1
|
Zhu X, Li S. A rare primary cutaneous myoepithelial carcinoma in the axilla accompanied by lymph node metastasis: A case report. CANCER INNOVATION 2025; 4:e157. [PMID: 39539473 PMCID: PMC11555608 DOI: 10.1002/cai2.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024]
Abstract
Primary cutaneous myoepithelial carcinoma is an extremely rare tumor, and to the best of our knowledge, it has never been reported to occur in the axilla. Furthermore, the pathological and clinical factors of cutaneous myoepithelial carcinoma are poorly understood and may considerably affect prognosis and treatment. Here, we report a case of a 44-year-old male patient who was diagnosed with primary cutaneous myoepithelial carcinoma in the axilla accompanied by extensive lymph node metastasis. After an enlarged resection of the left axillary mass, axillary lymph node dissection, and the administration of postoperative chemotherapy and local radiotherapy, there were no signs of tumor recurrence or metastasis. At the time of manuscript preparation, the patient was recurrence-free. This case may contribute to the clinical management, diagnosis, and treatment of primary cutaneous myoepithelial carcinoma.
Collapse
Affiliation(s)
- Xudong Zhu
- Department of General SurgeryCancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyangLiaoningChina
- Liaoning Provincial Key Laboratory of Precision Medicine for Malignant TumorsShenyangLiaoningChina
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor SurgeryCancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyangLiaoningChina
| |
Collapse
|
2
|
Tang Y, Dou S, Wei C, Sun Z, Sun D, Zhou Q, Xie L. Single-Nuclei Characterization of Lacrimal Gland in Scopolamine-Induced Dry Eye Disease. Invest Ophthalmol Vis Sci 2024; 65:46. [PMID: 38687491 PMCID: PMC11067549 DOI: 10.1167/iovs.65.4.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/26/2024] [Indexed: 05/02/2024] Open
Abstract
Purpose The lacrimal gland (LG) is the main organ responsible for tear secretion and an important pathogenic site for dry eye disease (DED). This study aimed to comprehensively characterize LG cellular heterogeneity under normal and DED conditions using single-nucleus RNA sequencing (snRNA-seq). Methods Single LG nuclei isolated from mice with or without DED induced by scopolamine (SCOP)/desiccating stress (DS) were subjected to snRNA-seq using the 10x Genomics platform. These cells were clustered and annotated using the t-distributed stochastic neighbor embedding (t-SNE) method and unbiased computational informatic analysis. Cluster identification and functional analysis were performed based on marker gene expression and bioinformatic data mining. Results The snRNA-seq analysis of 30,351 nuclei identified eight major cell types, with acinar cells (∼72.6%) being the most abundant cell type in the LG. Subclustering analysis revealed that the LG mainly contained two acinar cell subtypes, two ductal cell subclusters, three myoepithelial cell (MECs) subtypes, and four immunocyte subclusters. In the SCOP-induced DED model, three major LG parenchymal cell types were significantly altered, characterized by a reduced proportion of acinar cells with a lowered secretion potential and an augmented proportion of ductal cells and MECs. LG immunocytes in DED scenarios showed an intensified inflammatory response and dysregulated intercellular communication with three major LG parenchymal cells. Conclusions Overall, this study offers a systemic single-nucleus transcriptomic profile of LGs in both normal and DED conditions and an atlas of the complicated interactions of immunocytes with major LG parenchymal cells. The findings also facilitate understanding the pathogenesis of DED.
Collapse
Affiliation(s)
- Yang Tang
- Shandong First Medical University, Jinan, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ziwen Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Di Sun
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China
| |
Collapse
|
3
|
Song W, Liu H, Su Y, Zhao Q, Wang X, Cheng P, Wang H. Current developments and opportunities of pluripotent stem cells-based therapies for salivary gland hypofunction. Front Cell Dev Biol 2024; 12:1346996. [PMID: 38313227 PMCID: PMC10834761 DOI: 10.3389/fcell.2024.1346996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Salivary gland hypofunction (SGH) caused by systemic disease, drugs, aging, and radiotherapy for head and neck cancer can cause dry mouth, which increases the risk of disorders such as periodontitis, taste disorders, pain and burning sensations in the mouth, dental caries, and dramatically reduces the quality of life of patients. To date, the treatment of SGH is still aimed at relieving patients' clinical symptoms and improving their quality of life, and is not able to repair and regenerate the damaged salivary glands. Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and extended pluripotent stem cells (EPSCs), are an emerging source of cellular therapies that are capable of unlimited proliferation and differentiation into cells of all three germ layers. In recent years, the immunomodulatory and tissue regenerative effects of PSCs, their derived cells, and paracrine products of these cells have received increasing attention and have demonstrated promising therapeutic effects in some preclinical studies targeting SGH. This review outlined the etiologies and available treatments for SGH. The existing efficacy and potential role of PSCs, their derived cells and paracrine products of these cells for SGH are summarized, with a focus on PSC-derived salivary gland stem/progenitor cells (SGS/PCs) and PSC-derived mesenchymal stem cells (MSCs). In this Review, we provide a conceptual outline of our current understanding of PSCs-based therapy and its importance in SGH treatment, which may inform and serve the design of future studies.
Collapse
Affiliation(s)
- Wenpeng Song
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huan Liu
- Beijing Laboratory of Oral Health, School of Basic Medicine, School of Stomatology, Capital Medical University, Beijing, China
| | - Yingying Su
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qian Zhao
- Research and Development Department, Allife Medicine Inc., Beijing, China
| | - Xiaoyan Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Oral Health, School of Basic Medicine, School of Stomatology, Capital Medical University, Beijing, China
- Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing, China
| | - Pengfei Cheng
- Department of Stomatology, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Role of Snai2 and Notch signaling in salivary gland myoepithelial cell fate. J Transl Med 2022; 102:1245-1256. [PMID: 36775450 DOI: 10.1038/s41374-022-00814-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Myoepithelial (ME) cells in exocrine glands exhibit both epithelial and mesenchymal features, contributing to fluid secretion through contraction. However, the regulation mechanism of behind this unique phenotype in salivary glands remains unclear. We established a flow cytometry-based purification method using cell surface molecules, epithelial cell adhesion molecule (EpCAM) and alpha 6 integrin (CD49f), to characterize ME cells. EpCAM+CD49fhigh cells showed relatively high expression of ME cell-marker genes, such as alpha-smooth muscle actin (α-SMA). For lineage tracing and strict isolation, tdTomato+EpCAM+CD49fhigh-ME cells were obtained from myosin heavy chain 11 (Myh11) -CreERT2/tdTomato mice. Transcriptome analysis revealed that expression of genes involved in the epithelial-mesenchymal transition, including Snai2, were upregulated in the ME cell-enriched subset. Snai2 suppression in stable ME cells decreased α-SMA and increased Krt14 expression, suggesting that ME cell features may be controlled by the epithelial-mesenchymal balance regulated by Snai2. In contrast, ME cells showed reduced ME properties and expressed the ductal markers Krt18/19 under sphere culture conditions. Notch signaling was activated under sphere culture conditions; excessive activation of Notch signaling accelerated Krt18/19 expression, but reduced α-SMA and Snai2 expression, suggesting that the behavior of Snai2-expressing ME cells may be controlled by Notch signaling.
Collapse
|
5
|
Mauduit O, Aure MH, Delcroix V, Basova L, Srivastava A, Umazume T, Mays JW, Bellusci S, Tucker AS, Hajihosseini MK, Hoffman MP, Makarenkova HP. A mesenchymal to epithelial switch in Fgf10 expression specifies an evolutionary-conserved population of ionocytes in salivary glands. Cell Rep 2022; 39:110663. [PMID: 35417692 PMCID: PMC9113928 DOI: 10.1016/j.celrep.2022.110663] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/21/2022] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Fibroblast growth factor 10 (FGF10) is well established as a mesenchyme-derived growth factor and a critical regulator of fetal organ development in mice and humans. Using a single-cell RNA sequencing (RNA-seq) atlas of salivary gland (SG) and a tamoxifen inducible Fgf10CreERT2:R26-tdTomato mouse, we show that FGF10pos cells are exclusively mesenchymal until postnatal day 5 (P5) but, after P7, there is a switch in expression and only epithelial FGF10pos cells are observed after P15. Further RNA-seq analysis of sorted mesenchymal and epithelial FGF10pos cells shows that the epithelial FGF10pos population express the hallmarks of ancient ionocyte signature Forkhead box i1 and 2 (Foxi1, Foxi2), Achaete-scute homolog 3 (Ascl3), and the cystic fibrosis transmembrane conductance regulator (Cftr). We propose that epithelial FGF10pos cells are specialized SG ionocytes located in ducts and important for the ionic modification of saliva. In addition, they maintain FGF10-dependent gland homeostasis via communication with FGFR2bpos ductal and myoepithelial cells.
Collapse
Affiliation(s)
- Olivier Mauduit
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vanessa Delcroix
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Liana Basova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amrita Srivastava
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Takeshi Umazume
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jacqueline W Mays
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saverio Bellusci
- Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, London WC2R 2LS, UK
| | | | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Cucu I, Nicolescu MI. A Synopsis of Signaling Crosstalk of Pericytes and Endothelial Cells in Salivary Gland. Dent J (Basel) 2021; 9:dj9120144. [PMID: 34940041 PMCID: PMC8700478 DOI: 10.3390/dj9120144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
The salivary gland (SG) microvasculature constitutes a dynamic cellular organization instrumental to preserving tissue stability and homeostasis. The interplay between pericytes (PCs) and endothelial cells (ECs) culminates as a key ingredient that coordinates the development, maturation, and integrity of vessel building blocks. PCs, as a variety of mesenchymal stem cells, enthrall in the field of regenerative medicine, supporting the notion of regeneration and repair. PC-EC interconnections are pivotal in the kinetic and intricate process of angiogenesis during both embryological and post-natal development. The disruption of this complex interlinkage corresponds to SG pathogenesis, including inflammation, autoimmune disorders (Sjögren’s syndrome), and tumorigenesis. Here, we provided a global portrayal of major signaling pathways between PCs and ECs that cooperate to enhance vascular steadiness through the synergistic interchange. Additionally, we delineated how the crosstalk among molecular networks affiliate to contribute to a malignant context. Additionally, within SG microarchitecture, telocytes and myoepithelial cells assemble a labyrinthine companionship, which together with PCs appear to synchronize the regenerative potential of parenchymal constituents. By underscoring the intricacy of signaling cascades within cellular latticework, this review sketched a perceptive basis for target-selective drugs to safeguard SG function.
Collapse
Affiliation(s)
- Ioana Cucu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Laboratory of Radiobiology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
- Correspondence:
| |
Collapse
|