1
|
Owji AP, Dong J, Kittredge A, Wang J, Zhang Y, Yang T. Neurotransmitter-bound bestrophin channel structures reveal small molecule drug targeting sites for disease treatment. Nat Commun 2024; 15:10766. [PMID: 39737942 PMCID: PMC11685958 DOI: 10.1038/s41467-024-54938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 11/15/2024] [Indexed: 01/01/2025] Open
Abstract
Best1 and Best2 are two members of the bestrophin family of anion channels critically involved in the prevention of retinal degeneration and maintenance of intraocular pressure, respectively. Here, we solved glutamate- and γ-aminobutyric acid (GABA)-bound Best2 structures, which delineate an intracellular glutamate binding site and an extracellular GABA binding site on Best2, respectively, identified extracellular GABA as a permeable activator of Best2, and elucidated the co-regulation of Best2 by glutamate, GABA and glutamine synthetase in vivo. We further identified multiple small molecules as activators of the bestrophin channels. Extensive analyses were carried out for a potent activator, 4-aminobenzoic acid (PABA): PABA-bound Best1 and Best2 structures are solved and illustrate the same binding site as in GABA-bound Best2; PABA treatment rescues the functional deficiency of patient-derived Best1 mutations. Together, our results demonstrate the mechanism and potential of multiple small molecule candidates as clinically applicable drugs for bestrophin-associated diseases/conditions.
Collapse
Affiliation(s)
- Aaron P Owji
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Jingyun Dong
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Alec Kittredge
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Jiali Wang
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Yu Zhang
- Department of Ophthalmology, Columbia University, New York, NY, USA.
| | - Tingting Yang
- Department of Ophthalmology, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Wang J, Owji AP, Kittredge A, Clark Z, Zhang Y, Yang T. GAD65 tunes the functions of Best1 as a GABA receptor and a neurotransmitter conducting channel. Nat Commun 2024; 15:8051. [PMID: 39277606 PMCID: PMC11401937 DOI: 10.1038/s41467-024-52039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/23/2024] [Indexed: 09/17/2024] Open
Abstract
Bestrophin-1 (Best1) is an anion channel genetically linked to vision-threatening retinal degenerative channelopathies. Here, we identify interactions between Best1 and both isoforms of glutamic acid decarboxylases (GAD65 and GAD67), elucidate the distinctive influences of GAD65 and GAD67 on Best1's permeability to various anions/neurotransmitters, discover the functionality of Best1 as a γ-Aminobutyric acid (GABA) type A receptor, and solve the structure of GABA-bound Best1. GAD65 and GAD67 both promote Best1-mediated Cl- currents, but only GAD65 drastically enhances the permeability of Best1 to glutamate and GABA, for which GAD67 has no effect. GABA binds to Best1 on an extracellular site and stimulates Best1-mediated Cl- currents at the nano-molar concentration level. The physiological role of GAD65 as a cell type-specific binding partner and facilitator of Best1 is demonstrated in retinal pigment epithelial cells. Together, our results reveal critical regulators of Best1 and inform a network of membrane transport metabolons formed between bestrophin channels and glutamate metabolic enzymes.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Aaron P Owji
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Alec Kittredge
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Zada Clark
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Yu Zhang
- Department of Ophthalmology, Columbia University, New York, NY, USA.
| | - Tingting Yang
- Department of Ophthalmology, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Bhattacharya S, Yin J, Huo W, Chaum E. Modeling of mitochondrial bioenergetics and autophagy impairment in MELAS-mutant iPSC-derived retinal pigment epithelial cells. Stem Cell Res Ther 2022; 13:260. [PMID: 35715869 PMCID: PMC9205099 DOI: 10.1186/s13287-022-02937-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage in the retinal pigment epithelium (RPE) have been implicated in the pathogenesis of age-related macular degeneration (AMD). However, a deeper understanding is required to determine the contribution of mitochondrial dysfunction and impaired mitochondrial autophagy (mitophagy) to RPE damage and AMD pathobiology. In this study, we model the impact of a prototypical systemic mitochondrial defect, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), in RPE health and homeostasis as an in vitro model for impaired mitochondrial bioenergetics. Methods We used induced pluripotent stem cells (iPSCs) derived from skin biopsies of MELAS patients (m.3243A > G tRNA leu mutation) with different levels of mtDNA heteroplasmy and differentiated them into RPE cells. Mitochondrial depletion of ARPE-19 cells (p0 cells) was also performed using 50 ng/mL ethidium bromide (EtBr) and 50 mg/ml uridine. Cell fusion of the human platelets with the p0 cells performed using polyethylene glycol (PEG)/suspension essential medium (SMEM) mixture to generate platelet/RPE “cybrids.” Confocal microscopy, FLowSight Imaging cytometry, and Seahorse XF Mito Stress test were used to analyze mitochondrial function. Western Blotting was used to analyze expression of autophagy and mitophagy proteins. Results We found that MELAS iPSC-derived RPE cells exhibited key characteristics of native RPE. We observed heteroplasmy-dependent impairment of mitochondrial bioenergetics and reliance on glycolysis for generating energy in the MELAS iPSC-derived RPE. The degree of heteroplasmy was directly associated with increased activation of signal transducer and activator of transcription 3 (STAT3), reduced adenosine monophosphate-activated protein kinase α (AMPKα) activation, and decreased autophagic activity. In addition, impaired autophagy was associated with aberrant lysosomal function, and failure of mitochondrial recycling. The mitochondria-depleted p0 cells replicated the effects on autophagy impairment and aberrant STAT3/AMPKα signaling and showed reduced mitochondrial respiration, demonstrating phenotypic similarities between p0 and MELAS iPSC-derived RPE cells. Conclusions Our studies demonstrate that the MELAS iPSC-derived disease models are powerful tools for dissecting the molecular mechanisms by which mitochondrial DNA alterations influence RPE function in aging and macular degeneration, and for testing novel therapeutics in patients harboring the MELAS genotype. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02937-6.
Collapse
Affiliation(s)
- Sujoy Bhattacharya
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA
| | - Jinggang Yin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA
| | - Weihong Huo
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA
| | - Edward Chaum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, 37232, USA.
| |
Collapse
|
4
|
Owji AP, Kittredge A, Zhang Y, Yang T. Structure and Function of the Bestrophin family of calcium-activated chloride channels. Channels (Austin) 2021; 15:604-623. [PMID: 34612806 PMCID: PMC8496536 DOI: 10.1080/19336950.2021.1981625] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Bestrophins are a family of calcium-activated chloride channels (CaCCs) with relevance to human physiology and a myriad of eye diseases termed "bestrophinopathies". Since the identification of bestrophins as CaCCs nearly two decades ago, extensive studies from electrophysiological and structural biology perspectives have sought to define their key channel features including calcium sensing, gating, inactivation, and anion selectivity. The initial X-ray crystallography studies on the prokaryotic homolog of Best1, Klebsiella pneumoniae (KpBest), and the Best1 homolog from Gallus gallus (chicken Best1, cBest1), laid the foundational groundwork for establishing the architecture of Best1. Recent progress utilizing single-particle cryogenic electron microscopy has further elucidated the molecular mechanism of gating in cBest1 and, separately, the structure of Best2 from Bos taurus (bovine Best2, bBest2). Meanwhile, whole-cell patch clamp, planar lipid bilayer, and other electrophysiologic analyses using these models as well as the human Best1 (hBest1) have provided ample evidence describing the functional properties of the bestrophin channels. This review seeks to consolidate these structural and functional results to paint a broad picture of the underlying mechanisms comprising the bestrophin family's structure-function relationship.
Collapse
Affiliation(s)
- Aaron P Owji
- Department of Pharmacology, Columbia University, NY, USA
| | - Alec Kittredge
- Department of Pharmacology, Columbia University, NY, USA
| | - Yu Zhang
- Department of Ophthalmology, Columbia University, NY, USA
| | - Tingting Yang
- Department of Ophthalmology, Columbia University, NY, USA
| |
Collapse
|
5
|
Zhao Q, Kong Y, Kittredge A, Li Y, Shen Y, Zhang Y, Tsang SH, Yang T. Distinct expression requirements and rescue strategies for BEST1 loss- and gain-of-function mutations. eLife 2021; 10:67622. [PMID: 34061021 PMCID: PMC8169119 DOI: 10.7554/elife.67622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/10/2021] [Indexed: 01/23/2023] Open
Abstract
Genetic mutation of the human BEST1 gene, which encodes a Ca2+-activated Cl- channel (BEST1) predominantly expressed in retinal pigment epithelium (RPE), causes a spectrum of retinal degenerative disorders commonly known as bestrophinopathies. Previously, we showed that BEST1 plays an indispensable role in generating Ca2+-dependent Cl- currents in human RPE cells, and the deficiency of BEST1 function in patient-derived RPE is rescuable by gene augmentation (Li et al., 2017). Here, we report that BEST1 patient-derived loss-of-function and gain-of-function mutations require different mutant to wild-type (WT) molecule ratios for phenotypic manifestation, underlying their distinct epigenetic requirements in bestrophinopathy development, and suggesting that some of the previously classified autosomal dominant mutations actually behave in a dominant-negative manner. Importantly, the strong dominant effect of BEST1 gain-of-function mutations prohibits the restoration of BEST1-dependent Cl- currents in RPE cells by gene augmentation, in contrast to the efficient rescue of loss-of-function mutations via the same approach. Moreover, we demonstrate that gain-of-function mutations are rescuable by a combination of gene augmentation with CRISPR/Cas9-mediated knockdown of endogenous BEST1 expression, providing a universal treatment strategy for all bestrophinopathy patients regardless of their mutation types.
Collapse
Affiliation(s)
- Qingqing Zhao
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, United States
| | - Yang Kong
- Department of Ophthalmology, Vagelos College of Physicians & Surgeons, Columbia University, New York, United States
| | - Alec Kittredge
- Department of Pharmacology, Columbia University, New York, United States
| | - Yao Li
- Department of Ophthalmology, Vagelos College of Physicians & Surgeons, Columbia University, New York, United States
| | - Yin Shen
- Eye Center, Medical Research Institute, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yu Zhang
- Department of Ophthalmology, Vagelos College of Physicians & Surgeons, Columbia University, New York, United States
| | - Stephen H Tsang
- Jonas Children's Vision Care, Departments of Ophthalmology and Pathology & Cell Biology, Edward S. Harkness Eye Institute, Institute of Human Nutrition and Columbia Stem Cell Initiative, New York Presbyterian Hospital/Columbia University Irving Medical Center, New York, United States
| | - Tingting Yang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, United States.,Department of Ophthalmology, Vagelos College of Physicians & Surgeons, Columbia University, New York, United States
| |
Collapse
|
6
|
Sensing through Non-Sensing Ocular Ion Channels. Int J Mol Sci 2020; 21:ijms21186925. [PMID: 32967234 PMCID: PMC7554890 DOI: 10.3390/ijms21186925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. In the eye, ion channels are involved in various physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their interacting subunit coding genes, which contribute significantly to an array of blindness, termed ocular channelopathies. These mutations result in either a loss- or gain-of channel functions affecting the structure, assembly, trafficking, and localization of channel proteins. A dominant-negative effect is caused in a few channels formed by the assembly of several subunits that exist as homo- or heteromeric proteins. Here, we review the role of different mutations in switching a “sensing” ion channel to “non-sensing,” leading to ocular channelopathies like Leber’s congenital amaurosis 16 (LCA16), cone dystrophy, congenital stationary night blindness (CSNB), achromatopsia, bestrophinopathies, retinitis pigmentosa, etc. We also discuss the various in vitro and in vivo disease models available to investigate the impact of mutations on channel properties, to dissect the disease mechanism, and understand the pathophysiology. Innovating the potential pharmacological and therapeutic approaches and their efficient delivery to the eye for reversing a “non-sensing” channel to “sensing” would be life-changing.
Collapse
|
7
|
McCormick R, Pearce I, Kaye S, Haneef A. Optimisation of a Novel Bio-Substrate as a Treatment for Atrophic Age-Related Macular Degeneration. Front Bioeng Biotechnol 2020; 8:456. [PMID: 32500067 PMCID: PMC7243032 DOI: 10.3389/fbioe.2020.00456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/21/2020] [Indexed: 01/13/2023] Open
Abstract
Atrophic age-related macular degeneration (AMD) is the most common form of AMD accounting for 90% of patients. During atrophic AMD the waste/exchange pathway between the blood supply (choroid) and the retinal pigment epithelium (RPE) is compromised. This results in atrophy and death of the RPE cells and subsequently the photoreceptors leading to central blindness. Although the mechanisms behind AMD are unknown, the growth of fatty deposits known as drusen, have been shown to play a role in the disease. There is currently no treatment or cure for atrophic AMD. Much research focuses on developing a synthetic substrate in order to transplant healthy cells to the native Bruch’s membrane (BM), however, the diseased native BM and related structures still leave potential for transplanted cells to succumb to disease. In this proof-of-concept work we electrospun poly(ethylene terephthalate) (PET) to fabricate a nanofibrous cytocompatible synthetic BM. The apical surface of the membrane was cultured with ARPE-19 cells and the underside was decorated with poly(lactic acid-co-glycolic acid) (PLGA) or poly(glycolic acid) (PGA) degradable nanoparticles by electrospraying. The membrane exhibited hydrophilicity, high tensile strength and structurally resembled the native BM. ARPE-19 cells were able to form a monolayer on the surface of the membrane and no cell invasion into the membrane was seen. The presence of both PLGA and PGA nanoparticles increased ARPE-19 cell metabolism but had no effect on cell viability. There was a decrease in pH of ARPE-19 cell culture media 7 days following culturing with the PLGA nanoparticles but this change was eliminated by 2 weeks; PGA nanoparticles had no effect on cell culture media pH. The fluorescent dye FITC was encapsulated into nanoparticles and showed sustained release from PLGA nanoparticles for 2 weeks and PGA nanoparticles for 1 day. Future work will focus on encapsulating biologically active moieties to target drusen. This could allow this novel bioactive substrate to be a potential treatment for atrophic AMD that would function two-fold: deliver the required monolayer of healthy RPE cells to the macula on a synthetic BM and remove diseased structures within the retina, restoring the waste/exchange pathway and preventing vision loss.
Collapse
Affiliation(s)
- Rachel McCormick
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ian Pearce
- St Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Stephen Kaye
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.,St Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Atikah Haneef
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Ji C, Li Y, Kittredge A, Hopiavuori A, Ward N, Yao P, Fukuda Y, Zhang Y, Tsang SH, Yang T. Investigation and Restoration of BEST1 Activity in Patient-derived RPEs with Dominant Mutations. Sci Rep 2019; 9:19026. [PMID: 31836750 PMCID: PMC6910965 DOI: 10.1038/s41598-019-54892-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
BEST1 is a Ca2+-activated Cl- channel predominantly expressed in retinal pigment epithelium (RPE), and over 250 genetic mutations in the BEST1 gene have been identified to cause retinal degenerative disorders generally known as bestrophinopathies. As most BEST1 mutations are autosomal dominant, it is of great biomedical interest to determine their disease-causing mechanisms and the therapeutic potential of gene therapy. Here, we characterized six Best vitelliform macular dystrophy (BVMD)-associated BEST1 dominant mutations by documenting the patients' phenotypes, examining the subcellular localization of endogenous BEST1 and surface Ca2+-dependent Cl- currents in patient-derived RPEs, and analyzing the functional influences of these mutations on BEST1 in HEK293 cells. We found that all six mutations are loss-of-function with different levels and types of deficiencies, and further demonstrated the restoration of Ca2+-dependent Cl- currents in patient-derived RPE cells by WT BEST1 gene supplementation. Importantly, BEST1 dominant and recessive mutations are both rescuable at a similar efficacy by gene augmentation via adeno-associated virus (AAV), providing a proof-of-concept for curing the vast majority of bestrophinopathies.
Collapse
Affiliation(s)
- Changyi Ji
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Yao Li
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA
| | - Alec Kittredge
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Austin Hopiavuori
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Nancy Ward
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, School of Medicine & Dentistry, Rochester, NY, 14586, USA
| | - Yohta Fukuda
- Division of Advance Pharmaco-Science, Graduate School of Pharmaceutical Science, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
| | - Yu Zhang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA.
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA.
| | - Stephen H Tsang
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology and Pathology & Cell Biology, Edward S. Harkness Eye Institute, Columbia Stem Cell Initiative, New York Presbyterian Hospital/Columbia University, New York, NY, 10032, USA.
| | - Tingting Yang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA.
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
9
|
Chibani Z, Abid IZ, Molbaek A, Söderkvist P, Feki J, Hmani-Aifa M. Novel BEST1 gene mutations associated with two different forms of macular dystrophy in Tunisian families. Clin Exp Ophthalmol 2019; 47:1063-1073. [PMID: 31254423 DOI: 10.1111/ceo.13577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epidemiological studies of hereditary eye diseases allowed us to identify two Tunisian families suffering from macular dystrophies: Best vitelliform macular dystrophy (BVMD) and autosomal recessive bestrophinopathy (ARB). The purpose of the current study was to investigate the clinical characteristics and the underlying genetics of these two forms of macular dystrophy. METHODS Complete ophthalmic examination was performed including optical coherence tomography, electroretinography, electrooculography and autofluoresence imaging in all patients. Genomic DNA was extracted from peripheral blood collected from patients and family members. RESULTS Sanger sequencing of all exons of the BEST1 gene in both families identified two new mutations: a missense mutation c.C91A [p.L31 M] at the N-terminal transmembrane domain within the ARB family and a nonsense mutation C1550G (p.S517X) in the C-terminal domain segregating in the BVMD family. CONCLUSIONS Several mutations of the BEST1 gene have been reported which are responsible for numerous ocular pathologies. To the best of our knowledge, it is the first time we report mutations in this gene in Tunisian families presenting different forms of macular dystrophy. Our report also expands the list of pathogenic BEST1 genotypes and the associated clinical diagnosis.
Collapse
Affiliation(s)
- Zohra Chibani
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
| | - Imen Zone Abid
- Department of Ophthalmology, Habib Bourguiba, University Hospital, University of Sfax, Sfax, Tunisia
| | - Annette Molbaek
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Peter Söderkvist
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Jamel Feki
- Department of Ophthalmology, Habib Bourguiba, University Hospital, University of Sfax, Sfax, Tunisia
| | - Mounira Hmani-Aifa
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
10
|
Ji C, Kittredge A, Hopiavuori A, Ward N, Chen S, Fukuda Y, Zhang Y, Yang T. Dual Ca 2+-dependent gates in human Bestrophin1 underlie disease-causing mechanisms of gain-of-function mutations. Commun Biol 2019; 2:240. [PMID: 31263784 PMCID: PMC6591409 DOI: 10.1038/s42003-019-0433-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/17/2019] [Indexed: 01/22/2023] Open
Abstract
Mutations of human BEST1, encoding a Ca2+-activated Cl- channel (hBest1), cause macular degenerative disorders. Best1 homolog structures reveal an evolutionarily conserved channel architecture highlighted by two landmark restrictions (named the "neck" and "aperture", respectively) in the ion conducting pathway, suggesting a unique dual-switch gating mechanism, which, however, has not been characterized well. Using patch clamp and crystallography, we demonstrate that both the neck and aperture in hBest1 are Ca2+-dependent gates essential for preventing channel leakage resulting from Ca2+-independent, spontaneous gate opening. Importantly, three patient-derived mutations (D203A, I205T and Y236C) lead to Ca2+-independent leakage and elevated Ca2+-dependent anion currents due to enhanced opening of the gates. Moreover, we identify a network of residues critically involved in gate operation. Together, our results suggest an indispensable role of the neck and aperture of hBest1 for channel gating, and uncover disease-causing mechanisms of hBest1 gain-of-function mutations.
Collapse
Affiliation(s)
- Changyi Ji
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642 USA
| | - Alec Kittredge
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642 USA
| | - Austin Hopiavuori
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642 USA
| | - Nancy Ward
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642 USA
| | - Shoudeng Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Department of Experimental Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000 Zhuhai, Guangzhou China
| | - Yohta Fukuda
- Division of Advance Pharmaco-Science, Graduate School of Pharmaceutical Science, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871 Japan
| | - Yu Zhang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642 USA
| | - Tingting Yang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642 USA
| |
Collapse
|
11
|
Zhang Y, Kittredge A, Ward N, Ji C, Chen S, Yang T. ATP activates bestrophin ion channels through direct interaction. Nat Commun 2018; 9:3126. [PMID: 30087350 PMCID: PMC6081419 DOI: 10.1038/s41467-018-05616-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/09/2018] [Indexed: 11/13/2022] Open
Abstract
Human Bestrophin1 (hBest1) is a Ca2+-activated Cl- channel in retinal pigment epithelium (RPE) essential for retina physiology, and its mutation results in retinal degenerative diseases that have no available treatments. Here, we discover that hBest1's channel activity in human RPE is significantly enhanced by adenosine triphosphate (ATP) in a dose-dependent manner. We further demonstrate a direct interaction between ATP and bestrophins, and map the ATP-binding motif on hBest1 to an intracellular loop adjacent to the channel activation gate. Importantly, a disease-causing mutation of hBest1 located within the ATP-binding motif, p.I201T, diminishes ATP-dependent activation of the channel in patient-derived RPE, while the corresponding mutants in bestrophin homologs display defective ATP binding and a conformational change in the ATP-binding motif. Taken together, our results identify ATP as a critical activator of bestrophins, and reveal the molecular mechanism of an hBest1 patient-specific mutation.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Alec Kittredge
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Nancy Ward
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Changyi Ji
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Shoudeng Chen
- Molecular Imaging Center, Department of Experimental Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangzhou, 519000, China
| | - Tingting Yang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA.
| |
Collapse
|