1
|
Nash A, Ryan EJ. The oncogenic gamma herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) hijack retinoic acid-inducible gene I (RIG-I) facilitating both viral and tumour immune evasion. Tumour Virus Res 2022; 14:200246. [PMID: 35998812 PMCID: PMC9424536 DOI: 10.1016/j.tvr.2022.200246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 01/13/2023] Open
Abstract
Herpesviruses evade host immunity to establish persistent lifelong infection with dormant latent and replicative lytic phases. Epstein-Barr virus (EBV) and Kaposi's Sarcoma-associated virus (KSHV) are double-stranded DNA herpesviruses that encode components to activate RNA sensors, (Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5). Yet both viruses can effectively evade the antiviral immune response. The ability of these viruses to disarm RIG-I to evade immunity allowing viral persistency can contribute to the creation of a protected niche that facilitates tumour growth and immune evasion. Alternatively, viral nucleic acids present in the cytosol during the replicative phase of the viral lifecycle can activate pro-inflammatory signaling downstream of RIG-I augmenting tumour promoting inflammation. Understanding how these viral proteins disrupt innate immune pathways could help identify mechanisms to boost immunity, clearing viral infection and enhancing the efficacy of immunotherapy for virally induced cancers. Here we review literature on the strategies EBV and KSHV use to either enhance or inhibit RLR signaling.
Collapse
Affiliation(s)
- Alana Nash
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Ireland
| | - Elizabeth J. Ryan
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Ireland,Limerick Digital Cancer Research Centre, University of Limerick, Ireland,Health Research Institute, University of Limerick, Limerick, V94 T9PX, Ireland,Corresponding author. Department of Biological Sciences.
| |
Collapse
|
2
|
Zhu W, Li J, Zhang R, Cai Y, Wang C, Qi S, Chen S, Liang X, Qi N, Hou F. TRAF3IP3 mediates the recruitment of TRAF3 to MAVS for antiviral innate immunity. EMBO J 2019; 38:e102075. [PMID: 31390091 DOI: 10.15252/embj.2019102075] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
RIG-I-MAVS antiviral signaling represents an important pathway to stimulate interferon production and confer innate immunity to the host. Upon binding to viral RNA and Riplet-mediated polyubiquitination, RIG-I promotes prion-like aggregation and activation of MAVS. MAVS subsequently induces interferon production by activating two signaling pathways mediated by TBK1-IRF3 and IKK-NF-κB respectively. However, the mechanism underlying the activation of MAVS downstream pathways remains elusive. Here, we demonstrated that activation of TBK1-IRF3 by MAVS-Region III depends on its multimerization state and identified TRAF3IP3 as a critical regulator for the downstream signaling. In response to virus infection, TRAF3IP3 is accumulated on mitochondria and thereby facilitates the recruitment of TRAF3 to MAVS for TBK1-IRF3 activation. Traf3ip3-deficient mice demonstrated a severely compromised potential to induce interferon production and were vulnerable to RNA virus infection. Our findings uncover that TRAF3IP3 is an important regulator for RIG-I-MAVS signaling, which bridges MAVS and TRAF3 for an effective antiviral innate immune response.
Collapse
Affiliation(s)
- Wenting Zhu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiaxin Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Rui Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yixiang Cai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Changwan Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shishi Qi
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Xiaozhen Liang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Nan Qi
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Fajian Hou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Hu J, Cladel NM, Budgeon LR, Balogh KK, Christensen ND. The Mouse Papillomavirus Infection Model. Viruses 2017; 9:v9090246. [PMID: 28867783 PMCID: PMC5618012 DOI: 10.3390/v9090246] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/28/2022] Open
Abstract
The mouse papillomavirus (MmuPV1) was first reported in 2011 and has since become a powerful research tool. Through collective efforts from different groups, significant progress has been made in the understanding of molecular, virological, and immunological mechanisms of MmuPV1 infections in both immunocompromised and immunocompetent hosts. This mouse papillomavirus provides, for the first time, the opportunity to study papillomavirus infections in the context of a small common laboratory animal for which abundant reagents are available and for which many strains exist. The model is a major step forward in the study of papillomavirus disease and pathology. In this review, we summarize studies using MmuPV1 over the past six years and share our perspectives on the value of this unique model system. Specifically, we discuss viral pathogenesis in cutaneous and mucosal tissues as well as in different mouse strains, immune responses to the virus, and local host-restricted factors that may be involved in MmuPV1 infections and associated disease progression.
Collapse
Affiliation(s)
- Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Nancy M Cladel
- The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Lynn R Budgeon
- The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Karla K Balogh
- The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Neil D Christensen
- The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|