1
|
Youf R, Nasir A, Müller M, Thétiot F, Haute T, Ghanem R, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Ruthenium(II) Polypyridyl Complexes for Antimicrobial Photodynamic Therapy: Prospects for Application in Cystic Fibrosis Lung Airways. Pharmaceutics 2022; 14:pharmaceutics14081664. [PMID: 36015290 PMCID: PMC9412327 DOI: 10.3390/pharmaceutics14081664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) depends on a variety of parameters notably related to the photosensitizers used, the pathogens to target and the environment to operate. In a previous study using a series of Ruthenium(II) polypyridyl ([Ru(II)]) complexes, we reported the importance of the chemical structure on both their photo-physical/physico-chemical properties and their efficacy for aPDT. By employing standard in vitro conditions, effective [Ru(II)]-mediated aPDT was demonstrated against planktonic cultures of Pseudomonas aeruginosa and Staphylococcus aureus strains notably isolated from the airways of Cystic Fibrosis (CF) patients. CF lung disease is characterized with many pathophysiological disorders that can compromise the effectiveness of antimicrobials. Taking this into account, the present study is an extension of our previous work, with the aim of further investigating [Ru(II)]-mediated aPDT under in vitro experimental settings approaching the conditions of infected airways in CF patients. Thus, we herein studied the isolated influence of a series of parameters (including increased osmotic strength, acidic pH, lower oxygen availability, artificial sputum medium and biofilm formation) on the properties of two selected [Ru(II)] complexes. Furthermore, these compounds were used to evaluate the possibility to photoinactivate P. aeruginosa while preserving an underlying epithelium of human bronchial epithelial cells. Altogether, our results provide substantial evidence for the relevance of [Ru(II)]-based aPDT in CF lung airways. Besides optimized nano-complexes, this study also highlights the various needs for translating such a challenging perspective into clinical practice.
Collapse
Affiliation(s)
- Raphaëlle Youf
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Adeel Nasir
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Tanguy Haute
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Rosy Ghanem
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
- Correspondence:
| |
Collapse
|
2
|
Piktel E, Suprewicz Ł, Depciuch J, Cieśluk M, Chmielewska S, Durnaś B, Król G, Wollny T, Deptuła P, Kochanowicz J, Kułakowska A, Fiedoruk K, Maximenko A, Parlińska-Wojtan M, Bucki R. Rod-shaped gold nanoparticles exert potent candidacidal activity and decrease the adhesion of fungal cells. Nanomedicine (Lond) 2020; 15:2733-2752. [PMID: 33090058 DOI: 10.2217/nnm-2020-0324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: To investigate the fungicidal activity of rod-shaped gold nanoparticles (AuR NPs) against Candida strains isolated from hematooncological patients and representative strains of filamentous fungi. Methods: Colony-counting assays, colorimetric and fluorometric methods and atomic force microscopy were employed. Results: AuR NPs were characterized by their potent fungicidal activity against all tested isolates, regardless of the species or drug susceptibility, at concentrations that are nontoxic to the host cells. The membrane-permeabilizing properties of AuR NPs and induction of reactive oxygen species were recognized as crucial for fungicidal activity. Conclusions: The results provide a rationale for the development of nonspherical Au NPs as effective antifungals or drug-delivery carriers to improve therapy for fungal infections.
Collapse
Affiliation(s)
- Ewelina Piktel
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Białystok, PL-15222 Białystok, Poland
| | - Łukasz Suprewicz
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Białystok, PL-15222 Białystok, Poland
| | - Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Mateusz Cieśluk
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Białystok, PL-15222 Białystok, Poland
| | - Sylwia Chmielewska
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Białystok, PL-15222 Białystok, Poland
| | - Bonita Durnaś
- Department of Microbiology & Immunology, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland
| | - Grzegorz Król
- Department of Microbiology & Immunology, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland
| | - Tomasz Wollny
- Holy Cross Cancer Center in Kielce, PL-25734 Kielce, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Białystok, PL-15222 Białystok, Poland
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Białystok, PL-15276 Białystok, Poland
| | - Alina Kułakowska
- Department of Neurology, Medical University of Białystok, PL-15276 Białystok, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Białystok, PL-15222 Białystok, Poland
| | - Alexey Maximenko
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, PL-30392 Krakow, Poland
| | | | - Robert Bucki
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Białystok, PL-15222 Białystok, Poland
| |
Collapse
|
3
|
Crawford CL, Dalecki AG, Narmore WT, Hoff J, Hargett AA, Renfrow MB, Zhang M, Kalubowilage M, Bossmann SH, Queern SL, Lapi SE, Hunter RN, Bao D, Augelli-Szafran CE, Kutsch O, Wolschendorf F. Pyrazolopyrimidinones, a novel class of copper-dependent bactericidal antibiotics against multi-drug resistant S. aureus. Metallomics 2019; 11:784-798. [DOI: 10.1039/c8mt00316e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pyrazolopyrimidinones traffic copper into S. aureus, depleting ATP and altering essential ion concentrations, resulting in the death of the bacteria.
Collapse
Affiliation(s)
| | - Alex G. Dalecki
- Department of Medicine
- University of Alabama at Birmingham
- Birmingham
- USA
| | | | - Jessica Hoff
- Department of Medicine
- University of Alabama at Birmingham
- Birmingham
- USA
| | - Audra A. Hargett
- Department of Biochemistry and Molecular Genetics
- University of Alabama at Birmingham
- Birmingham
- USA
| | - Matthew B. Renfrow
- Department of Biochemistry and Molecular Genetics
- University of Alabama at Birmingham
- Birmingham
- USA
| | - Man Zhang
- Department of Chemistry
- Kansas State University
- Manhattan
- USA
| | | | | | - Stacy L. Queern
- Department of Radiology
- University of Alabama at Birmingham
- Birmingham
- USA
- Department of Chemistry
| | - Suzanne E. Lapi
- Department of Radiology
- University of Alabama at Birmingham
- Birmingham
- USA
- Department of Chemistry
| | - Robert N. Hunter
- Department of Chemistry
- Drug Discovery Division
- Southern Research
- Birmingham
- USA
| | - Donghui Bao
- Department of Chemistry
- Drug Discovery Division
- Southern Research
- Birmingham
- USA
| | | | - Olaf Kutsch
- Department of Medicine
- University of Alabama at Birmingham
- Birmingham
- USA
| | | |
Collapse
|
4
|
Haney EF, Trimble MJ, Cheng JT, Vallé Q, Hancock REW. Critical Assessment of Methods to Quantify Biofilm Growth and Evaluate Antibiofilm Activity of Host Defence Peptides. Biomolecules 2018; 8:biom8020029. [PMID: 29883434 PMCID: PMC6022921 DOI: 10.3390/biom8020029] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/11/2018] [Accepted: 05/17/2018] [Indexed: 02/06/2023] Open
Abstract
Biofilms are multicellular communities of bacteria that can adhere to virtually any surface. Bacterial biofilms are clinically relevant, as they are responsible for up to two-thirds of hospital acquired infections and contribute to chronic infections. Troublingly, the bacteria within a biofilm are adaptively resistant to antibiotic treatment and it can take up to 1000 times more antibiotic to kill cells within a biofilm when compared to planktonic bacterial cells. Identifying and optimizing compounds that specifically target bacteria growing in biofilms is required to address this growing concern and the reported antibiofilm activity of natural and synthetic host defence peptides has garnered significant interest. However, a standardized assay to assess the activity of antibiofilm agents has not been established. In the present work, we describe two simple assays that can assess the inhibitory and eradication capacities of peptides towards biofilms that are formed by both Gram-positive and negative bacteria. These assays are suitable for high-throughput workflows in 96-well microplates and they use crystal violet staining to quantify adhered biofilm biomass as well as tetrazolium chloride dye to evaluate the metabolic activity of the biofilms. The effect of media composition on the readouts of these biofilm detection methods was assessed against two strains of Pseudomonas aeruginosa (PAO1 and PA14), as well as a methicillin resistant strain of Staphylococcus aureus. Our results demonstrate that media composition dramatically alters the staining patterns that were obtained with these dye-based methods, highlighting the importance of establishing appropriate biofilm growth conditions for each bacterial species to be evaluated. Confocal microscopy imaging of P. aeruginosa biofilms grown in flow cells revealed that this is likely due to altered biofilm architecture under specific growth conditions. The antibiofilm activity of several antibiotics and synthetic peptides were then evaluated under both inhibition and eradication conditions to illustrate the type of data that can be obtained using this experimental setup.
Collapse
Affiliation(s)
- Evan F Haney
- Department of Microbiology and Immunology, Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Michael J Trimble
- Department of Microbiology and Immunology, Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - John T Cheng
- Department of Microbiology and Immunology, Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Quentin Vallé
- Department of Microbiology and Immunology, Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Robert E W Hancock
- Department of Microbiology and Immunology, Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
5
|
Butini ME, Gonzalez Moreno M, Czuban M, Koliszak A, Tkhilaishvili T, Trampuz A, Di Luca M. Real-Time Antimicrobial Susceptibility Assay of Planktonic and Biofilm Bacteria by Isothermal Microcalorimetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1214:61-77. [DOI: 10.1007/5584_2018_291] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Yang X, Qian S, Yao K, Wang L, Liu Y, Dong F, Song W, Zhen J, Zhou W, Xu H, Zheng H, Li W. Multiresistant ST59-SCCmec IV-t437 clone with strong biofilm-forming capacity was identified predominantly in MRSA isolated from Chinese children. BMC Infect Dis 2017; 17:733. [PMID: 29178841 PMCID: PMC5702180 DOI: 10.1186/s12879-017-2833-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/15/2017] [Indexed: 11/16/2022] Open
Abstract
Background This study aimed to investigate the clinical and molecular epidemiology and biofilm formation of Staphylococcus aureus (SA) isolated from pediatricians in China. Methods SA strains were isolated from Beijing Children’s hospital from February 2016 to January 2017. Isolates were typed by multilocus sequence typing (MLST), spa and SCCmec typing (for Methicillin-resistant SA [MRSA] only). Antimicrobial susceptibility testing was performed by agar dilution method except sulphamethoxazole/trimethoprim (E-test method). Biofilm formation and biofilm associated genes were detected. Results Totally 104 children (41 females and 63 males; median age, 5.2 months) were enrolled in this study, in which 60 patients suffered from MRSA infection. Among the 104 cases, 54.8% were categorized as community associated SA (CA-SA) infections. The children under 3 years were more likely to occur CA-SA infections compared with older ones (P = 0.0131). ST59-SCCmec IV-t437 (61.7%) was the most prevalent genotype of MRSA, and ST22-t309 (18.2%), ST5-t002 (9.1%), ST6-t701 (9.1%), ST188-t189 (9.1%) were the top four genotypes of methicillin-sensitive SA (MSSA). All the present isolates were susceptible to linezolid, vancomycin, trimethoprim-sulfamethoxazole, mupirocin, tigecyclin, fusidic acid. No erythromycin-susceptible isolate was determined, and only a few isolates (3.8%) were identified as susceptible to penicillin. Multi-drug resistant isolates were reponsible for 83.8% of the ST59-SCCmec IV-t437 isolates. The isolates with strong biofilm formation were found in 85% of MRSA and 53.2% of MSSA, and in 88.7% of ST59-SCCmec IV-t437 isolates. Biofilm formation ability varied not only between MRSA and MSSA (P = 0.0053), but also greatly among different genotypes (P < 0.0001). The prevalence of the biofilm associated genes among ST59-SCCmec IV-t437 clone was: icaA (100.0%), icaD (97.3%), fnbpA (100.0%), fnbpB (0), clfA (100%), clfB (100%), cna (2.7%), bbp (0), ebpS (88.5%), sdrC (78.4%), sdrD (5.4%), and sdrE (94.5%). Conclusions These results indicated strong homology of the MRSA stains isolated from Chinese children, which was caused by spread of multiresistant ST59-SCCmec IV-t437 clone with strong biofilm formation ability. The MSSA strains, in contrast, were very heterogeneity, half of which could produce biofilm strongly. Electronic supplementary material The online version of this article (10.1186/s12879-017-2833-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Yang
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Suyun Qian
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China.
| | - Kaihu Yao
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Lijuan Wang
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Yingchao Liu
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Fang Dong
- Bacteriology Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wenqi Song
- Bacteriology Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jinghui Zhen
- Bacteriology Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wei Zhou
- Bacteriology Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hong Xu
- Bacteriology Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hongyan Zheng
- Bacteriology Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wenting Li
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| |
Collapse
|