1
|
Zhang Q, Wu Q, Zhao P, Habib K, Wang Y, Tang D, Ahmad MAI, Ren Y, Shen X, Long Q, Liu L, Li Q. Unveiling new species of Phragmidiaceae (Basidiomycota, Pucciniales) on rosaceous plants from Guizhou, China. MycoKeys 2025; 115:309-326. [PMID: 40191281 PMCID: PMC11971644 DOI: 10.3897/mycokeys.115.146604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/02/2025] [Indexed: 04/09/2025] Open
Abstract
Rust fungi associated with Rubus were collected across diverse locations in Guizhou Province, and three new species - Gerwasiaamphidasydis on Rubusamphidasys, Phragmidiumcoreanicola on Rubuscoreanus, and Phragmidiumparvifolius on Rubusparvifolius are introduced. These novel species are described based on morphological characteristics and phylogenetic analysis of the ITS and LSU loci. Additionally, Gerwasiarubi-setchuenensis is introduced as a new host record on Rubusbuergeri. The study includes comprehensive morpho-anatomical descriptions, detailed illustrations, and a phylogenetic tree, providing insights into the taxonomic placement and relationships of these novel taxa within their respective lineages.
Collapse
Affiliation(s)
- Qinfang Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 550004, ChinaGuizhou Medical UniversityGuizhouChina
| | - Qianzhen Wu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 550004, ChinaGuizhou Medical UniversityGuizhouChina
| | - Peng Zhao
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550004, ChinaInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Kamran Habib
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 550004, ChinaGuizhou Medical UniversityGuizhouChina
| | - Yao Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 550004, ChinaGuizhou Medical UniversityGuizhouChina
| | - Dexiang Tang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 550004, ChinaGuizhou Medical UniversityGuizhouChina
| | - Muhammad AIjaz Ahmad
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 550004, ChinaGuizhou Medical UniversityGuizhouChina
| | - Yulin Ren
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 550004, ChinaGuizhou Medical UniversityGuizhouChina
| | - Xiangchun Shen
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 550004, ChinaGuizhou Medical UniversityGuizhouChina
| | - Qingde Long
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 550004, ChinaGuizhou Medical UniversityGuizhouChina
| | - Lili Liu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 550004, ChinaGuizhou Medical UniversityGuizhouChina
| | - Qirui Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 550004, ChinaGuizhou Medical UniversityGuizhouChina
| |
Collapse
|
2
|
Peng Z, Xu Z, Tong H, Xing Y, Luo Z, Wu Y, Yu Z. Leaf Rust Pathogens on Hypericum pseudohenryi: Describing Melampsora danbaensis sp. nov. and M. hyperici-pseudohenryi sp. nov. from China. MICROBIAL ECOLOGY 2024; 87:122. [PMID: 39379763 PMCID: PMC11461554 DOI: 10.1007/s00248-024-02438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Based on morphological and phylogenetic evidence, two novel species of Melampsora were discovered on Hypericum pseudohenryi in China and have been thoroughly characterized. One of these species, designated as M. danbaensis, exhibits distinct features such as aecia of Uredo-type, typically appearing in gregarious or grouped arrangements, and presenting a shallowly pulvinate structure. Aeciospores exhibit tremendous variations in size, ranging in shape from globose to ellipsoidal and bearing pronounced verrucose texture. Telia resemble crusts one-spore deep, covering nearly the entire abaxial leaf surface, with sessile teliospores reaching sizes of up to 65.8 µm, and exhibiting a clavate to cylindrical shape. Another species, designated as M. hyperici-pseudohenryi, is distinguished by Uredo-type uredinia, which are hypophyllous, scattered or grouped, and interspersed with numerous paraphyses. Its urediniospores tend to be globose, ellipsoidal or obovoid, echinulate, and are accompanied by clavate to capitate paraphyses reaching lengths up to 77.6 µm. Phylogenetically, both species form a novel monophyletic clade within the Melampsora genus, with robust support demonstrated by a high Maximum likelihood bootstrap support (MLBS) value of 100% and a Bayesian posterior probability (BPP) of 1. This study enriches our understanding of the diversity and geographical distribution of Melampsora species that infect Hypericum plants in China.
Collapse
Affiliation(s)
- Zijia Peng
- College of Forestry, Northwest A & F University, Northwest A & Taicheng Road 3, Xianyang Yangling, 712100, China
| | - Zhengmei Xu
- College of Forestry, Northwest A & F University, Northwest A & Taicheng Road 3, Xianyang Yangling, 712100, China
| | - Haichuan Tong
- Danba County Bureau of Forestry and Grassland, Ganzi Tibetan Autonomous Prefecture, 513300, Sichuan, China
| | - Yujie Xing
- College of Forestry, Northwest A & F University, Northwest A & Taicheng Road 3, Xianyang Yangling, 712100, China
| | - Zeyu Luo
- College of Forestry, Northwest A & F University, Northwest A & Taicheng Road 3, Xianyang Yangling, 712100, China
| | - Yiming Wu
- College of Forestry, Northwest A & F University, Northwest A & Taicheng Road 3, Xianyang Yangling, 712100, China
| | - Zhongdong Yu
- College of Forestry, Northwest A & F University, Northwest A & Taicheng Road 3, Xianyang Yangling, 712100, China.
| |
Collapse
|
3
|
Liu SL, Zhao P, Cai L, Shen S, Wei HW, Na Q, Han M, Wei R, Ge Y, Ma H, Karunarathna SC, Tibprommab S, Zhang B, Dai D, Lin L, Fan XL, Luo ZL, Shen HW, Lu L, Lu W, Xu RF, Tohtirjap A, Wu F, Zhou LW. Catalogue of fungi in China 1. New taxa of plant-inhabiting fungi. Mycology 2024; 16:1-58. [PMID: 40083404 PMCID: PMC11899268 DOI: 10.1080/21501203.2024.2316066] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/04/2024] [Indexed: 03/16/2025] Open
Abstract
China has a huge area of diverse landscapes and is believed to conceive incredibly high fungal diversity. To systematically and promptly report Chinese fungal species, we initiate the series of Catalogue of fungi in China here. In the first paper of this series, we focus on plant-inhabiting fungi. A total of 33 new taxa are described all over China. These taxa include two new genera, viz. Cremeoefibula and Nothopucciniastrum, 18 new species, viz. Annulohypoxylon lancangensis, Ascotaiwania coffeae, Clitocella neofallax, Coleopuccinia yunnanensis, Cremeoefibula hengduanensis, Crepidotus furcaticystidiosus, C. tomentellus, Diachea macroverrucosa, Helicogloea hangzhouensis, Hyalopsora caprearum, Nemania polymorpha, Phanerochaetella austrosinensis, Physalacria tianzhongshanensis, Setophaeosphaeria panlongensis, Subulicystidium boreale, Trechispora subaraneosa, Vikalpa dujuanhuensis, and Xylaria pteridicola, and 13 new combinations, viz. Nothopucciniastrum actinidiae, N. boehmeriae, N. coriariae, N. corni, N. coryli, N. fagi, N. kusanoi, N. hikosanense, N. hydrangeae-petiolaris, N. miyabeanum, N. styracinum, N. tiliae, and N. yoshinagae. The morphological characteristics and phylogenetic evidence are used to support the establishment of these new taxa and the accuracy of their taxonomic placements. We hope that the series of Catalogue of fungi in China will contribute to Chinese fungal diversity and promote the significance of recording new fungal taxa from China.
Collapse
Affiliation(s)
- Shi-Liang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Peng Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shan Shen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Wen Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, Liaoning University, Shenyang, China
| | - Qin Na
- School of Agriculture, Ludong University, Yantai, China
| | - Menghui Han
- School of Agriculture, Ludong University, Yantai, China
| | - Renxiu Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Yupeng Ge
- Institute of Edible Fungi, Fujian Academy of Agricultural Sciences, National and Local Joint Engineering Research Center for Breeding & Cultivation of Features Edible Fungi, Fuzhou, China
| | - Haixia Ma
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Key Laboratory of Tropical Microbe Resources, Haikou, China
| | - Samantha Chandranath Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
- National Institute of Fundamental Studies (NIFS), Kandy, Sri Lanka
| | - Saowaluck Tibprommab
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Bo Zhang
- Engineering Research Center of Edible and Medicinal Fungi, Chinese Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Dan Dai
- Engineering Research Center of Edible and Medicinal Fungi, Chinese Ministry of Education, Jilin Agricultural University, Changchun, China
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Lu Lin
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Xin-Lei Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Zong-Long Luo
- College of Agriculture and Biological Science, Dali University, Dali, China
| | - Hong-Wei Shen
- College of Agriculture and Biological Science, Dali University, Dali, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Li Lu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Wenhua Lu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Rui-Fang Xu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Ablat Tohtirjap
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Fang Wu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Kasuya T, Hosaka K, Ji JX, Kakishima M. Gymnosporangium mori comb. nov. ( Pucciniales) for Caeoma mori (≡ Aecidium mori) inferred from phylogenetic evidence. MYCOSCIENCE 2024; 65:79-85. [PMID: 39234514 PMCID: PMC11369312 DOI: 10.47371/mycosci.2023.1.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 09/06/2024]
Abstract
Caeoma mori (≡ Aecidium mori), known as the mulberry rust which is an anamorphic rust fungus forming only aecidioid uredinia, were found on Morus alba in Ibaraki and Saitama Prefectures, Japan. Molecular phylogenetic analyses using the combined dataset of sequences from 28S and 18S of the nuclear ribosomal RNA gene and Cytochrome-c-oxidase subunit 3 of the mitochondrial DNA revealed that this anamorphic rust fungus was a member of the clade composed of the genus Gymnosporangium. Therefore, a new combination, Gymnosporangium mori is proposed for this species. Additionally, a new combination, G. brucense for Roestelia brucensis is proposed by phylogenetic evidence.
Collapse
Affiliation(s)
| | - Kentaro Hosaka
- Department of Botany, National Museum of Nature and Science
| | - Jing-Xin Ji
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University
| | | |
Collapse
|
5
|
Sun C, Liu YF, Liang YM, Wang L. Four new species of Puccinia from herbaceous plants in China. Mycologia 2024; 116:309-321. [PMID: 38252498 DOI: 10.1080/00275514.2023.2289697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
Members of Puccinia (Pucciniaceae, Pucciniales) are known as plant pathogens worldwide, which are characterized by their morphology, host association, and molecular data of various genes. In the present study, 10 specimens of Puccinia were collected from four herbaceous plants (Anaphalis hancockii, Anthriscus sylvestris, Halenia elliptica, and Pilea pumila) in China and identified based on morphology and phylogeny. As a result, 10 samples represent four undescribed species of Puccinia, viz., P. apdensia, P. decidua, P. dermatis, and P. lianchengensis, spp. nov. P. apdensia is characterized by its smooth teliospores with thickened apex. P. decidua represents the first Puccinia species inhabiting the host Anaphalis hancockii and is distinguished from the other Puccinia species by its telia and uredinia surrounded by the epidermis. P. dermatis from Halenia elliptica differs from the other Puccinia species on the host genus Halenia by the telia that have epidermis and teliospores with sparsely irregular granulated protrusions. P. lianchengensis is characterized by its teliospore surface with fishnet ornamentation and urediniospores without prominent caps. All of the new species are described and illustrated in this study.
Collapse
Affiliation(s)
- Chang Sun
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yi-Fan Liu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Ying-Mei Liang
- Museum of Beijing Forestry University, Beijing Forestry University, Beijing 100083, China
| | - Lei Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Beijing Museum of Natural History, Beijing 100050, China
| |
Collapse
|
6
|
Wu Q, He M, Liu T, Hu H, Liu L, Zhao P, Li Q. Rust Fungi on Medicinal Plants in Guizhou Province with Descriptions of Three New Species. J Fungi (Basel) 2023; 9:953. [PMID: 37755061 PMCID: PMC10532644 DOI: 10.3390/jof9090953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
During the research on rust fungi in medicinal plants of Guizhou Province, China, a total of 9 rust fungal species were introduced, including 3 new species (Hamaspora rubi-alceifolii, Nyssopsora altissima, and Phragmidium cymosum), as well as 6 known species (Melampsora laricis-populina, Melampsoridium carpini, Neophysopella ampelopsidis, Nyssopsora koelrezidis, P. rosae-roxburghii, P. tormentillae). Notably, N. ampelopsidis and P. tormentillae were discovered for the first time in China, while M. laricis-populina, Me. carpini, and Ny. koelreuteriae were first documented in Guizhou Province. Morphological observation and molecular phylogenetic analyses of these species with similar taxa were compared to confirm their taxonomic identities, and taxonomic descriptions, illustrations and host species of those rust fungi on medicinal plant are provided.
Collapse
Affiliation(s)
- Qianzhen Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550004, China
| | - Minghui He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
| | - Tiezhi Liu
- College of Chemistry and Life Sciences, Chifeng University, Chifeng 024000, China
| | - Hongmin Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550004, China
| | - Lili Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550004, China
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550004, China
| | - Peng Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Qirui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550004, China
| |
Collapse
|
7
|
Shao C, Tao S, Liang Y. Comparative transcriptome analysis of juniper branches infected by Gymnosporangium spp. highlights their different infection strategies associated with cytokinins. BMC Genomics 2023; 24:173. [PMID: 37020280 PMCID: PMC10077639 DOI: 10.1186/s12864-023-09276-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Gymnosporangium asiaticum and G. yamadae can share Juniperus chinensis as the telial host, but the symptoms are completely different. The infection of G. yamadae causes the enlargement of the phloem and cortex of young branches as a gall, but not for G. asiaticum, suggesting that different molecular interaction mechanisms exist the two Gymnosporangium species with junipers. RESULTS Comparative transcriptome analysis was performed to investigate genes regulation of juniper in responses to the infections of G. asiaticum and G. yamadae at different stages. Functional enrichment analysis showed that genes related to transport, catabolism and transcription pathways were up-regulated, while genes related to energy metabolism and photosynthesis were down-regulated in juniper branch tissues after infection with G. asiaticum and G. yamadae. The transcript profiling of G. yamadae-induced gall tissues revealed that more genes involved in photosynthesis, sugar metabolism, plant hormones and defense-related pathways were up-regulated in the vigorous development stage of gall compared to the initial stage, and were eventually repressed overall. Furthermore, the concentration of cytokinins (CKs) in the galls tissue and the telia of G. yamadae was significantly higher than in healthy branch tissues of juniper. As well, tRNA-isopentenyltransferase (tRNA-IPT) was identified in G. yamadae with highly expression levels during the gall development stages. CONCLUSIONS In general, our study provided new insights into the host-specific mechanisms by which G. asiaticum and G. yamadae differentially utilize CKs and specific adaptations on juniper during their co-evolution.
Collapse
Affiliation(s)
- Chenxi Shao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Siqi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yingmei Liang
- Museum of Beijing Forestry University, Beijing Forestry University, No. 35, Qinghua Eastern Road, Beijing, 100083, China.
| |
Collapse
|
8
|
Liang J, Li Y, Dodds PN, Figueroa M, Sperschneider J, Han S, Tsui CKM, Zhang K, Li L, Ma Z, Cai L. Haplotype-phased and chromosome-level genome assembly of Puccinia polysora, a giga-scale fungal pathogen causing southern corn rust. Mol Ecol Resour 2023; 23:601-620. [PMID: 36403246 DOI: 10.1111/1755-0998.13739] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Rust fungi are characterized by large genomes with high repeat content and have two haploid nuclei in most life stages, which makes achieving high-quality genome assemblies challenging. Here, we described a pipeline using HiFi reads and Hi-C data to assemble a gigabase-sized fungal pathogen, Puccinia polysora f.sp. zeae, to haplotype-phased and chromosome-scale. The final assembled genome is 1.71 Gbp, with ~850 Mbp and 18 chromosomes in each haplotype, being currently one of the two giga-scale fungi assembled to chromosome level. Transcript-based annotation identified 47,512 genes for the dikaryotic genome with a similar number for each haplotype. A high level of interhaplotype variation was found with 10% haplotype-specific BUSCO genes, 5.8 SNPs/kbp, and structural variation accounting for 3% of the genome size. The P. polysora genome displayed over 85% repeat contents, with genome-size expansion and copy number increasing of species-specific orthogroups. Interestingly, these features did not affect overall synteny with other Puccinia species having smaller genomes. Fine-time-point transcriptomics revealed seven clusters of coexpressed secreted proteins that are conserved between two haplotypes. The fact that candidate effectors interspersed with all genes indicated the absence of a "two-speed genome" evolution in P. polysora. Genome resequencing of 79 additional isolates revealed a clonal population structure of P. polysora in China with low geographic differentiation. Nevertheless, a minor population differentiated from the major population by having mutations on secreted proteins including AvrRppC, indicating the ongoing virulence to evade recognition by RppC, a major resistance gene in Chinese corn cultivars. The high-quality assembly provides valuable genomic resources for future studies on disease management and the evolution of P. polysora.
Collapse
Affiliation(s)
- Junmin Liang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuanjie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peter N Dodds
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Jana Sperschneider
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Shiling Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Clement K M Tsui
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,National Centre for Infectious Diseases, Tan Tock Seng Hospital, Singapore City, Singapore.,LKC School of Medicine, Nanyang Technological University, Singapore City, Singapore
| | - Keyu Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Leifu Li
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Zhanhong Ma
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Zhao P, Li Y, Li Y, Liu F, Liang J, Zhou X, Cai L. Applying early divergent characters in higher rank taxonomy of Melampsorineae ( Basidiomycota, Pucciniales). Mycology 2023; 14:11-36. [PMID: 36816773 PMCID: PMC9930778 DOI: 10.1080/21501203.2022.2089262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Rust fungi in the order Pucciniales represent one of the largest groups of phytopathogens, which occur on mosses, ferns to advanced monocots and dicots. Seven suborders and 18 families have been reported so far, however recent phylogenetic studies have revealed para- or polyphyly of several morphologically defined suborders and families, particularly in Melampsorineae. In this study, a comprehensive phylogenetic framework was constructed based on a molecular phylogeny inferred from rDNA sequences of 160 species belonging to 16 genera in Melampsorineae (i.e. Chrysomyxa, Cerospora, Coleopuccinia, Coleosporium, Cronartium, Hylospora, Melampsora, Melampsorella, Melampsoridium, Milesina, Naohidemyces, Pucciniastrum, Quasipucciniastrum, Rossmanomyces, Thekopsora, Uredinopsis). Our phylogenetic inference indicated that 13 genera are monophyletic with strong supports, while Pucciniastrum is apparently polyphyletic. A new genus, Nothopucciniastrum was therefore established and segregated from Pucciniastrum, with ten new combinations proposed. At the family level, this study further demonstrates the importance of applying morphologies of spore-producing structures (basidia, spermogonia, aecia, uredinia and telia) in higher rank taxonomy, while those traditionally applied spore morphologies (basidiospores, spermatia, aeciospores, urediniospores and teliospores) represent later diverged characters that are more suitable for the taxonomy at generic and species levels. Three new families, Hyalopsoraceae, Nothopucciniastraceae and Thekopsoraceae were proposed based on phylogenetic and morphological distinctions, towards a further revision of Pucciniales in line with the phylogenetic relationships.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yan Li
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Yuanjie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Fang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Junmin Liang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xin Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China,CONTACT Lei Cai
| |
Collapse
|
10
|
Wang L, Sun C, Jia S, Liang YM. Identification and characterization of two new Gymnosporangium species causing rust on Juniperus rigida in China. Mycologia 2022; 114:857-867. [PMID: 35895294 DOI: 10.1080/00275514.2022.2094116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A serious Juniperus rigida rust disease was found in Gansu Province, China. The disease incidence is approximately 80-90%. We also found rust disease on both Cotoneaster multiflorus and Sorbus in the same location. Two novel Gymnosporangium species were identified from the infected plants. Based on morphological observations and phylogenetic analyses, we describe the two new taxa as G. gansuense and G. granulatosporum. We also determined their life cycles. Moreover, this study documented a novel aeciospore surface structure with two different surface types on one aeciospore. We describe it here as "granular."
Collapse
Affiliation(s)
- Lei Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, 100083, Beijing, China
| | - Chang Sun
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, 100083, Beijing, China
| | - Sen Jia
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, 100083, Beijing, China
| | - Ying-Mei Liang
- Museum of Beijing Forestry University, Beijing Forestry University, 100083, Beijing, China
| |
Collapse
|
11
|
Scholler M, Braun U, Buchheit R, Schulte T, Bubner B. Studies on European rust fungi, Pucciniales: molecular phylogeny, taxonomy, and nomenclature of miscellaneous genera and species in Pucciniastraceae and Coleosporiaceae. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractUsing molecular phylogenetic analyses (ITS) and morphological data obtained from light and electron microscopy, some European and North American species and genera placed or formerly placed in the genus Pucciniastrum in the Coleosporiaceae and Pucciniastraceae (Pucciniales) were taxonomically revised. The ITS analyses confirmed recent familiar concepts based on less variable markers except for the genus Hyalopsora. The family Pucciniastraceae is characterized by Abietoideae (Abies, Tsuga) aecial hosts. Pucciniastrum is described as a genus that consists of host-alternating species forming aecia on needles of Abies hosts, with special features of aeciospore morphology, and Onagraceae telial hosts. Other genera in the Pucciniastraceae are Calyptospora, Melampsorella, and additional taxa, which are currently provisionally placed in Pucciniastrum, but must be revised in future studies. Pucciniastrum epilobii (s. lat.), the type species of Pucciniastraceae, represents at least two species with different life cycles and urediniospore characteristics and is lecto- and epitypified. The family Coleosporiaceae, characterized by Pinoideae (Pinus) and Piceoideae (Picea) aecial hosts, contains Rosaceae rusts from three well-supported clades represented by three genera, Thekopsora, Quasipucciniastrum, and Aculeastrum gen. nov. Aculeastrum is characterized by coarsely arcuate ostiolar peridial cells and infects Rubus spp. telial hosts. The following new taxonomic combinations are proposed: Calyptospora ornamentalis comb. nov., Quasipucciniastrum ochraceum comb. nov., Q. potentillae comb. nov, Aculeastrum americanum comb. nov., and A. arcticum comb. nov. The results are discussed with emphasis on future studies in Pucciniastrum and the P. epilobii complex and on nomenclatural changes necessary for rust fungi due to the Shenzhen Code.
Collapse
|
12
|
Chen Q, Bakhshi M, Balci Y, Broders K, Cheewangkoon R, Chen S, Fan X, Gramaje D, Halleen F, Jung MH, Jiang N, Jung T, Májek T, Marincowitz S, Milenković I, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies C, Suhaizan L, Suzuki H, Tian C, Tomšovský M, Úrbez-Torres J, Wang W, Wingfield B, Wingfield M, Yang Q, Yang X, Zare R, Zhao P, Groenewald J, Cai L, Crous P. Genera of phytopathogenic fungi: GOPHY 4. Stud Mycol 2022; 101:417-564. [PMID: 36059898 PMCID: PMC9365048 DOI: 10.3114/sim.2022.101.06] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
This paper is the fourth contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information about the pathology, distribution, hosts and disease symptoms, as well as DNA barcodes for the taxa covered. Moreover, 12 whole-genome sequences for the type or new species in the treated genera are provided. The fourth paper in the GOPHY series covers 19 genera of phytopathogenic fungi and their relatives, including Ascochyta, Cadophora, Celoporthe, Cercospora, Coleophoma, Cytospora, Dendrostoma, Didymella, Endothia, Heterophaeomoniella, Leptosphaerulina, Melampsora, Nigrospora, Pezicula, Phaeomoniella, Pseudocercospora, Pteridopassalora, Zymoseptoria, and one genus of oomycetes, Phytophthora. This study includes two new genera, 30 new species, five new combinations, and 43 typifications of older names. Taxonomic novelties: New genera: Heterophaeomoniella L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pteridopassalora C. Nakash. & Crous; New species: Ascochyta flava Qian Chen & L. Cai, Cadophora domestica L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora rotunda L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora vinacea J.R. Úrbez-Torres, D.T. O'Gorman & Gramaje, Cadophora vivarii L. Mostert, Havenga, Halleen & Gramaje, Celoporthe foliorum H. Suzuki, Marinc. & M.J. Wingf., Cercospora alyssopsidis M. Bakhshi, Zare & Crous, Dendrostoma elaeocarpi C.M. Tian & Q. Yang, Didymella chlamydospora Qian Chen & L. Cai, Didymella gei Qian Chen & L. Cai, Didymella ligulariae Qian Chen & L. Cai, Didymella qilianensis Qian Chen & L. Cai, Didymella uniseptata Qian Chen & L. Cai, Endothia cerciana W. Wang. & S.F. Chen, Leptosphaerulina miscanthi Qian Chen & L. Cai, Nigrospora covidalis M. Raza, Qian Chen & L. Cai, Nigrospora globospora M. Raza, Qian Chen & L. Cai, Nigrospora philosophiae-doctoris M. Raza, Qian Chen & L. Cai, Phytophthora transitoria I. Milenković, T. Májek & T. Jung, Phytophthora panamensis T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora variabilis T. Jung, M. Horta Jung & I. Milenković, Pseudocercospora delonicicola C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora farfugii C. Nakash., I. Araki, & Ai Ito, Pseudocercospora hardenbergiae Crous & C. Nakash., Pseudocercospora kenyirana C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora perrottetiae Crous, C. Nakash. & C.Y. Chen, Pseudocercospora platyceriicola C. Nakash., Y. Hatt, L. Suhaizan & I. Nurul Faziha, Pseudocercospora stemonicola C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora terengganuensis C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora xenopunicae Crous & C. Nakash.; New combinations: Heterophaeomoniella pinifoliorum (Hyang B. Lee et al.) L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pseudocercospora pruni-grayanae (Sawada) C. Nakash. & Motohashi., Pseudocercospora togashiana (K. Ito & Tak. Kobay.) C. Nakash. & Tak. Kobay., Pteridopassalora nephrolepidicola (Crous & R.G. Shivas) C. Nakash. & Crous, Pteridopassalora lygodii (Goh & W.H. Hsieh) C. Nakash. & Crous; Typification: Epitypification: Botrytis infestans Mont., Cercospora abeliae Katsuki, Cercospora ceratoniae Pat. & Trab., Cercospora cladrastidis Jacz., Cercospora cryptomeriicola Sawada, Cercospora dalbergiae S.H. Sun, Cercospora ebulicola W. Yamam., Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora ixorana J.M. Yen & Lim, Cercospora liquidambaricola J.M. Yen, Cercospora pancratii Ellis & Everh., Cercospora pini-densiflorae Hori & Nambu, Cercospora profusa Syd. & P. Syd., Cercospora pyracanthae Katsuki, Cercospora horiana Togashi & Katsuki, Cercospora tabernaemontanae Syd. & P. Syd., Cercospora trinidadensis F. Stevens & Solheim, Melampsora laricis-urbanianae Tak. Matsumoto, Melampsora salicis-cupularis Wang, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora angiopteridis Goh & W.H. Hsieh, Pseudocercospora basitruncata Crous, Pseudocercospora boehmeriigena U. Braun, Pseudocercospora coprosmae U. Braun & C.F. Hill, Pseudocercospora cratevicola C. Nakash. & U. Braun, Pseudocercospora cymbidiicola U. Braun & C.F. Hill, Pseudocercospora dodonaeae Boesew., Pseudocercospora euphorbiacearum U. Braun, Pseudocercospora lygodii Goh & W.H. Hsieh, Pseudocercospora metrosideri U. Braun, Pseudocercospora paraexosporioides C. Nakash. & U. Braun, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous, Septogloeum punctatum Wakef.; Neotypification: Cercospora aleuritis I. Miyake; Lectotypification: Cercospora dalbergiae S.H. Sun, Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora profusa Syd. & P. Syd., Melampsora laricis-urbanianae Tak. Matsumoto, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous. Citation: Chen Q, Bakhshi M, Balci Y, Broders KD, Cheewangkoon R, Chen SF, Fan XL, Gramaje D, Halleen F, Horta Jung M, Jiang N, Jung T, Májek T, Marincowitz S, Milenković T, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies CFJ, Suhaizan L, Suzuki H, Tian CM, Tomšovský M, Úrbez-Torres JR, Wang W, Wingfield BD, Wingfield MJ, Yang Q, Yang X, Zare R, Zhao P, Groenewald JZ, Cai L, Crous PW (2022). Genera of phytopathogenic fungi: GOPHY 4. Studies in Mycology 101: 417-564. doi: 10.3114/sim.2022.101.06.
Collapse
Affiliation(s)
- Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - M. Bakhshi
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Y. Balci
- USDA-APHIS Plant Protection and Quarantine, 4700 River Road, Riverdale, Maryland, 20737 USA
| | - K.D. Broders
- Smithsonian Tropical Research Institute, Apartado Panamá, República de Panamá
| | - R. Cheewangkoon
- Entomology and Plant Pathology Department, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand, 50200
| | - S.F. Chen
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - X.L. Fan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - D. Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV). Consejo Superior de Investigaciones Científicas - Universidad de La Rioja - Gobierno de La Rioja. Ctra. LO-20 Salida 13, 26007 Logroño. Spain
| | - F. Halleen
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenboscvh, 7599, South Africa
| | - M. Horta Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - N. Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - T. Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - T. Májek
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - S. Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - I. Milenković
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - C. Nakashima
- Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie, 514-8507, Japan
| | - I. Nurul Faziha
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - M. Pan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - B. Scanu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - C.F.J. Spies
- ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - L. Suhaizan
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - H. Suzuki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - C.M. Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Tomšovský
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - J.R. Úrbez-Torres
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - W. Wang
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - B.D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - M.J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - Q. Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - X. Yang
- USDA-ARS, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, Maryland, 21702 USA
- Oak Ridge Institute for Science and Education, ARS Research Participation Program, P.O. Box 117, Oak Ridge, Tennessee, 37831 USA
| | - R. Zare
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - P. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
13
|
Urbina H, Jones C, De la Paz A, McVay J. First report of cedar-quince rust Gymnosporangium clavipes on fruit of dwarf hawthorn Crataegus uniflora in Florida, USA. PLANT DISEASE 2022; 106:3204. [PMID: 35467943 DOI: 10.1094/pdis-01-22-0027-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dwarf hawthorn Crataegus uniflora Münchh. (Rosaceae, Maloideae) is a small deciduous tree species native to the central and eastern US and south into northern Mexico. Dwarf hawthorn is drought tolerant and commonly found in disturbed areas (e.g., hedges and roadsides). In May 2021, we observed several individuals of dwarf hawthorn growing on the border of an empty field in the Natural Area Teaching Laboratory at The University of Florida main campus in Gainesville, Alachua County, Florida, USA (N29.633382, W82.368350) that were severely infected by fruit galls with visible, whitish aecia (e-Xtra Fig.1). The affected fruit were collected and transported to the Florida Department of Agriculture and Consumer Services - Division of Plant Industry headquarters in Gainesville for identification (FDACS-DPI, 2021-107788). The conspicuous rust fungus, occurring on the fruit (fructicolous), consisted of tubular aecia (roestelioid), 4 - 5 mm in length × 0.5 mm in diameter, with whitish peridia containing bright orange spores in masses. Aeciospores were semigloboid to globoid, some with an angular side, with bright orange contents, 26 - 31 µm in diameter (n= 20). The wall was densely verrucose, hyaline, 3 - 4 µm wide. Side and wall ornamentation are considered diagnostic features (EPPO Bulletin, 2006). Peridial cells of the aecia were hyaline, angular (pentagonal to hexagonal) to irregular, with a thin, convoluted wall, 41- 57 × 30 - 35 µm (n =10). Aeciospores were detected on blackish, mummified berries five months after the initial collection and aecium disappearance. This persistence demonstrates one of the adaptations allowing the pathogen to remain in a given location (e-Xtra Fig.1). The morphological characteristics are consistent with those of Gymnosporangium clavipes Cooke & Peck (Gymnosporangiaceace, Pucciniaceae, Pucciniomycotina) described by Kern (1973). A voucher was deposited in the DPI Herbarium (PIHG, specimen number 15618). The morphological identification was confirmed by molecular identification: following DNA extraction (DNeasy Plant Pro extraction kit, Qiagen Corporation, Hilden, Germany), we amplified a fragment of the internal transcribed spacer (ITS) and the large subunit (LSU) via PCR using the primer pairs Rust2inv/LR6 and Rust28S/LR5 (OK337508) (Aime, 2006); amplicons were then Sanger sequenced. NCBI megaBlast searches (Chen et al. 2015) of the resulting fungal sequences revealed high identity (ITS and LSU) to two G. clavipes vouchers: NYBG461394 (99.86%, Genbank accession no. MN605691) sequenced in the latest publication addressing species delimitation in Gymnosporangium (Zhao et al., 2020), and PPST 2020-104160 (99.72%, GenBank MW148514): the first report of this rust occurring on Crataegus marshallii Eggleston (McVay et al., 2021), also recently found in Gainesville, Florida. Phylogenetic analyses were carried out in the phylogenetic package RAxMLv8.0.0 (Stamatakis, 2014) (e-Xtra Fig. 2) further supports placement of 2021-107788 within G. clavipes. The heteroecious nature of this rust fungus precludes Koch's postulates. Based on exhaustive reviews of collection indices and literature, a specimen of G. clavipes on C. uniflora exists at the U.S. National Fungus collections (BPI 117783A) collected in Newfield, New Jersey in 1888 (Farr & Rossman, 2022); this rust fungus has a host range of at least 18 other species of Crataegus (Farr and Rossman, 2022; McVay et al., 2021; Zhao et al., 2020). This report represents the first published record of G. clavipes on dwarf hawthorn, and the first report in Florida.
Collapse
Affiliation(s)
- Hector Urbina
- Florida Department of Agriculture and Consumer Services, 70124, Plant Industry, 1911 SW 34TH ST, Gainesville, Florida, United States, 32608;
| | - Callie Jones
- Florida Department of Agriculture and Consumer Services, 70124, Plant Industry, Gainesville, Florida, United States;
| | | | - John McVay
- Florida Department of Agriculture and Consumer Services, 70124, Plant Industry, 1911 Sw 34th St, Gainesville, Gainesville, Florida, United States, 32605;
| |
Collapse
|
14
|
Contribution to rust flora in China I, tremendous diversity from natural reserves and parks. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00482-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|