1
|
Becerra Calderon A, Shroff UN, Deepak S, Izuhara A, Trogen G, McDonough AA, Gurley SB, Nelson JW, Peti‐Peterdi J, Gyarmati G. Angiotensin II Directly Increases Endothelial Calcium and Nitric Oxide in Kidney and Brain Microvessels In Vivo With Reduced Efficacy in Hypertension. J Am Heart Assoc 2024; 13:e033998. [PMID: 38726925 PMCID: PMC11179802 DOI: 10.1161/jaha.123.033998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND The vasoconstrictor effects of angiotensin II via type 1 angiotensin II receptors in vascular smooth muscle cells are well established, but the direct effects of angiotensin II on vascular endothelial cells (VECs) in vivo and the mechanisms how VECs may mitigate angiotensin II-mediated vasoconstriction are not fully understood. The present study aimed to explore the molecular mechanisms and pathophysiological relevance of the direct actions of angiotensin II on VECs in kidney and brain microvessels in vivo. METHODS AND RESULTS Changes in VEC intracellular calcium ([Ca2+]i) and nitric oxide (NO) production were visualized by intravital multiphoton microscopy of cadherin 5-Salsa6f mice or the endothelial uptake of NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, respectively. Kidney fibrosis by unilateral ureteral obstruction and Ready-to-use adeno-associated virus expressing Mouse Renin 1 gene (Ren1-AAV) hypertension were used as disease models. Acute systemic angiotensin II injections triggered >4-fold increases in VEC [Ca2+]i in brain and kidney resistance arterioles and capillaries that were blocked by pretreatment with the type 1 angiotensin II receptor inhibitor losartan, but not by the type 2 angiotensin II receptor inhibitor PD123319. VEC responded to acute angiotensin II by increased NO production as indicated by >1.5-fold increase in 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence intensity. In mice with kidney fibrosis or hypertension, the angiotensin II-induced VEC [Ca2+]i and NO responses were significantly reduced, which was associated with more robust vasoconstrictions, VEC shedding, and microthrombi formation. CONCLUSIONS The present study directly visualized angiotensin II-induced increases in VEC [Ca2+]i and NO production that serve to counterbalance agonist-induced vasoconstriction and maintain residual organ blood flow. These direct and endothelium-specific angiotensin II effects were blunted in disease conditions and linked to endothelial dysfunction and the development of vascular pathologies.
Collapse
Affiliation(s)
- Alejandra Becerra Calderon
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| | - Urvi Nikhil Shroff
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| | - Sachin Deepak
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| | - Audrey Izuhara
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| | - Greta Trogen
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| | - Alicia A. McDonough
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
| | - Susan B. Gurley
- Department of MedicineUniversity of Southern CaliforniaLos AngelesCA
| | | | - János Peti‐Peterdi
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
- Department of MedicineUniversity of Southern CaliforniaLos AngelesCA
| | - Georgina Gyarmati
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| |
Collapse
|
2
|
Lawton PF, Buckley C, Saunter CD, Wilson C, Corbett AD, Salter PS, McCarron JG, Girkin JM. Multi-plane remote refocusing epifluorescence microscopy to image dynamic Ca 2 + events. BIOMEDICAL OPTICS EXPRESS 2019; 10:5611-5624. [PMID: 31799034 PMCID: PMC6865095 DOI: 10.1364/boe.10.005611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 05/26/2023]
Abstract
Rapid imaging of multiple focal planes without sample movement may be achieved through remote refocusing, where imaging is carried out in a plane conjugate to the sample plane. The technique is ideally suited to studying the endothelial and smooth muscle cell layers of blood vessels. These are intrinsically linked through rapid communication and must be separately imaged at a sufficiently high frame rate in order to understand this biologically crucial interaction. We have designed and implemented an epifluoresence-based remote refocussing imaging system that can image each layer at up to 20fps using different dyes and excitation light for each layer, without the requirement for optically sectioning microscopy. A novel triggering system is used to activate the appropriate laser and image acquisition at each plane of interest. Using this method, we are able to achieve axial plane separations down to 15 μ m, with a mean lateral stability of ≤ 0.32 μ m displacement using a 60x, 1.4NA imaging objective and a 60x, 0.7NA reimaging objective. The system allows us to image and quantify endothelial cell activity and smooth muscle cell activity at a high framerate with excellent lateral and good axial resolution without requiring complex beam scanning confocal microscopes, delivering a cost effective solution for imaging two planes rapidly. We have successfully imaged and analysed Ca 2 + activity of the endothelial cell layer independently of the smooth muscle layer for several minutes.
Collapse
Affiliation(s)
- Penelope F. Lawton
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - Charlotte Buckley
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Chris D. Saunter
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Alexander D. Corbett
- Department of Physics, University of Exeter, North Park Road, Exeter, EX4 4QL, UK
| | - Patrick S. Salter
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - John G. McCarron
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - John M. Girkin
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
3
|
LaDisa JF, Tomita-Mitchell A, Stamm K, Bazan K, Mahnke DK, Goetsch MA, Wegter BJ, Gerringer JW, Repp K, Palygin O, Zietara AP, Krolikowski MM, Eddinger TJ, Alli AA, Mitchell ME. Human genotyping and an experimental model reveal NPR-C as a possible contributor to morbidity in coarctation of the aorta. Physiol Genomics 2019; 51:177-185. [PMID: 31002586 DOI: 10.1152/physiolgenomics.00049.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Coarctation of the aorta (CoA) is a common congenital cardiovascular (CV) defect characterized by a stenosis of the descending thoracic aorta. Treatment exists, but many patients develop hypertension (HTN). Identifying the cause of HTN is challenging because of patient variability (e.g., age, follow-up duration, severity) and concurrent CV abnormalities. Our objective was to conduct RNA sequencing of aortic tissue from humans with CoA to identify a candidate gene for mechanistic studies of arterial dysfunction in a rabbit model of CoA devoid of the variability seen with humans. We present the first known evidence of natriuretic peptide receptor C (NPR-C; aka NPR3) downregulation in human aortic sections subjected to high blood pressure (BP) from CoA versus normal BP regions (validated to PCR). These changes in NPR-C, a gene associated with BP and proliferation, were replicated in the rabbit model of CoA. Artery segments from this model were used with human aortic endothelial cells to reveal the functional relevance of altered NPR-C activity. Results showed decreased intracellular calcium ([Ca2+]i) activity to C-type natriuretic peptide (CNP). Normal relaxation induced by CNP and atrial natriuretic peptide was impaired for aortic segments exposed to elevated BP from CoA. Inhibition of NPR-C (M372049) also impaired aortic relaxation and [Ca2+]i activity. Genotyping of NPR-C variants predicted to be damaging revealed that rs146301345 was enriched in our CoA patients, but sample size limited association with HTN. These results may ultimately be used to tailor treatment for CoA based on mechanical stimuli, genotyping, and/or changes in arterial function.
Collapse
Affiliation(s)
- John F LaDisa
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Medicine, Division of Cardiovascular Medicine; Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Physiology; Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Aoy Tomita-Mitchell
- Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Karl Stamm
- Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Kathleen Bazan
- Department of Physiology; Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Donna K Mahnke
- Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Mary A Goetsch
- Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Brandon J Wegter
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Jesse W Gerringer
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Kathryn Repp
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Oleg Palygin
- Department of Physiology; Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Adrian P Zietara
- Department of Physiology; Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Mary M Krolikowski
- Department of Pediatrics; Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Thomas J Eddinger
- Department of Biological Sciences; Marquette University , Milwaukee, Wisconsin
| | - Abdel A Alli
- Department of Physiology and Functional Genomics and Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida College of Medicine , Gainesville, Florida
| | - Michael E Mitchell
- Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin , Milwaukee, Wisconsin.,Children's Hospital of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
4
|
Palygin O, Miller B, Ilatovskaya DV, Sorokin A, Staruschenko A. Two-photon imaging of endothelin-1-mediated intracellular Ca(2+) handling in smooth muscle cells of rat renal resistance arteries. Life Sci 2015; 159:140-143. [PMID: 26682937 DOI: 10.1016/j.lfs.2015.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/19/2015] [Accepted: 12/09/2015] [Indexed: 02/05/2023]
Abstract
AIMS Endothelin-1 (ET-1) is a potent vasoconstrictor which regulates the physiology of cardiorenal system. The aim of this study was to evaluate ET-1-mediated elevation of intracellular Ca(2+) in smooth muscle cells (SMC) of renal resistance arteries. MAIN METHODS In in vitro studies of primary SMC, which were isolated from rat renal microvessels, the levels of intracellular Ca(2+) were calculated from the ratio of emissions at 340 and 380nm after loading cells with Fura 2-AM dye. In ex vivo studies we used two-photon imaging of renal resistance arteries excised from rat kidneys and loaded with fluorescent Ca(2+) indicator Fluo-4 AM. KEY FINDINGS The two-photon imaging demonstrates that treatment of isolated rat renal resistance arteries with ET-1 causes a rapid increase of intracellular Ca(2+) concentration in smooth muscle vasculature of these vessels. These ex vivo observations are in accordance with in vitro findings indicating that ET-1 mediates activation of TRPC channels and increases the level of intracellular Ca(2+) in cultured SMC to 510±83nM. SIGNIFICANCE ET-1-mediated elevation of intracellular Ca(2+) is strongly linked to renal microvascular contraction and is crucial for ET-1-induced contraction of SMC. The two-photon imaging of intracellular Ca(2+) in intact SMC of rat renal resistance arteries is a powerful technique which allows the detailed ex vivo analysis of intracellular Ca(2+) handling by ET-1, an important player in hypertension-related kidney diseases.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Bradley Miller
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Andrey Sorokin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|