1
|
An Arabidopsis AT-hook motif nuclear protein mediates somatic embryogenesis and coinciding genome duplication. Nat Commun 2021; 12:2508. [PMID: 33947865 PMCID: PMC8096963 DOI: 10.1038/s41467-021-22815-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
Plant somatic cells can be reprogrammed into totipotent embryonic cells that are able to form differentiated embryos in a process called somatic embryogenesis (SE), by hormone treatment or through overexpression of certain transcription factor genes, such as BABY BOOM (BBM). Here we show that overexpression of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED 15 (AHL15) gene induces formation of somatic embryos on Arabidopsis thaliana seedlings in the absence of hormone treatment. During zygotic embryogenesis, AHL15 expression starts early in embryo development, and AH15 and other AHL genes are required for proper embryo patterning and development beyond the globular stage. Moreover, AHL15 and several of its homologs are upregulated and required for SE induction upon hormone treatment, and they are required for efficient BBM-induced SE as downstream targets of BBM. A significant number of plants derived from AHL15 overexpression-induced somatic embryos are polyploid. Polyploidisation occurs by endomitosis specifically during the initiation of SE, and is caused by strong heterochromatin decondensation induced by AHL15 overexpression.
Collapse
|
2
|
Dumur T, Duncan S, Graumann K, Desset S, Randall RS, Scheid OM, Prodanov D, Tatout C, Baroux C. Probing the 3D architecture of the plant nucleus with microscopy approaches: challenges and solutions. Nucleus 2019; 10:181-212. [PMID: 31362571 PMCID: PMC6682351 DOI: 10.1080/19491034.2019.1644592] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022] Open
Abstract
The eukaryotic cell nucleus is a central organelle whose architecture determines genome function at multiple levels. Deciphering nuclear organizing principles influencing cellular responses and identity is a timely challenge. Despite many similarities between plant and animal nuclei, plant nuclei present intriguing specificities. Complementary to molecular and biochemical approaches, 3D microscopy is indispensable for resolving nuclear architecture. However, novel solutions are required for capturing cell-specific, sub-nuclear and dynamic processes. We provide a pointer for utilising high-to-super-resolution microscopy and image processing to probe plant nuclear architecture in 3D at the best possible spatial and temporal resolution and at quantitative and cell-specific levels. High-end imaging and image-processing solutions allow the community now to transcend conventional practices and benefit from continuously improving approaches. These promise to deliver a comprehensive, 3D view of plant nuclear architecture and to capture spatial dynamics of the nuclear compartment in relation to cellular states and responses. Abbreviations: 3D and 4D: Three and Four dimensional; AI: Artificial Intelligence; ant: antipodal nuclei (ant); CLSM: Confocal Laser Scanning Microscopy; CTs: Chromosome Territories; DL: Deep Learning; DLIm: Dynamic Live Imaging; ecn: egg nucleus; FACS: Fluorescence-Activated Cell Sorting; FISH: Fluorescent In Situ Hybridization; FP: Fluorescent Proteins (GFP, RFP, CFP, YFP, mCherry); FRAP: Fluorescence Recovery After Photobleaching; GPU: Graphics Processing Unit; KEEs: KNOT Engaged Elements; INTACT: Isolation of Nuclei TAgged in specific Cell Types; LADs: Lamin-Associated Domains; ML: Machine Learning; NA: Numerical Aperture; NADs: Nucleolar Associated Domains; PALM: Photo-Activated Localization Microscopy; Pixel: Picture element; pn: polar nuclei; PSF: Point Spread Function; RHF: Relative Heterochromatin Fraction; SIM: Structured Illumination Microscopy; SLIm: Static Live Imaging; SMC: Spore Mother Cell; SNR: Signal to Noise Ratio; SRM: Super-Resolution Microscopy; STED: STimulated Emission Depletion; STORM: STochastic Optical Reconstruction Microscopy; syn: synergid nuclei; TADs: Topologically Associating Domains; Voxel: Volumetric pixel.
Collapse
Affiliation(s)
- Tao Dumur
- Gregor Mendel Institute (GMI) of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Susan Duncan
- Norwich Research Park, Earlham Institute, Norwich, UK
| | - Katja Graumann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Sophie Desset
- GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont–Ferrand, France
| | - Ricardo S Randall
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute (GMI) of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Dimiter Prodanov
- Environment, Health and Safety, Neuroscience Research Flanders, Leuven, Belgium
| | - Christophe Tatout
- GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont–Ferrand, France
| | - Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Abstract
Here we present an optimized protocol for immunolocalization of meiotic proteins during female meiosis in whole mount tissues. It ensures ovule morphology integrity and homogeneous reagent penetration. The method relies on paraformaldehyde tissue fixation, polyacrylamide embedding, tissue permeabilization, antibody incubation, counterstaining, and confocal microscopy analysis. This protocol has been used in diverse Arabidopsis ecotypes and in the legume Vigna unguiculata.
Collapse
|
4
|
García-Aguilar M, Autran D. Localization of Chromatin Marks in Arabidopsis Early Embryos. Methods Mol Biol 2018; 1675:419-441. [PMID: 29052205 DOI: 10.1007/978-1-4939-7318-7_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
During early embryo development, profound changes in chromatin structure and regulation take place. It is difficult to study these changes in plant embryos however, largely because of their relative inaccessibility, which impedes the application of current epigenomic and biochemistry protocols. To circumvent this issue and to analyze the epigenetic status of the embryo at both the cellular and subcellular level, we describe here a simple method to immunolocalize chromatin marks in whole mount early Arabidopsis embryos, either within maternal tissues or isolated from seeds. We show that this protocol can be combined with fluorescent protein markers, allowing for the simultaneous detection of several chromatin components and/or cell fate markers. This new protocol will facilitate deciphering the epigenetic circuits controlling early embryogenesis in plants.
Collapse
Affiliation(s)
- Marcelina García-Aguilar
- Laboratory of Genetics and Epigenetics of Seed Development, Laboratorio Nacional de Genómica para la Biodiversidad, Km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, CP 36821, Guanajuato, Mexico
| | - Daphné Autran
- Epigenetic Regulation and Seed Development Group, UMR 232 DIADE, IRD Institut de Recherche Pour le Développement-Université de Montpellier, 911 Avenue Agropolis, 34394, Montpellier, France.
| |
Collapse
|
5
|
Abstract
The long linear chromosomes of eukaryotic organisms are tightly packed into the nucleus of the cell. Beyond a first organization into nucleosomes and higher-order chromatin fibers, the positioning of nuclear DNA within the three-dimensional space of the nucleus plays a critical role in genome function and gene expression. Different techniques have been developed to assess nanoscale chromatin organization, nuclear position of genomic regions or specific chromatin features and binding proteins as well as higher-order chromatin organization. Here, I present an overview of imaging and molecular techniques applied to study nuclear architecture in plants, with special attention to the related protocols published in the "Plant Chromatin Dynamics" edition from Methods in Molecular Biology.
Collapse
Affiliation(s)
- Aline V Probst
- GReD, Université Clermont Auvergne, CNRS, INSERM, 63001, Clermont-Ferrand, France.
| |
Collapse
|
6
|
Automated 3D Gene Position Analysis Using a Customized Imaris Plugin: XTFISHInsideNucleus. Methods Mol Biol 2018; 1675:591-613. [PMID: 29052213 DOI: 10.1007/978-1-4939-7318-7_32] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Fluorescence in situ hybridization (FISH) is commonly used to visualize chromosomal regions or genomic loci within the nucleus, and can largely contribute to unraveling the link between structure and function in the nucleus. Three-dimensional (3D) analyses are required to best capture the nucleus' organizing principles, but the experimental setup and computational analyses are far from trivial. Here, we present a robust workflow for 3D FISH against repeats and single copy loci in embedded intact nuclei from Arabidopsis leaves. We then describe in detail the image acquisition, subsequent image deconvolution before 3D image processing, and the image reconstruction. We developed an automated batch image processing pipeline using a customized, open source plugin implemented in the Imaris environment.
Collapse
|
7
|
de Lucas M, Pu L, Turco G, Gaudinier A, Morao AK, Harashima H, Kim D, Ron M, Sugimoto K, Roudier F, Brady SM. Transcriptional Regulation of Arabidopsis Polycomb Repressive Complex 2 Coordinates Cell-Type Proliferation and Differentiation. THE PLANT CELL 2016; 28:2616-2631. [PMID: 27650334 PMCID: PMC5134969 DOI: 10.1105/tpc.15.00744] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 08/29/2016] [Accepted: 09/14/2016] [Indexed: 05/21/2023]
Abstract
Spatiotemporal regulation of transcription is fine-tuned at multiple levels, including chromatin compaction. Polycomb Repressive Complex 2 (PRC2) catalyzes the trimethylation of Histone 3 at lysine 27 (H3K27me3), which is the hallmark of a repressive chromatin state. Multiple PRC2 complexes have been reported in Arabidopsis thaliana to control the expression of genes involved in developmental transitions and maintenance of organ identity. Here, we show that PRC2 member genes display complex spatiotemporal gene expression patterns and function in root meristem and vascular cell proliferation and specification. Furthermore, PRC2 gene expression patterns correspond with vascular and nonvascular tissue-specific H3K27me3-marked genes. This tissue-specific repression via H3K27me3 regulates the balance between cell proliferation and differentiation. Using enhanced yeast one-hybrid analysis, upstream regulators of the PRC2 member genes are identified, and genetic analysis demonstrates that transcriptional regulation of some PRC2 genes plays an important role in determining PRC2 spatiotemporal activity within a developing organ.
Collapse
Affiliation(s)
- Miguel de Lucas
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Li Pu
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Gina Turco
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Allison Gaudinier
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Ana Karina Morao
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, U1024 Paris, France
| | - Hirofumi Harashima
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Dahae Kim
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Mily Ron
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Francois Roudier
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, U1024 Paris, France
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| |
Collapse
|
8
|
Abstract
Here we describe a whole-mount immunolocalization protocol to follow the subcellular localization of proteins during female meiosis in Arabidopsis thaliana, a model species that is used to study sexual reproduction in flowering plants. By using confocal microscopy, the procedure allows one to follow megasporogenesis at all stages before differentiation of the functional megaspore. This in particular includes stages that occur during prophase I, such as the installation of the axial and central elements of the synaptonemal complex along the meiotic chromosomes. In contrast to procedures that require microtome sectioning or enzymatic isolation and smearing to separate female meiocytes from neighboring cells, this 3-day protocol preserves the constitution of the developing primordium and incorporates the architecture of the ovule to provide a temporal and spatial context to meiotic divisions. This opens up the possibility to systematically compare the dynamics of protein localization during female and male meiosis. Steps describe tissue collection and fixation, preparation of slides and polyacrylamide embedding, tissue permeabilization, antibody incubation, propidium iodide staining, and finally image acquisition by confocal microscopy. The procedure adds an essential technique to the toolkit of plant meiotic analysis, and it represents a framework for technical adaptations that could soon allow the analysis of plant reproductive alternatives to sexual reproduction.
Collapse
|
9
|
She W, Baroux C. Chromatin dynamics in pollen mother cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:294. [PMID: 25972887 PMCID: PMC4411972 DOI: 10.3389/fpls.2015.00294] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/12/2015] [Indexed: 05/18/2023]
Abstract
Unlike animals, where the germline is established early during embryogenesis, plants set aside their reproductive lineage late in development in dedicated floral organs. The specification of pollen mother cells (PMC) committed to meiosis takes place in the sporogenous tissue in anther locules and marks the somatic-to-reproductive cell fate transition toward the male reproductive lineage. Here we show that Arabidopsis PMC differentiation is accompanied by large-scale changes in chromatin organization. This is characterized by significant increase in nuclear volume, chromatin decondensation, reduction in heterochromatin, eviction of linker histones and the H2AZ histone variant. These structural alterations are accompanied by dramatic, quantitative changes in histone modifications levels compared to that of surrounding somatic cells that do not share a sporogenic fate. All these changes are highly reminiscent of those we have formerly described in female megaspore mother cells (MMC). This indicates that chromatin reprogramming is a common underlying scenario in the somatic-to-reproductive cell fate transition in both male and female lineages.
Collapse
Affiliation(s)
| | - Célia Baroux
- Department of Plant Developmental Genetics, Institute of Plant Biology and Zürich-Basel Plant Science Center, University of ZürichZürich, Switzerland
| |
Collapse
|
10
|
She W, Baroux C. Chromatin dynamics during plant sexual reproduction. FRONTIERS IN PLANT SCIENCE 2014; 5:354. [PMID: 25104954 PMCID: PMC4109563 DOI: 10.3389/fpls.2014.00354] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/03/2014] [Indexed: 05/19/2023]
Abstract
Plants have the remarkable ability to establish new cell fates throughout their life cycle, in contrast to most animals that define all cell lineages during embryogenesis. This ability is exemplified during sexual reproduction in flowering plants where novel cell types are generated in floral tissues of the adult plant during sporogenesis, gametogenesis, and embryogenesis. While the molecular and genetic basis of cell specification during sexual reproduction is being studied for a long time, recent works disclosed an unsuspected role of global chromatin organization and its dynamics. In this review, we describe the events of chromatin dynamics during the different phases of sexual reproduction and discuss their possible significance particularly in cell fate establishment.
Collapse
Affiliation(s)
| | - Célia Baroux
- *Correspondence: Célia Baroux, Institute of Plant Biology – Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland e-mail:
| |
Collapse
|