1
|
Kitamura Y, Takahashi K, Maezawa S, Munakata Y, Sakashita A, Katz SP, Kaplan N, Namekawa SH. CTCF-mediated 3D chromatin sets up the gene expression program in the male germline. Nat Struct Mol Biol 2025:10.1038/s41594-025-01482-z. [PMID: 40033153 DOI: 10.1038/s41594-025-01482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2025] [Indexed: 03/05/2025]
Abstract
Spermatogenesis is a unidirectional differentiation process that generates haploid sperm, but how the gene expression program that directs this process is established is largely unknown. Here we determine the high-resolution three-dimensional (3D) chromatin architecture of mouse male germ cells during spermatogenesis and show that CTCF-mediated 3D chromatin dictates the gene expression program required for spermatogenesis. In undifferentiated spermatogonia, CTCF-mediated chromatin interactions between meiosis-specific super-enhancers (SEs) and their target genes precede activation of these SEs on autosomes. These meiotic SEs recruit the master transcription factor A-MYB (MYBL1) in meiotic spermatocytes, which strengthens their 3D contacts and instructs a burst of meiotic gene expression. We also find that at the mitosis-to-meiosis transition, the germline-specific Polycomb protein SCML2 facilitates the resolution of chromatin loops that are specific to mitotic spermatogonia. Moreover, SCML2 and A-MYB help shape the unique 3D chromatin organization of sex chromosomes during meiotic sex chromosome inactivation. We propose that CTCF-mediated 3D chromatin organization regulates epigenetic priming that directs unidirectional differentiation, thereby determining the cellular identity of the male germline.
Collapse
Affiliation(s)
- Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Kazuki Takahashi
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Yasuhisa Munakata
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Shawna P Katz
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Noam Kaplan
- Department of Physiology, Biophysics & Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA.
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Munakata Y, Hu M, Kitamura Y, Bynder AL, Fritz AS, Schultz RM, Namekawa SH. Chromatin remodeler CHD4 establishes chromatin states required for ovarian reserve formation, maintenance, and germ cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607691. [PMID: 39185217 PMCID: PMC11343143 DOI: 10.1101/2024.08.12.607691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The ovarian reserve defines female reproductive lifespan, which in humans spans decades due to the maintenance of meiotic arrest in non-growing oocytes (NGO) residing in primordial follicles. Unknown is how the chromatin state of NGOs is established to enable long-term maintenance of the ovarian reserve. Here, we show that a chromatin remodeler, CHD4, a member of the Nucleosome Remodeling and Deacetylase (NuRD) complex, establishes chromatin states required for formation and maintenance of the ovarian reserve. Conditional loss of CHD4 in perinatal mouse oocytes results in acute death of NGOs and depletion of the ovarian reserve. CHD4 establishes closed chromatin at regulatory elements of pro-apoptotic genes to prevent cell death and at specific genes required for meiotic prophase I to facilitate the transition from meiotic prophase I oocytes to meiotic arrested NGOs. In addition, CHD4 establishes closed chromatin at the regulatory elements of pro-apoptotic genes in male germ cells, allowing male germ cell survival. These results demonstrate a role for CHD4 in defining a chromatin state that ensures germ cell survival, thereby enabling the long-term maintenance of both female and male germ cells.
Collapse
Affiliation(s)
- Yasuhisa Munakata
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Mengwen Hu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Adam L. Bynder
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Amelia S. Fritz
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Richard M. Schultz
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Satoshi H. Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| |
Collapse
|
3
|
Yoshimura S, Shimada R, Kikuchi K, Kawagoe S, Abe H, Iisaka S, Fujimura S, Yasunaga KI, Usuki S, Tani N, Ohba T, Kondoh E, Saio T, Araki K, Ishiguro KI. Atypical heat shock transcription factor HSF5 is critical for male meiotic prophase under non-stress conditions. Nat Commun 2024; 15:3330. [PMID: 38684656 PMCID: PMC11059408 DOI: 10.1038/s41467-024-47601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Meiotic prophase progression is differently regulated in males and females. In males, pachytene transition during meiotic prophase is accompanied by robust alteration in gene expression. However, how gene expression is regulated differently to ensure meiotic prophase completion in males remains elusive. Herein, we identify HSF5 as a male germ cell-specific heat shock transcription factor (HSF) for meiotic prophase progression. Genetic analyzes and single-cell RNA-sequencing demonstrate that HSF5 is essential for progression beyond the pachytene stage under non-stress conditions rather than heat stress. Chromatin binding analysis in vivo and DNA-binding assays in vitro suggest that HSF5 binds to promoters in a subset of genes associated with chromatin organization. HSF5 recognizes a DNA motif different from typical heat shock elements recognized by other canonical HSFs. This study suggests that HSF5 is an atypical HSF that is required for the gene expression program for pachytene transition during meiotic prophase in males.
Collapse
Affiliation(s)
- Saori Yoshimura
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Koji Kikuchi
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Soichiro Kawagoe
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Hironori Abe
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Sakie Iisaka
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Sayoko Fujimura
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Kei-Ichiro Yasunaga
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Naoki Tani
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Takashi Ohba
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Eiji Kondoh
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
4
|
Fujiwara Y, Hada M, Fukuda Y, Koga C, Inoue E, Okada Y. Isolation of stage-specific spermatogenic cells by dynamic histone incorporation and removal in spermatogenesis. Cytometry A 2024; 105:297-307. [PMID: 38087848 DOI: 10.1002/cyto.a.24812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 04/19/2024]
Abstract
Due to the lack of an efficient in vitro spermatogenesis system, studies on mammalian spermatogenesis require the isolation of specific germ cell populations for further analyses. BSA gradient and elutriation have been used for several decades to purify testicular germ cells; more recently, flow cytometric cell sorting has become popular. Although each method has its advantages and disadvantages and is used depending on the purpose of the experiment, reliance on flow cytometric cell sorting is expected to be more prevalent because fewer cells can be managed. However, the currently used flow cytometric cell sorting method for testicular germ cells relies on karyotypic differences via DNA staining. Thus, it remains challenging to separate post-meiotic haploid cells (spermatids) according to their differentiation stage despite significant variations in morphology and chromatin state. In this study, we developed a method for finely separating testicular germ cells using VC mice carrying fluorescently tagged histones. This method enables the separation of spermatogonia, spermatocytes, and spermatids based on the intensity of histone fluorescence and cell size. Combined with a DNA staining dye, this method separates spermatids after elongation according to each spermiogenic stage. Although the necessity for a specific transgenic mouse line is less versatile, this method is expected to be helpful for the isolation of testicular germ cell populations because it is highly reproducible and independent of complex cell sorter settings and staining conditions.
Collapse
Affiliation(s)
- Yasuhiro Fujiwara
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Masashi Hada
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yuko Fukuda
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Chizuko Koga
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Erina Inoue
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Okada
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Alavattam KG, Esparza JM, Hu M, Shimada R, Kohrs AR, Abe H, Munakata Y, Otsuka K, Yoshimura S, Kitamura Y, Yeh YH, Hu YC, Kim J, Andreassen PR, Ishiguro KI, Namekawa SH. ATF7IP2/MCAF2 directs H3K9 methylation and meiotic gene regulation in the male germline. Genes Dev 2024; 38:115-130. [PMID: 38383062 PMCID: PMC10982687 DOI: 10.1101/gad.351569.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
H3K9 trimethylation (H3K9me3) plays emerging roles in gene regulation, beyond its accumulation on pericentric constitutive heterochromatin. It remains a mystery why and how H3K9me3 undergoes dynamic regulation in male meiosis. Here, we identify a novel, critical regulator of H3K9 methylation and spermatogenic heterochromatin organization: the germline-specific protein ATF7IP2 (MCAF2). We show that in male meiosis, ATF7IP2 amasses on autosomal and X-pericentric heterochromatin, spreads through the entirety of the sex chromosomes, and accumulates on thousands of autosomal promoters and retrotransposon loci. On the sex chromosomes, which undergo meiotic sex chromosome inactivation (MSCI), the DNA damage response pathway recruits ATF7IP2 to X-pericentric heterochromatin, where it facilitates the recruitment of SETDB1, a histone methyltransferase that catalyzes H3K9me3. In the absence of ATF7IP2, male germ cells are arrested in meiotic prophase I. Analyses of ATF7IP2-deficient meiosis reveal the protein's essential roles in the maintenance of MSCI, suppression of retrotransposons, and global up-regulation of autosomal genes. We propose that ATF7IP2 is a downstream effector of the DDR pathway in meiosis that coordinates the organization of heterochromatin and gene regulation through the spatial regulation of SETDB1-mediated H3K9me3 deposition.
Collapse
Affiliation(s)
- Kris G Alavattam
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Jasmine M Esparza
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
| | - Mengwen Hu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
| | - Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Anna R Kohrs
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Hironori Abe
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Yasuhisa Munakata
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
| | - Kai Otsuka
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
| | - Saori Yoshimura
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
| | - Yu-Han Yeh
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
| | - Yueh-Chiang Hu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| | - Jihye Kim
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Paul R Andreassen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan;
| | - Satoshi H Namekawa
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA;
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 49229, USA
| |
Collapse
|
6
|
Malla AB, Rainsford SR, Smith ZD, Lesch BJ. DOT1L promotes spermatid differentiation by regulating expression of genes required for histone-to-protamine replacement. Development 2023; 150:dev201497. [PMID: 37082969 PMCID: PMC10259660 DOI: 10.1242/dev.201497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
Unique chromatin remodeling factors orchestrate dramatic changes in nuclear morphology during differentiation of the mature sperm head. A crucial step in this process is histone-to-protamine exchange, which must be executed correctly to avoid sperm DNA damage, embryonic lethality and male sterility. Here, we define an essential role for the histone methyltransferase DOT1L in the histone-to-protamine transition. We show that DOT1L is abundantly expressed in mouse meiotic and postmeiotic germ cells, and that methylation of histone H3 lysine 79 (H3K79), the modification catalyzed by DOT1L, is enriched in developing spermatids in the initial stages of histone replacement. Elongating spermatids lacking DOT1L fail to fully replace histones and exhibit aberrant protamine recruitment, resulting in deformed sperm heads and male sterility. Loss of DOT1L results in transcriptional dysregulation coinciding with the onset of histone replacement and affecting genes required for histone-to-protamine exchange. DOT1L also deposits H3K79me2 and promotes accumulation of elongating RNA Polymerase II at the testis-specific bromodomain gene Brdt. Together, our results indicate that DOT1L is an important mediator of transcription during spermatid differentiation and an indispensable regulator of male fertility.
Collapse
Affiliation(s)
- Aushaq B. Malla
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Zachary D. Smith
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Stem Cell Center, New Haven, CT 06510, USA
| | - Bluma J. Lesch
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
7
|
Abe H, Yeh YH, Munakata Y, Ishiguro KI, Andreassen PR, Namekawa SH. Active DNA damage response signaling initiates and maintains meiotic sex chromosome inactivation. Nat Commun 2022; 13:7212. [PMID: 36443288 PMCID: PMC9705562 DOI: 10.1038/s41467-022-34295-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
Meiotic sex chromosome inactivation (MSCI) is an essential process in the male germline. While genetic experiments have established that the DNA damage response (DDR) pathway directs MSCI, due to limitations to the experimental systems available, mechanisms underlying MSCI remain largely unknown. Here we establish a system to study MSCI ex vivo, based on a short-term culture method, and demonstrate that active DDR signaling is required both to initiate and maintain MSCI via a dynamic and reversible process. DDR-directed MSCI follows two layers of modifications: active DDR-dependent reversible processes and irreversible histone post-translational modifications. Further, the DDR initiates MSCI independent of the downstream repressive histone mark H3K9 trimethylation (H3K9me3), thereby demonstrating that active DDR signaling is the primary mechanism of silencing in MSCI. By unveiling the dynamic nature of MSCI, and its governance by active DDR signals, our study highlights the sex chromosomes as an active signaling hub in meiosis.
Collapse
Affiliation(s)
- Hironori Abe
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA.
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, 860-0811, Japan.
| | - Yu-Han Yeh
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA
| | - Yasuhisa Munakata
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Paul R Andreassen
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA.
| |
Collapse
|