1
|
Taati Moghadam M, Amirmozafari N, Mojtahedi A, Bakhshayesh B, Shariati A, Masjedian Jazi F. Association of perturbation of oral bacterial with incident of Alzheimer's disease: A pilot study. J Clin Lab Anal 2022; 36:e24483. [PMID: 35689551 PMCID: PMC9279996 DOI: 10.1002/jcla.24483] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE This case-control study was designed to compare the composition of the predominant oral bacterial microbiome in Alzheimer's disease (AD) and control group. SUBJECT A total of 30 adult participants (15 AD and 15 healthy individuals) were entered in this study. The composition of oral bacterial microbiome was examined by quantitative real-time polymerase chain reaction (qPCR) using bacterial 16S rDNA gene. The levels of systemic inflammatory cytokines in both groups were assessed using enzyme-linked immunosorbent assays (ELISA). RESULTS The loads of Porphyromonas gingivalis, Fusobacterium nucleatum, and Prevotella intermedia were significantly more abundant in the AD compared to the control group (p < 0.05). Although Aggregatibacter actinomycetemcomitans and Streptococcus mutans were relatively frequent in the AD group, no significance difference was observed in their copy number between two groups. Although the concentrations of IL-1, IL-6, and TNF-α were higher in the AD group, there was a significant difference in their levels between the two groups (p < 0.05). Finally, there was a significant relationship between increased number of pathogenic bacteria in oral microbiome and higher concentration of cytokines in patient's blood. CONCLUSION Our knowledge of oral microbiome and its exact association with AD is rather limited; our study showed a significant association between changes in oral microbiome bacteria, increased inflammatory cytokines, and AD.
Collapse
Affiliation(s)
- Majid Taati Moghadam
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nour Amirmozafari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mojtahedi
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Babak Bakhshayesh
- Department of Neurology, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Aref Shariati
- Molecular and medicine research center, Khomein University of Medical Sciences, Khomein, Iran
| | - Faramarz Masjedian Jazi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wirth R, Pap B, Maróti G, Vályi P, Komlósi L, Barta N, Strang O, Minárovits J, Kovács KL. Toward Personalized Oral Diagnosis: Distinct Microbiome Clusters in Periodontitis Biofilms. Front Cell Infect Microbiol 2022; 11:747814. [PMID: 35004342 PMCID: PMC8727345 DOI: 10.3389/fcimb.2021.747814] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Periodontitis is caused by pathogenic subgingival microbial biofilm development and dysbiotic interactions between host and hosted microbes. A thorough characterization of the subgingival biofilms by deep amplicon sequencing of 121 individual periodontitis pockets of nine patients and whole metagenomic analysis of the saliva microbial community of the same subjects were carried out. Two biofilm sampling methods yielded similar microbial compositions. Taxonomic mapping of all biofilms revealed three distinct microbial clusters. Two clinical diagnostic parameters, probing pocket depth (PPD) and clinical attachment level (CAL), correlated with the cluster mapping. The dysbiotic microbiomes were less diverse than the apparently healthy ones of the same subjects. The most abundant periodontal pathogens were also present in the saliva, although in different representations. The single abundant species Tannerella forsythia was found in the diseased pockets in about 16–17-fold in excess relative to the clinically healthy sulcus, making it suitable as an indicator of periodontitis biofilms. The discrete microbial communities indicate strong selection by the host immune system and allow the design of targeted antibiotic treatment selective against the main periodontal pathogen(s) in the individual patients.
Collapse
Affiliation(s)
- Roland Wirth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Bernadett Pap
- Biological Research Center, Institute of Plant Biology, Szeged, Hungary
| | - Gergely Maróti
- Biological Research Center, Institute of Plant Biology, Szeged, Hungary
| | - Péter Vályi
- Department of Periodontology, University of Szeged, Szeged, Hungary
| | - Laura Komlósi
- Department of Oral Surgery, University of Szeged, Szeged, Hungary
| | - Nikolett Barta
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Orsolya Strang
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| | - János Minárovits
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Measuring Effects of Dietary Fiber on the Murine Oral Microbiome with Enrichment of 16S rDNA Prior to Amplicon Synthesis. Methods Mol Biol 2021. [PMID: 34410651 DOI: 10.1007/978-1-0716-1518-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The oral cavity houses a diverse consortium of microorganisms corresponding to specific microbial niches within the oral cavity. The complicated nature of sample collection limits the accuracy, reproducibility, and completeness of sample collection of the dentogingival microbiome. Moreover, large variability among human oral samples introduces inexorable confounds. Here, we introduce a method to study the dentogingival microbiome using a murine model that allows for greater control over experimental variability and permits collection of the dentogingival microbiome in an intact state and in its entirety.As an example of this approach, this chapter provides a workflow to explore the effect of dietary fiber consumption on the murine dentogingival microbiome . Mice are fed diets corresponding to Fiber, Sugar, Fiber + Sugar, and Control groups for 7 weeks. A whole-mandible extraction technique is described to isolate the mandibular dentogingival surfaces. 16S rRNA gene analysis is coupled with removal of unwanted host DNA amplification products to allow an investigation of the dental microbiome in the presence of increased fiber in terms of microbial taxonomic abundance and diversity.
Collapse
|
4
|
Tonoyan L, Chevalier M, Vincent-Bugnas S, Marsault R, Doglio A. Detection of Epstein-Barr Virus in Periodontitis: A Review of Methodological Approaches. Microorganisms 2020; 9:microorganisms9010072. [PMID: 33383930 PMCID: PMC7823867 DOI: 10.3390/microorganisms9010072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/30/2022] Open
Abstract
Periodontitis, an inflammatory condition that affects the structures surrounding the tooth eventually leading to tooth loss, is one of the two biggest threats to oral health. Beyond oral health, it is associated with systemic diseases and even with cancer risk. Obviously, periodontitis represents a major global health problem with significant social and economic impact. Recently, a new paradigm was proposed in the etiopathogenesis of periodontitis involving a herpesviral–bacterial combination to promote long-term chronic inflammatory disease. Periodontitis as a risk factor for other systemic diseases can also be better explained based on viral–bacterial etiology. Significant efforts have brought numerous advances in revealing the links between periodontitis and Epstein–Barr virus (EBV), a gamma herpesvirus ubiquitous in the adult human population. The strong evidence from these studies may contribute to the advancement of periodontitis research and the ultimate control of the disease. Advancing the periodontitis research will require implementing suitable methods to establish EBV involvement in periodontitis. This review evaluates and summarizes the existing methods that allow the detection and diagnosis of EBV in periodontitis (also applicable in a more general way to other EBV-related diseases), and discusses the feasibility of the application of innovative emerging technologies.
Collapse
Affiliation(s)
- Lilit Tonoyan
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D’Azur, 5 rue du 22ième BCA, 06357 Nice, France; (M.C.); (S.V.-B.); (R.M.); (A.D.)
- Correspondence: or
| | - Marlène Chevalier
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D’Azur, 5 rue du 22ième BCA, 06357 Nice, France; (M.C.); (S.V.-B.); (R.M.); (A.D.)
| | - Séverine Vincent-Bugnas
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D’Azur, 5 rue du 22ième BCA, 06357 Nice, France; (M.C.); (S.V.-B.); (R.M.); (A.D.)
- Pôle Odontologie, Centre Hospitalier Universitaire de Nice, 06000 Nice, France
| | - Robert Marsault
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D’Azur, 5 rue du 22ième BCA, 06357 Nice, France; (M.C.); (S.V.-B.); (R.M.); (A.D.)
| | - Alain Doglio
- MICORALIS, Faculté de Chirurgie Dentaire, Université Côte D’Azur, 5 rue du 22ième BCA, 06357 Nice, France; (M.C.); (S.V.-B.); (R.M.); (A.D.)
- Unité de Thérapie Cellulaire et Génique (UTCG), Centre Hospitalier Universitaire de Nice, 06101 Nice, France
| |
Collapse
|
5
|
Comparison of DNA Extracted from Pediatric Saliva, Gingival Crevicular Fluid and Site-Specific Biofilm Samples. Methods Protoc 2020; 3:mps3030048. [PMID: 32660039 PMCID: PMC7565886 DOI: 10.3390/mps3030048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Introduction: Due to the non-invasive nature of saliva, many methods have been used to isolate and collect DNA from saliva samples for microbial screening. Many oral microbes also inhabit the oral biofilm, which may represent significantly different microbial constituents that may contribute to oral health and disease, including caries and periodontal disorders. Moreover, the biofilm may vary within the same patient at different sites. Few studies have evaluated the comparison between DNA isolated from saliva and DNA from site-specific biofilm, with virtually no studies addressing this analysis among pediatric patients. (2) Methods: An existing repository of paper point derived biofilm, gingival crevicular fluid (GCF), and unstimulated saliva samples previously collected from pediatric patients (n = 47) was identified. DNA was isolated from biofilm sites (tongue, upper buccal molar, mandibular lingual incisor), and GCF and saliva were used for quantitative DNA comparison using a phenol:chloroform extraction. A quantitative and qualitative analysis was performed using the NanoDrop 2000 spectrophotometer using absorbance readings at A230 nm, A260 nm and A280 nm. (3) Results: These data demonstrated the successful isolation of DNA from all of the patient samples, with the highest concentrations observed among unstimulated saliva (4264.1 ng/μL) and the lowest derived from GCF (1771.5 ng/μL). No differences were observed between males and females or minorities and non-minority patients. In addition, comparison of the overall concentrations of DNA obtained from adult samples was slightly higher than, but not significantly different from, the concentrations obtained from pediatric samples (p = 0.2827). A real-time quantitative qPCR screening revealed that all of the samples evaluated harbored bacterial and human DNA of sufficient quantity and quality for a molecular screening greater than the limit of detection (ΔRn = 0.01). (4) Conclusions: Many methods are currently available to provide the sampling and screening of saliva and specific sites within the oral cavity, but the validation and comparison of simple and low-cost methods, that include paper point sampling and unstimulated saliva collection, may suggest these methods and protocols provide sufficient DNA quality and quantity for molecular screening and other comparison applications. In addition, although heterogeneity will be a constant and consistent feature between patient samples, standardized methods that provide similar and consistent DNA from various oral sites may provide needed consistency for screening and molecular analysis.
Collapse
|
6
|
Shang Q, Gao Y, Qin T, Wang S, Shi Y, Chen T. Interaction of Oral and Toothbrush Microbiota Affects Oral Cavity Health. Front Cell Infect Microbiol 2020; 10:17. [PMID: 32117797 PMCID: PMC7011102 DOI: 10.3389/fcimb.2020.00017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Tooth brushing is necessary to maintain oral health. Little research has been carried out to explore microbial diversity in toothbrushes and to study the potential impact of these bacteria on human health. In the present study, 20 participants were enrolled, and the microbial diversity in their oral cavity and toothbrushes was investigated using high-throughput sequencing. Our results indicate that 1,136 and 976 operational taxonomic units (OTUs) were obtained from groups CB (samples from toothbrushes of participants using traditional Chinese medicinal toothpaste) and AB (samples from toothbrushes of those using antibacterial toothpaste), respectively. The pathogens Acinetobacter baumannii, Staphylococcus aureus, and Candida albicans were identified on toothbrushes. The presence of these pathogens increases the chance for the host to get infectious diseases, neurodegenerative diseases, cardiovascular diseases, and cancers. Moreover, our in vitro results indicate that traditional Chinese medicinal toothpaste and antibacterial toothpaste can not only inhibit the growth of pathogens but also markedly inhibit the growth of probiotics Lactobacillus salivarius and Streptococcus salivarius. Therefore, the inhibitory effect of toothpaste on probiotics, together with the existence of pathogens in toothbrushes, indicates a potential risk of tooth brushing for people in a sub-healthy state.
Collapse
Affiliation(s)
- Qingyao Shang
- The Key Laboratory of Oral Biomedicine, Department of Conservative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, China.,School of Stomatology, Nanchang University, Nanchang, China
| | - Yuan Gao
- The Key Laboratory of Oral Biomedicine, Department of Conservative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Ting Qin
- The Key Laboratory of Oral Biomedicine, Department of Conservative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Shuai Wang
- The Key Laboratory of Oral Biomedicine, Department of Conservative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Yan Shi
- The Key Laboratory of Oral Biomedicine, Department of Conservative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, China.,School of Stomatology, Nanchang University, Nanchang, China.,National Engineering Research Centre for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Tingtao Chen
- The Key Laboratory of Oral Biomedicine, Department of Conservative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, China.,National Engineering Research Centre for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Pausan MR, Csorba C, Singer G, Till H, Schöpf V, Santigli E, Klug B, Högenauer C, Blohs M, Moissl-Eichinger C. Exploring the Archaeome: Detection of Archaeal Signatures in the Human Body. Front Microbiol 2019; 10:2796. [PMID: 31866971 PMCID: PMC6906140 DOI: 10.3389/fmicb.2019.02796] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/18/2019] [Indexed: 01/18/2023] Open
Abstract
Due to their fundamentally different biology, archaea are consistently overlooked in conventional microbiome surveys. Using amplicon sequencing, we evaluated methodological set-ups to detect archaea in samples from five different body sites: respiratory tract (nasal cavity), digestive tract (mouth, appendix, and stool) and skin. With optimized protocols, the detection of archaeal ribosomal sequence variants (RSVs) was increased from one (found in currently used, so-called "universal" approach) to 81 RSVs in a representative sample set. The results from this extensive primer-evaluation led to the identification of the primer pair combination 344f-1041R/519F-806R which performed superior for the analysis of the archaeome of gastrointestinal tract, oral cavity and skin. The proposed protocol might not only prove useful for analyzing the human archaeome in more detail but could also be used for other holobiont samples.
Collapse
Affiliation(s)
- Manuela R. Pausan
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Cintia Csorba
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Georg Singer
- Department of Pediatrics and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Holger Till
- Department of Pediatrics and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Veronika Schöpf
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Elisabeth Santigli
- Department of Dental Medicine and Oral Health, Medical University Graz, Graz, Austria
| | - Barbara Klug
- Department of Dental Medicine and Oral Health, Medical University Graz, Graz, Austria
| | | | - Marcus Blohs
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Christine Moissl-Eichinger
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
8
|
Glycogen Storage Disease Ib and Severe Periodontal Destruction: A Case Report. Dent J (Basel) 2018; 6:dj6040053. [PMID: 30282931 PMCID: PMC6313740 DOI: 10.3390/dj6040053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Glycogen storage diseases (GSDs) are genetic disorders that result from defects in the processing of glycogen synthesis or breakdown within muscles, liver, and other cell types. It also manifests with impaired neutrophil chemotaxis and neutropenic episodes which results in severe destruction of the supporting dental tissues, namely the periodontium. Although GSD Type Ib cannot be cured, associated symptoms and debilitating oral manifestations of the disease can be managed through collaborative medical and dental care where early detection and intervention is of key importance. This objective of the case report was to describe a child with GSD Ib and its associated oral manifestations with microbial, immunological and histological appearances. Case Presentation: An eight-year-old Hispanic male with a history of GSD type Ib presented with extensive intraoral generalized inflammation of the gingiva, ulcerations and bleeding, and intraoral radiographic evidence of bone loss. Tannerella forsythia was readily identifiable from the biofilm samples. Peripheral blood neutrophils were isolated and a deficient host response was observed by impaired neutrophil migration. Histological evaluation of the soft and hard tissues of the periodontally affected primary teeth showed unaffected dentin and cementum. Conclusions: This case illustrates the association between GSD Ib and oral manifestations of the disease. A multi-disciplinary treatment approach was developed in order to establish healthy intraoral conditions for the patient. Review of the literature identified several cases describing GSD and its clinical and radiographic oral manifestations; however, none was identified where also microbial, immunological, and histological appearances were described.
Collapse
|