1
|
Poleg S, Li BZ, Sergison M, Ridenour M, Hughes EG, Tollin D, Klug A. Age-related myelin deficits in the auditory brain stem contribute to cocktail-party deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605710. [PMID: 39211072 PMCID: PMC11361073 DOI: 10.1101/2024.07.29.605710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Age-related hearing loss consists of both peripheral and central components and is an increasing global health concern. While peripheral hearing loss is well understood, central hearing loss- age-related changes in the central auditory pathways resulting in a listener's inability to process sound correctly -remains poorly understood. In this study, we focus on the pathway from the cochlear nucleus to the medial nucleus of the trapezoid body (MNTB), which depends on heavily myelinated axons for microsecond-level temporal precision required for sound localization. Using a combination of auditory brainstem response recordings (ABR), advanced light and electron microscopy, and behavioral testing with prepulse inhibition of the acoustic startle response (PPI) we identified a correlation between oligodendrocyte loss, abnormal myelination in MNTB afferents, altered ABR wave III morphology indicating MNTB dysfunction, and deficits in spatial hearing behaviors in aging Mongolian gerbils. These findings provide a mechanistic explanation of how demyelination contributes to age-related dysfunction in the auditory brainstem's sound localization pathway.
Collapse
|
2
|
Allakhverdiev ES, Kossalbayev BD, Sadvakasova AK, Bauenova MO, Belkozhayev AM, Rodnenkov OV, Martynyuk TV, Maksimov GV, Allakhverdiev SI. Spectral insights: Navigating the frontiers of biomedical and microbiological exploration with Raman spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112870. [PMID: 38368635 DOI: 10.1016/j.jphotobiol.2024.112870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/04/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Raman spectroscopy (RS), a powerful analytical technique, has gained increasing recognition and utility in the fields of biomedical and biological research. Raman spectroscopic analyses find extensive application in the field of medicine and are employed for intricate research endeavors and diagnostic purposes. Consequently, it enjoys broad utilization within the realm of biological research, facilitating the identification of cellular classifications, metabolite profiling within the cellular milieu, and the assessment of pigment constituents within microalgae. This article also explores the multifaceted role of RS in these domains, highlighting its distinct advantages, acknowledging its limitations, and proposing strategies for enhancement.
Collapse
Affiliation(s)
- Elvin S Allakhverdiev
- National Medical Research Center of Cardiology named after academician E.I. Chazov, Academician Chazov 15А St., Moscow 121552, Russia; Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Leninskie Gory 1/12, Moscow 119991, Russia.
| | - Bekzhan D Kossalbayev
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan, Kazakhstan; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West 7th Road, Tianjin Airport Economic Area, 300308 Tianjin, China; Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan; Department of Chemical and Biochemical Engineering, Institute of Geology and Oil-Gas Business Institute Named after K. Turyssov, Satbayev University, Almaty 050043, Kazakhstan
| | - Asemgul K Sadvakasova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Meruyert O Bauenova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Ayaz M Belkozhayev
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan; Department of Chemical and Biochemical Engineering, Institute of Geology and Oil-Gas Business Institute Named after K. Turyssov, Satbayev University, Almaty 050043, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan
| | - Oleg V Rodnenkov
- National Medical Research Center of Cardiology named after academician E.I. Chazov, Academician Chazov 15А St., Moscow 121552, Russia
| | - Tamila V Martynyuk
- National Medical Research Center of Cardiology named after academician E.I. Chazov, Academician Chazov 15А St., Moscow 121552, Russia
| | - Georgy V Maksimov
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Leninskie Gory 1/12, Moscow 119991, Russia
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Institute of Basic Biological Problems, FRC PSCBR Russian Academy of Sciences, Pushchino 142290, Russia; Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey.
| |
Collapse
|
3
|
Li BZ, Sumera A, Booker SA, McCullagh EA. Current Best Practices for Analysis of Dendritic Spine Morphology and Number in Neurodevelopmental Disorder Research. ACS Chem Neurosci 2023; 14:1561-1572. [PMID: 37070364 PMCID: PMC10161226 DOI: 10.1021/acschemneuro.3c00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
Quantitative methods for assessing neural anatomy have rapidly evolved in neuroscience and provide important insights into brain health and function. However, as new techniques develop, it is not always clear when and how each may be used to answer specific scientific questions posed. Dendritic spines, which are often indicative of synapse formation and neural plasticity, have been implicated across many brain regions in neurodevelopmental disorders as a marker for neural changes reflecting neural dysfunction or alterations. In this Perspective we highlight several techniques for staining, imaging, and quantifying dendritic spines as well as provide a framework for avoiding potential issues related to pseudoreplication. This framework illustrates how others may apply the most rigorous approaches. We consider the cost-benefit analysis of the varied techniques, recognizing that the most sophisticated equipment may not always be necessary for answering some research questions. Together, we hope this piece will help researchers determine the best strategy toward using the ever-growing number of techniques available to determine neural changes underlying dendritic spine morphology in health and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ben-Zheng Li
- Department
of Physiology and Biophysics, University
of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Anna Sumera
- Simons
Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, U.K.
| | - Sam A Booker
- Simons
Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, U.K.
| | - Elizabeth A. McCullagh
- Department
of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|