studied using ITS, BenA, CaM and RPB2 sequences, which revealed the presence of seven accepted species and 13 novel lineages. Combining phylogenetic data with data generated during macro- and microscopic observations resulted in the description of 13 new species. The growth rate of the new species obtained in this study was determined under acidic, neutral and alkaline conditions (pH 4, 7, 10). With the exception of P. hainanense, which was not able to grow at pH 10, all strains were able to grow at the three examined pH levels. Eleven species (i.e. P. austrosinense, P. flaviroseum, P. globosum, P. griseoflavum, P. hainanense, P. jianfenglingense, P. laevigatum, P. rubriannulatum, P. soliforme, P. spinuliferum, P. yunnanense) grew faster at low pH (pH 4) than at pH 7 or 10, and these species are therefore referred to as acid-preferential. Penicillium viridissimum grew fastest on neutral medium and P. guangxiense grew best at pH 10, and is therefore considered to be acid-tolerant. By isolating strains from a unique environment, combined with targeted isolation using a well-designed protocol, we are able to describe new fungal diversity with specific physiological characteristics.
Collapse
Affiliation(s)
- Yong-Zhao Diao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian-Zhi Jiang
- Microbiome Research Center, Moon Biotech, Beijing, China
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Renan N Barbosa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands.,Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Recife, Brazil
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wen-Ping Wu
- Novozymes China, No. 14, Xinxi Rd, Shangdi, Beijing, China
| |
Collapse
|
33
|
Park MS, Oh SY, Fong JJ, Houbraken J, Lim YW. The diversity and ecological roles of Penicillium in intertidal zones. Sci Rep 2019; 9:13540. [PMID: 31537866 PMCID: PMC6753150 DOI: 10.1038/s41598-019-49966-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/03/2019] [Indexed: 12/30/2022] Open
Abstract
Members of the genus Penicillium are commonly isolated from various terrestrial and marine environments, and play an important ecological role as a decomposer. To gain insight into the ecological role of Penicillium in intertidal zones, we investigated the Penicillium diversity and community structure using a culture-dependent technique and a culture independent metagenomic approach using ITS (ITS-NGS) and partial β-tubulin (BenA-NGS) as targets. The obtained isolates were tested for halotolerance, enzyme activity, and polycyclic aromatic hydrocarbons (PAHs) degradation. A total of 96 Penicillium species were identified from the investigated intertidal zones. Although the BenA-NGS method was efficient for detecting Penicillium, some species were only detected using conventional isolation and/or the ITS-NGS method. The Penicillium community displayed a significant degree of variation relative to season (summer and winter) and seaside (western and southern coast). Many Penicillium species isolated in this study exhibited cellulase and protease activity, and/or degradation of PAHs. These findings support the important role of Penicillium in the intertidal zone for nutrient recycling and pollutant degradation.
Collapse
Affiliation(s)
- Myung Soo Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, South Korea
| | - Seung-Yoon Oh
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, South Korea
| | | | - Jos Houbraken
- Westerdijk Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands
| | - Young Woon Lim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
34
|
Guevara-Suarez M, García D, Cano-Lira JF, Guarro J, Gené J. Species diversity in Penicillium and Talaromyces from herbivore dung, and the proposal of two new genera of penicillium-like fungi in Aspergillaceae. Fungal Syst Evol 2019; 5:39-75. [PMID: 32467914 PMCID: PMC7250020 DOI: 10.3114/fuse.2020.05.03] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coprophilous fungi are saprotrophic organisms that show great diversity, mainly on herbivore dung. The physico-chemical characteristics of this peculiar substrate combined with the high level of fungal adaptation to different environmental conditions offer the perfect setting for discovering new taxa. This study focused on the species diversity of penicillium-like fungi isolated mainly from herbivore dung collected at different Spanish locations. From 130 samples, a total of 104 isolates were obtained, and 48 species were identified. Preliminary identifications were based on morphology and partial β-tubulin (tub2) gene sequences. Putative new taxa were characterized by a multi-gene sequencing analysis testing the tub2, the internal transcribed spacer rDNA (ITS), calmodulin (cmdA), and RNA polymerase II second largest subunit (rpb2) genes, and a detailed phenotypic study. Using this polyphasic approach and following the genealogical concordance phylogenetic species recognition (GCPSR) method, we propose the new genera Penicillago (for Penicillium nodositatum) and Pseudopenicillium (for Penicillium megasporum and P. giganteum) in the family Aspergillaceae, and 11 new species, including seven Penicillium, three Talaromyces and one Pseudopenicillium. A lectotype and epitype are designed for Penicillium nodositatum. Our results show that the species diversity of penicillium-like fungi on herbivore dung has not been widely studied and that this substrate seems to be a good reservoir of interesting Eurotialean fungi.
Collapse
Affiliation(s)
- M Guevara-Suarez
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain.,Laboratorio de Micología y Fitopatología (LAMFU), Vicerrectoría de Investigaciones, Universidad de los Andes, Bogotá, Colombia
| | - D García
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - J F Cano-Lira
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - J Guarro
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - J Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
35
|
Crippin T, Renaud JB, Sumarah MW, Miller JD. Comparing genotype and chemotype of Fusarium graminearum from cereals in Ontario, Canada. PLoS One 2019; 14:e0216735. [PMID: 31071188 PMCID: PMC6508712 DOI: 10.1371/journal.pone.0216735] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/26/2019] [Indexed: 01/21/2023] Open
Abstract
Fusarium graminearum is responsible for production of the mycotoxin deoxynivalenol (DON) on maize and wheat in Ontario, Canada. It has been understood since the early 1980s that in most parts of Canada, the predominant chemotype of F. graminearum is 15ADON, and not the 3ADON chemotype mainly found in Europe and Asia. The discovery of F. graminearum strains that did not produce DON but the structurally related 7-α hydroxy, 15-deacetylcalonectrin (3ANX) and its hydrolysis product 7-α hydroxy, 3,15-dideacetylcalonectrin to (NX) demonstrated that we still have a lot to learn about this well studied but complicated fungus. We conducted a survey of maize and wheat samples from Ontario farms. In the 2015 crop year, we isolated 86 strains and tested a representative subset of 20 using the published genetic probes for assessing genotype. We also developed a targeted LC-MS/MS method for the identification and quantitation of known toxins from this species to determine chemotype. The results showed that 80% of our strains produced some 3ANX in addition to 15ADON and one strain produced 3ANX and no 15ADON. Comparison of chemical data with genotyping revealed that in more than 50% of the cases there was no clear agreement. These data demonstrate the importance of chemical analysis for understanding the toxigenic potential of strains, especially using a LC-MS method that is capable of differentiating 3ADON and 15ADON. For this collection, genotyping of isolates did not produce reliable information on the chemotype. This is the first report of 3ANX toxin production concurrently with 15ADON and suggests that the 3ANX producers in North America likely originated from the 15ADON background.
Collapse
Affiliation(s)
- Trinda Crippin
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Justin B. Renaud
- London Research and Development Center, Agriculture and Agri-Food Canada, London, Canada
| | - Mark W. Sumarah
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
- London Research and Development Center, Agriculture and Agri-Food Canada, London, Canada
| | - J. David Miller
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
36
|
George TK, Houbraken J, Mathew L, Jisha MS. Penicillium setosum, a new species from Withania somnifera (L.) Dunal. Mycology 2019; 10:49-60. [PMID: 30834152 PMCID: PMC6394320 DOI: 10.1080/21501203.2018.1555868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023] Open
Abstract
Medicinal plants are considered as sources of novel and unexplored groups of endophytic microorganisms. A study on endophytic fungal species from the medicinal plant Withania somnifera (L.) Dunal resulted in the isolation of a Penicillium isolate (WSR 62) with antibiotic activity. Phylogenetic analysis showed that the isolate belongs to section Lanata-divaricata, and it is most closely related to P. javanicum. Subsequent detailed phylogenetic analyses using partial β-tubulin (BenA), calmodulin (CaM) and DNA-dependent RNA polymerase II (RPB2) gene sequences of a larger number of related strains revealed the distinctiveness of the isolate in the P. javanicum-clade. The isolate grows fast on Czapek yeast autolysate agar (CYA) and malt extract agar (MEA) incubated at 25°C, 30°C and 37°C. The obverse colony colour is dominated by the conspicuous production of cleistothecia and is greyish yellow on CYA and yellowish brown on MEA. Production of cleistothecia containing prominent spinose ascospores was present on all tested agar media. Based on the phylogenetic analysis and the phenotypic characterisation, strain WSR 62 from Withania is described here as a novel species named Penicillium setosum.
Collapse
Affiliation(s)
- Tijith K. George
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Linu Mathew
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | - M. S. Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| |
Collapse
|
37
|
Heo I, Hong K, Yang H, Lee HB, Choi YJ, Hong SB. Diversity of Aspergillus, Penicillium, and Talaromyces Species Isolated from Freshwater Environments in Korea. MYCOBIOLOGY 2019; 47:12-19. [PMID: 30988987 PMCID: PMC6450604 DOI: 10.1080/12298093.2019.1572262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
In order to elucidate the fungal diversity and community structure in freshwater environments, numerous fungal strains were isolated from freshwater, submerged soils, twigs, dead insects, etc. Among them, the present study has focused specifically on Aspergillus, Penicillium, and Talaromyces species, which produce diverse useful metabolites in general. Twelve strains of Aspergillus isolated were identified as A. japonicus (n = 5), A. tubingensis (3), A. niger (2), and A. flavus (2), 10 strains of which belong to Aspergillus section Nigri, named black Aspergillus. Eight strains of Penicillium were identified as P. brasilianim (n = 3), P. oxalicum (2), P. crustosum (1), P. expansum (1), and P. piscarium (1). Two different strains of Talaromyces were identified as T. pinophilus and T. versatilis. Thus far, Penicillium piscarium and Talaromyces versatilis have been unrecorded in Korea, for which we provide detailed morphological and molecular characteristics.
Collapse
Affiliation(s)
- Inbeom Heo
- Agricultural Microbiology Division, National Institute of Agricultural Science, RDA, Jeonju, Korea
| | - Kyeongyeon Hong
- Agricultural Microbiology Division, National Institute of Agricultural Science, RDA, Jeonju, Korea
| | - Hyejin Yang
- Agricultural Microbiology Division, National Institute of Agricultural Science, RDA, Jeonju, Korea
| | - Hyang Burm Lee
- Division of Food Technology, Biotechnology and Agrochemistry, Chonnam National University, Gwangju, Korea
| | - Young-Joon Choi
- Department of Biology, Kunsan National University, Gunsan, Korea
| | - Seung-Beom Hong
- Agricultural Microbiology Division, National Institute of Agricultural Science, RDA, Jeonju, Korea
| |
Collapse
|
38
|
Silva LF, Freire KTLS, Araújo-Magalhães GR, Agamez-Montalvo GS, Sousa MA, Costa-Silva TA, Paiva LM, Pessoa-Junior A, Bezerra JDP, Souza-Motta CM. Penicillium and Talaromyces endophytes from Tillandsia catimbauensis, a bromeliad endemic in the Brazilian tropical dry forest, and their potential for L-asparaginase production. World J Microbiol Biotechnol 2018; 34:162. [PMID: 30368630 DOI: 10.1007/s11274-018-2547-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/24/2018] [Indexed: 11/29/2022]
Abstract
This study was conducted to report the richness of endophytic Penicillium and Talaromyces species isolated from Tillandsia catimbauensis, a bromeliad endemic in the Brazilian tropical dry forest (Caatinga), to verify their ability to produce the enzyme L-asparaginase and to partially optimise the production of biomass and L-asparaginase of the best enzyme producer. A total of 184 endophytes were isolated, of which 52 (29%) were identified through morphological and phylogenetic analysis using β-tubulin sequences into nine putative species, four in Penicillium and five in Talaromyces. Talaromyces diversus and T. cf. cecidicola were the most frequent taxa. Among the 20 endophytic isolates selected for L-asparaginase production, 10 had the potential to produce the enzyme (0.50-2.30 U/g), especially T. cf. cecidicola URM 7826 (2.30 U/g) and Penicillium sp. 4 URM 7827 (1.28 U/g). As T. cf. cecidicola URM 7826 exhibited significant ability to produce the enzyme, it was selected for the partial optimisation of biomass and L-asparaginase production. Results of the 23 factorial experimental design showed that the highest dry biomass (0.66 g) was obtained under pH 6.0, inoculum concentration of 1 × 108 and 1% L-proline. However, the inoculum concentration was found to be statistically significant, the pH was marginally significant and the concentration of L-proline was not statistically significant. L-Asparaginase production varied between 0.58 and 1.02 U/g and did not reach the optimal point for enzyme production. This study demonstrates that T. catimbauensis is colonised by different Penicillium and Talaromyces species, which are indicated for enzyme production studies.
Collapse
Affiliation(s)
- Leticia F Silva
- Departamento de Micologia Prof. Chaves Batista, CB, Universidade Federal de Pernambuco, Av. Professor Nelson Chaves, s/n, Cidade Universitária, Recife, Pernambuco, CEP: 50670-901, Brazil
| | - Karla T L S Freire
- Departamento de Micologia Prof. Chaves Batista, CB, Universidade Federal de Pernambuco, Av. Professor Nelson Chaves, s/n, Cidade Universitária, Recife, Pernambuco, CEP: 50670-901, Brazil
| | - Gianne R Araújo-Magalhães
- Programa de Pós Graduação em Biociência Animal, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, CEP: 52171-900, Brazil
| | - Gualberto S Agamez-Montalvo
- Departamento de Estatística e Matemática Aplicada, Universidade Federal do Ceará, Av. Mister Hull, s/n, Pici, Fortaleza, Ceará, CEP: 60455-760, Brazil
| | - Minelli A Sousa
- Departamento de Micologia Prof. Chaves Batista, CB, Universidade Federal de Pernambuco, Av. Professor Nelson Chaves, s/n, Cidade Universitária, Recife, Pernambuco, CEP: 50670-901, Brazil
| | - Tales A Costa-Silva
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, B16, Cidade Universitária, São Paulo, SP, CEP: 05508-000, Brazil
| | - Laura M Paiva
- Departamento de Micologia Prof. Chaves Batista, CB, Universidade Federal de Pernambuco, Av. Professor Nelson Chaves, s/n, Cidade Universitária, Recife, Pernambuco, CEP: 50670-901, Brazil
| | - Adalberto Pessoa-Junior
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, B16, Cidade Universitária, São Paulo, SP, CEP: 05508-000, Brazil
| | - Jadson D P Bezerra
- Departamento de Micologia Prof. Chaves Batista, CB, Universidade Federal de Pernambuco, Av. Professor Nelson Chaves, s/n, Cidade Universitária, Recife, Pernambuco, CEP: 50670-901, Brazil.
| | - Cristina M Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, CB, Universidade Federal de Pernambuco, Av. Professor Nelson Chaves, s/n, Cidade Universitária, Recife, Pernambuco, CEP: 50670-901, Brazil.
| |
Collapse
|
39
|
Barbosa RN, Bezerra JDP, Souza-Motta CM, Frisvad JC, Samson RA, Oliveira NT, Houbraken J. New Penicillium and Talaromyces species from honey, pollen and nests of stingless bees. Antonie Van Leeuwenhoek 2018; 111:1883-1912. [PMID: 29654567 PMCID: PMC6153986 DOI: 10.1007/s10482-018-1081-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/31/2018] [Indexed: 01/05/2023]
Abstract
Penicillium and Talaromyces species have a worldwide distribution and are isolated from various materials and hosts, including insects and their substrates. The aim of this study was to characterize the Penicillium and Talaromyces species obtained during a survey of honey, pollen and the inside of nests of Melipona scutellaris. A total of 100 isolates were obtained during the survey and 82% of those strains belonged to Penicillium and 18% to Talaromyces. Identification of these isolates was performed based on phenotypic characters and β-tubulin and ITS sequencing. Twenty-one species were identified in Penicillium and six in Talaromyces, including seven new species. These new species were studied in detail using a polyphasic approach combining phenotypic, molecular and extrolite data. The four new Penicillium species belong to sections Sclerotiora (Penicillium fernandesiae sp. nov., Penicillium mellis sp. nov., Penicillium meliponae sp. nov.) and Gracilenta (Penicillium apimei sp. nov.) and the three new Talaromyces species to sections Helici (Talaromyces pigmentosus sp. nov.), Talaromyces (Talaromyces mycothecae sp. nov.) and Trachyspermi (Talaromyces brasiliensis sp. nov.). The invalidly described species Penicillium echinulonalgiovense sp. nov. was also isolated during the survey and this species is validated here.
Collapse
Affiliation(s)
- Renan N Barbosa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Centro de Biociências, Cidade Universitária, CEP: 50670-901, Recife, PE, Brazil
| | - Jadson D P Bezerra
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Centro de Biociências, Cidade Universitária, CEP: 50670-901, Recife, PE, Brazil
| | - Cristina M Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Centro de Biociências, Cidade Universitária, CEP: 50670-901, Recife, PE, Brazil
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Robert A Samson
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Neiva T Oliveira
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Centro de Biociências, Cidade Universitária, CEP: 50670-901, Recife, PE, Brazil
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| |
Collapse
|
40
|
Phylogeny and morphological analyses of Penicillium section Sclerotiora (Fungi) lead to the discovery of five new species. Sci Rep 2017; 7:8233. [PMID: 28811639 PMCID: PMC5557846 DOI: 10.1038/s41598-017-08697-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/13/2017] [Indexed: 12/01/2022] Open
Abstract
Phylogeny of Penicillium section Sclerotiora is still limitedly investigated. In this study, five new species of Penicillium are identified from the samples collected from different places of China, and named P. austrosinicum, P. choerospondiatis, P. exsudans, P. sanshaense and P. verrucisporum. The conidiophores of P. austrosinicum and P. exsudans are monoverticillate like most members of the section, while the rest species are biverticillate similar to the only two species P. herquei and P. malachiteum previously reported in the section Sclerotiora. The phylogenetic positions of the new taxa are determined based on the sequence data of ITS, BenA, CaM and RPB2 regions, which reveals that all the species with biverticillate condiophores form a well-supported subclade in the section. The new Penicillium species clearly differ from the existing species of the genus in culture characteristics on four standard growth media, microscopic features, and sequence data. Morphological discrepancies are discussed between the new species and their allies.
Collapse
|
41
|
Visagie CM, Yilmaz N, Renaud JB, Sumarah MW, Hubka V, Frisvad JC, Chen AJ, Meijer M, Seifert KA. A survey of xerophilic Aspergillus from indoor environment, including descriptions of two new section Aspergillus species producing eurotium-like sexual states. MycoKeys 2017. [DOI: 10.3897/mycokeys.19.11161] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
42
|
Laich F, Andrade J. Penicillium pedernalense sp. nov., isolated from whiteleg shrimp heads waste compost. Int J Syst Evol Microbiol 2016; 66:4382-4388. [PMID: 27488253 DOI: 10.1099/ijsem.0.001360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Novel Penicillium-like strains were isolated during the characterization of the mycobiota community dynamics associated with shrimp waste composting. Phylogenetic analysis of the partial β-tubulin (BenA) gene and the ribosomal DNA internal transcribed spacer region (ITS1-5.8S-ITS2) sequences revealed that the novel strains were members of section Lanata-Divaricata and were closely related to Penicillium infrabuccalum DAOMC 250537T. On the basis of morphological and physiological characterization, and phylogenetic analysis, a novel Penicillium species, Penicillium pedernalense sp. nov., is proposed. The type strain is F01-11T (=CBS 140770T=CECT 20949T), which was isolated from whiteleg shrimp (Litopenaeus vannamei) heads waste compost in the Pedernales region (Manabí province, Ecuador).
Collapse
Affiliation(s)
- Federico Laich
- Instituto Canario de Investigaciones Agrarias, Ctra. Boquerón s/n, Valle de Guerra, Santa Cruz de Tenerife, Spain.,Departamento Central de Investigación, Universidad Laica 'Eloy Alfaro' de Manabí, Av. Circunvalación y Calle 12 vía a San Mateo, Manta, Ecuador
| | - Jacinto Andrade
- Facultad de Ciencias Agropecuarias, Universidad Laica 'Eloy Alfaro' de Manabí, Vía E382 Pedernales-El Carmen Km. 1.5, Pedernales, Ecuador
| |
Collapse
|
43
|
Visagie CM, Seifert KA, Houbraken J, Samson RA, Jacobs K. A phylogenetic revision of Penicillium sect. Exilicaulis, including nine new species from fynbos in South Africa. IMA Fungus 2016; 7:75-117. [PMID: 27433442 PMCID: PMC4941689 DOI: 10.5598/imafungus.2016.07.01.06] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/15/2016] [Indexed: 11/19/2022] Open
Abstract
A survey of the fynbos biome in South Africa resulted in the isolation of 61 Penicillium species from Protea repens infructescences, air, and soil samples. Fourteen of these belong to Penicillium sect. Exilicaulis and therefore we considered it an opportunity to re-evaluate the taxonomy of the section. Phylogenetic comparisons of the ITS, β-tubulin, calmodulin and RPB2 gene regions of the 76 section Exilicaulis species, revealed 52 distinct species, including nine new species from fynbos. Morphological comparisons confirmed the novelty for most of these, however, new species closely related to P. rubefaciens did not show significant or consistent morphological differences and we thus placed a bias on phylogenetic data applying the Genealogical Concordance Phylogenetic Species Recognition (GCPSR) concept. In this paper we describe the nine new species and update the accepted species list and resolve synonyms in the section. Importantly, we reveal that P. citreosulfuratum is the correct name for the clade previously considered to represent P. toxicarium fide Serra et al. (2008). The nine new species are: Penicillium atrolazulinum, P. consobrinum, P. cravenianum, P. hemitrachum, P. pagulum, P. repensicola, P. momoii, P. subturcoseum, and P. xanthomelinii spp. nov.
Collapse
Affiliation(s)
- Cobus M. Visagie
- Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Stellenbosch 7600, South Africa
| | - Keith A. Seifert
- Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada
| | - Jos Houbraken
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
| | - Robert A. Samson
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
| | - Karin Jacobs
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Stellenbosch 7600, South Africa
| |
Collapse
|