1
|
Zhang M, Li M, Li H, Wan Y, Yang S, Ji S, Zhang H, Liu C, Lu G, Jiang X, Liu H. Dysregulation of N-glycosylation by Rpn1 knockout in spermatocytes induces male infertility via endoplasmic reticulum stress in mice. Int J Biol Sci 2025; 21:2360-2379. [PMID: 40083683 PMCID: PMC11900820 DOI: 10.7150/ijbs.106468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025] Open
Abstract
N-glycosylation protein modification plays a crucial regulatory role in numerous biological processes, although their contribution to male reproduction in mammals remains largely undefined. Here, we found that Ribophorin I (RPN1), a subunit of oligosaccharyltransferase complex, is indispensable for spermatogenesis in male germ cells. Germ cell-specific Rpn1 knockout results in significant inhibition of the progression of meiosis, consequently disrupting homologous chromosome pairing, meiotic recombination, and DNA double strand breaks repair during meiosis. N-glycoproteomic profiling revealed that glycosylation levels are reduced in endoplasmic reticulum-associated proteins, while functional analyses showed that Rpn1 deficiency could inhibit endoplasmic reticulum function and trigger endoplasmic reticulum stress during meiosis and increasing apoptosis levels in mice. These findings highlight the essential physiological functions of N-glycosylation modification in male spermatogenesis and expand our understanding of its role in male fertility.
Collapse
Affiliation(s)
- Mingyu Zhang
- Institute of Women, Children and Reproductive Health, Shandong University, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinoligy (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
- School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Mengjing Li
- Institute of Women, Children and Reproductive Health, Shandong University, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinoligy (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Hanzhen Li
- Institute of Women, Children and Reproductive Health, Shandong University, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinoligy (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
- School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yanling Wan
- Institute of Women, Children and Reproductive Health, Shandong University, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinoligy (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Shuang Yang
- School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Shuhui Ji
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Haobo Zhang
- Institute of Women, Children and Reproductive Health, Shandong University, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinoligy (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
- Center for Reproductive Medicine, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chao Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Xiaohua Jiang
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Hongbin Liu
- Institute of Women, Children and Reproductive Health, Shandong University, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinoligy (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
- School of Basic Medical Sciences, Shandong University, Jinan 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Huang Y, Li L, An G, Yang X, Cui M, Song X, Lin J, Zhang X, Yao Z, Wan C, Zhou C, Zhao J, Song K, Ren S, Xia X, Fu X, Lan Y, Hu X, Wang W, Wang M, Zheng Y, Miao K, Bai X, Hutchins AP, Chang G, Gao S, Zhao XY. Single-cell multi-omics sequencing of human spermatogenesis reveals a DNA demethylation event associated with male meiotic recombination. Nat Cell Biol 2023; 25:1520-1534. [PMID: 37723297 DOI: 10.1038/s41556-023-01232-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 08/15/2023] [Indexed: 09/20/2023]
Abstract
Human spermatogenesis is a highly ordered process; however, the roles of DNA methylation and chromatin accessibility in this process remain largely unknown. Here by simultaneously investigating the chromatin accessibility, DNA methylome and transcriptome landscapes using the modified single-cell chromatin overall omic-scale landscape sequencing approach, we revealed that the transcriptional changes throughout human spermatogenesis were correlated with chromatin accessibility changes. In particular, we identified a set of transcription factors and cis elements with potential functions. A round of DNA demethylation was uncovered upon meiosis initiation in human spermatogenesis, which was associated with male meiotic recombination and conserved between human and mouse. Aberrant DNA hypermethylation could be detected in leptotene spermatocytes of certain nonobstructive azoospermia patients. Functionally, the intervention of DNA demethylation affected male meiotic recombination and fertility. Our work provides multi-omics landscapes of human spermatogenesis at single-cell resolution and offers insights into the association between DNA demethylation and male meiotic recombination.
Collapse
Affiliation(s)
- Yaping Huang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Lin Li
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Geng An
- Department of Reproductive Medicine Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Xinyan Yang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Manman Cui
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Xiuling Song
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Jing Lin
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Xiaoling Zhang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Zhaokai Yao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Cong Wan
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Cai Zhou
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Jiexiang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Ke Song
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Shaofang Ren
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Xinyu Xia
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Xin Fu
- Department of Reproductive Medicine Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Yu Lan
- Department of Reproductive Medicine Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Xuesong Hu
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Wen Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Mei Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Yi Zheng
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Kai Miao
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau, P. R. China
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P. R. China
| | - Gang Chang
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, P. R. China.
| | - Shuai Gao
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China.
| | - Xiao-Yang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China.
- Guangdong Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, P. R. China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangzhou, P. R. China.
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China.
- National Clinical Research Center for Kidney Disease, Guangzhou, P. R. China.
| |
Collapse
|