1
|
Powassan Virus Induces Structural Changes in Human Neuronal Cells In Vitro and Murine Neurons In Vivo. Pathogens 2022; 11:pathogens11101218. [PMID: 36297275 PMCID: PMC9609669 DOI: 10.3390/pathogens11101218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
Powassan virus (POWV) is a tick-borne flavivirus (TBFV) that can cause severe encephalitis in humans with a case-fatality rate as high as 11%. Patients who survive severe encephalitic disease can develop long-term neurological sequelae that can be debilitating and life-long. In this study, we have sought to characterize a primary human fetal brain neural stem cell system (hNSC), which can be differentiated into neuron and astrocyte co-cultures, to serve as a translational in vitro system for infection with POWV and a comparative mosquito-borne flavivirus (MBFV), West Nile virus (WNV). We found that both viruses are able to infect both cell types in the co-culture and that WNV elicits a strong inflammatory response characterized by increased cytokines IL-4, IL-6, IL-8, TNF-α and IL-1β and activation of apoptosis pathways. POWV infection resulted in fewer cytokine responses, as well as less detectable apoptosis, while neurons infected with POWV exhibited structural aberrations forming in the dendrites. These anomalies are consistent with previous findings in which tick-borne encephalitis virus (TBEV) infected murine primary neurons formed laminal membrane structures (LMS). Furthermore, these structural aberrations are also recapitulated in brain tissue from infected mice. Our findings indicate that POWV is capable of infecting human primary neurons and astrocytes without causing apparent widespread apoptosis, while forming punctate structures reminiscent with LMS in primary human neurons and in vivo.
Collapse
|
2
|
Xu P, Gao J, Shan C, Dunn TJ, Xie X, Xia H, Zou J, Thames BH, Sajja A, Yu Y, Freiberg AN, Vasilakis N, Shi PY, Weaver SC, Wu P. Inhibition of innate immune response ameliorates Zika virus-induced neurogenesis deficit in human neural stem cells. PLoS Negl Trop Dis 2021; 15:e0009183. [PMID: 33657175 PMCID: PMC7959377 DOI: 10.1371/journal.pntd.0009183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/15/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Global Zika virus (ZIKV) outbreaks and their strong link to microcephaly have raised major public health concerns. ZIKV has been reported to affect the innate immune responses in neural stem/progenitor cells (NS/PCs). However, it is unclear how these immune factors affect neurogenesis. In this study, we used Asian-American lineage ZIKV strain PRVABC59 to infect primary human NS/PCs originally derived from fetal brains. We found that ZIKV overactivated key molecules in the innate immune pathways to impair neurogenesis in a cell stage-dependent manner. Inhibiting the overactivated innate immune responses ameliorated ZIKV-induced neurogenesis reduction. This study thus suggests that orchestrating the host innate immune responses in NS/PCs after ZIKV infection could be promising therapeutic approach to attenuate ZIKV-associated neuropathology.
Collapse
Affiliation(s)
- Pei Xu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Junling Gao
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tiffany J. Dunn
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Beatriz H. Thames
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Amulya Sajja
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yongjia Yu
- Department of Radiology and Oncology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ping Wu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|