1
|
Wang Y, Pei W, Yang Y, Xia C, Zhang Q, Geng Z, Shi X, Wang F. Inhibition of XIST restrains paclitaxel resistance in breast cancer cells by targeting hsa-let-7d-5p/ATG16L1 through regulation of autophagy. Cell Signal 2025; 127:111534. [PMID: 39638138 DOI: 10.1016/j.cellsig.2024.111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Breast cancer is a fatal malignant tumor in women worldwide. The development of paclitaxel resistance remains a challenge. Autophagy is considered to have a significant part in the chemotherapeutic stress mechanism. This study aimed to investigate the function of long non-coding RNA (lncRNA) in breast cancer cell chemoresistance and autophagy. The paclitaxel (PTX)-resistant breast cancer cells were established. The function of X-inactive specific transcript (XIST) was demonstrated using in vitro and in vivo experiments. Transmission electron microscope (TEM) was used to observe autophagy vesicles. Protein and mRNA levels were determined using western blotting and quantitative real time polymerase chain reaction (qRT-PCR). We discovered that autophagic activity was correlated with chemoresistance in PTX-resistant breast cancer cells. In vitro and in vivo studies showed that XIST inhibition reduced cell resistance to paclitaxel, caused autophagy to be suppressed by regulating hsa-let-7d-5p and ATG16L1 expression. Mechanically, threonine protein kinase B (PKB; also known as AKT) - mammalian target of rapamycin (mTOR) pathway was activated when knockdown of XIST, while was reversed by inhibition of hsa-let-7d-5p. Our results verified that XIST played a significant role in developing chemoresistance via mediating autophagy in PTX-resistant breast cancer cells. It may be a potential target for breast cancer treatment strategies.
Collapse
Affiliation(s)
- Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu 233004, Anhui, China; The Fifth Clinical Medical College of Anhui Medical University, Hefei 230000, Anhui, China
| | - Wenhao Pei
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu 233030, Anhui, China
| | - Yuping Yang
- Department of Clinical Laboratory, Second Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China
| | - Chaoqun Xia
- Department of Clinical Laboratory, Second Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China
| | - Qiang Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China
| | - Zhijun Geng
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu 233004, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China
| | - Xiuru Shi
- Department of Blood Transfusion, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China
| | - Fengchao Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China.
| |
Collapse
|
2
|
Yin D, Zhai X, Feng X, Hua M, Liu J, Chen Y. Circ_0060927 promotes colorectal cancer development by sponging miR-331-3p and upregulating TBX2. Pathol Res Pract 2024; 264:155673. [PMID: 39486250 DOI: 10.1016/j.prp.2024.155673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 09/13/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND The dysregulation of circular RNAs (circRNAs) is closely associated with the pathogenesis of colorectal cancer (CRC). The present study aimed to elucidate the biological function and mechanism of circ_0060927 in CRC. METHODS 5-ethynyl-2'-deoxyuridine, Cell Counting Kit-8 (CCK-8), flow cytometry and transwell assays, as well as Xenograft tumor models were adopted for in vitro and in vivo analyses. The interaction between microRNA-331-3p (miR-331-3p) and circ_0060927 or T-box transcription factor 2 (TBX2) was verified by the dual-luciferase reporter and RNA pull-down assays. RESULTS Circ_0060927 deficiency inhibited cell proliferation, autophagy, migration, and invasion and increased cell apoptosis and necrosis in CRC cells, as well as inhibited tumor growth in vivo. Circ_0060927 could bind to miR-331-3p, and circ_0060927 regulated CRC cell behaviors via sponging miR-331-3p. TBX2 was targeted by miR-331-3p, and miR-331-3p targeted TBX2 to exert the anti-cancer role in CRC cells. Mechanically, circ_0060927 regulated TBX2 expression by sequestering miR-331-3p in CRC cells. CONCLUSION Circ_0060927 downregulation inhibited CRC progression by regulating the miR-331-3p/TBX2 axis, which might offer a potential treatment target for CRC.
Collapse
Affiliation(s)
- Dian Yin
- Department of Oncology, Nantong First People's Hospital and Second Affiliated Hospital of Nantong University, 666 Shengli Road, Chongchuan District, Nantong City, Jiangsu, China
| | - XiaoLu Zhai
- Department of Oncology, Nantong First People's Hospital and Second Affiliated Hospital of Nantong University, 666 Shengli Road, Chongchuan District, Nantong City, Jiangsu, China
| | - Xiu Feng
- Department of Oncology, Nantong First People's Hospital and Second Affiliated Hospital of Nantong University, 666 Shengli Road, Chongchuan District, Nantong City, Jiangsu, China
| | - Mei Hua
- Department of Oncology, Nantong First People's Hospital and Second Affiliated Hospital of Nantong University, 666 Shengli Road, Chongchuan District, Nantong City, Jiangsu, China
| | - Jing Liu
- Department of Oncology, Nantong First People's Hospital and Second Affiliated Hospital of Nantong University, 666 Shengli Road, Chongchuan District, Nantong City, Jiangsu, China
| | - Ying Chen
- Department of Oncology, Nantong First People's Hospital and Second Affiliated Hospital of Nantong University, 666 Shengli Road, Chongchuan District, Nantong City, Jiangsu, China.
| |
Collapse
|
3
|
Feng Y, Zhang Z, Yang H, Miao F, Li Y, Zhang M, Cao Y, Li M. The lncRNA TPTEP1 suppresses PI3K/AKT signalling and inhibits ovarian cancer progression by interacting with PTBP1. J Cell Mol Med 2024; 28:e70106. [PMID: 39422584 PMCID: PMC11488117 DOI: 10.1111/jcmm.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/15/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The expression of the long noncoding RNA (lncRNA) TPTE pseudogene 1 (TPTEP1) is significantly downregulated in ovarian cancer (OC). However, the function and mechanism of the lncRNA TPTEP1 in OC have not been identified. To investigate the expression of the lncRNA TPTEP1, we analysed a publicly available dataset and 20 pairs of OC and normal ovarian samples tissue from the First Affiliated Hospital of Anhui Medical University. Functional assays were used to determine the role of the lncRNA TPTEP1 in OC progression. Furthermore, Western blot, FISH, RNA pull-down, mass spectrometry and RNA immunoprecipitation approaches were used to determine the mechanism by which the lncRNA TPTEP1 affects OC progression. Animal experiments were used to determine the role of the lncRNA TPTEP1 in ovarian tumorigenicity in vivo. The expression of the lncRNA TPTEP1 in OC tissues was significantly lower than that in normal tissues and low expression of the lncRNA TPTEP1 was significantly correlated with advanced FIGO stage and the presence of malignant ascites in OC patients. In vitro and in vivo, regulation of the expression of the lncRNA TPTEP1 caused changes in OC cell proliferation, migration, invasion and apoptosis. Mechanistically, we found that TPTEP1 directly binds to the polypyrimidine tract-binding protein 1 (PTBP1) protein and inhibits PI3K/AKT signalling. The lncRNA TPTEP1 inhibits PI3K/AKT signalling by directly binding PTBP1, possibly indicating the molecular mechanism underlying its biological function. With further research, these findings may aid in the development of clinically useful strategies for the treatment of OC.
Collapse
Affiliation(s)
- Yifan Feng
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive TractAnhui Medical UniversityHefeiAnhuiChina
- Key Laboratory of Population Health Across Life CycleAnhui Medical UniversityMinistry of Education of the People's Republic of ChinaHefeiAnhuiChina
| | - Zhe Zhang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive TractAnhui Medical UniversityHefeiAnhuiChina
- Key Laboratory of Population Health Across Life CycleAnhui Medical UniversityMinistry of Education of the People's Republic of ChinaHefeiAnhuiChina
| | - Huijun Yang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Reproductive Health and GeneticsHefeiAnhuiChina
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial OrgansHefeiAnhuiChina
| | - Fulu Miao
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Reproductive Health and GeneticsHefeiAnhuiChina
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial OrgansHefeiAnhuiChina
| | - Yuyang Li
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Reproductive Health and GeneticsHefeiAnhuiChina
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial OrgansHefeiAnhuiChina
| | - Minmin Zhang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive TractAnhui Medical UniversityHefeiAnhuiChina
- Key Laboratory of Population Health Across Life CycleAnhui Medical UniversityMinistry of Education of the People's Republic of ChinaHefeiAnhuiChina
| | - Yunxia Cao
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive TractAnhui Medical UniversityHefeiAnhuiChina
- Key Laboratory of Population Health Across Life CycleAnhui Medical UniversityMinistry of Education of the People's Republic of ChinaHefeiAnhuiChina
| | - Min Li
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive TractAnhui Medical UniversityHefeiAnhuiChina
- Key Laboratory of Population Health Across Life CycleAnhui Medical UniversityMinistry of Education of the People's Republic of ChinaHefeiAnhuiChina
| |
Collapse
|
4
|
Yin X, Liu X, Gong H, Chu Z. LncRNA STARD7-AS1 suppresses cervical cancer cell proliferation while promoting autophagy by regulating miR-31-5p/TXNIP axis to inactivate the mTOR signaling. J Gynecol Oncol 2024; 35:e97. [PMID: 38670562 PMCID: PMC11262893 DOI: 10.3802/jgo.2024.35.e97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/06/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE Cervical cancer (CC) is a serious gynecologic health issue for women worldwide. Long non-coding RNA (lncRNA) has been well-documented in controlling malignant behavior of various cancer cells. The role of lncRNA STARD7-AS1 in regulating CC cell proliferation and autophagy and its possible mechanism were investigated in this work. METHODS RNA expression and protein levels were quantified by reverse transcription quantitative polymerase chain reaction and western blotting. The location of STARD7-AS1 in CC cells was examined using subcellular fraction assays. Cell Counting Kit-8 assays and colony forming assays were performed to measure CC cell viability and proliferation. Autophagy in CC cells was evaluated using macrophage-derived chemokine (MDC) staining and transmission electron microscopy. The binding between microRNA (miR)-31-5p and STARD7-AS1 (or thioredoxin-interacting protein [TXNIP]) was determined by performing luciferase reporter, RNA pull-down or RNA immunoprecipitation assays. RESULTS STARD7-AS1 overexpression significantly suppressed CC cell viability and proliferation while notably inducing autophagy. STARD7-AS1 upregulated TXNIP expression via interaction with miR-31-5p. In addition, the effects of STARD7-AS1 on CC cell proliferation and autophagy were reversed by TXNIP silencing. The suppressive effect of STARD7-AS1 overexpression on phosphorylated levels of mTOR and S6K1 was countervailed by TXNIP deficiency. CONCLUSION In conclusion, lncRNA STARD7-AS1 inhibits CC cell proliferation and promotes cell autophagy by targeting the miR-31-5p/TXNIP axis to inactivate the mTOR signaling.
Collapse
Affiliation(s)
- Xiyao Yin
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, China
| | - Xin Liu
- Department of Central Laboratory, The 989th Hospital, Luoyang, China
| | - Hui Gong
- Department of Central Laboratory, The 989th Hospital, Luoyang, China
| | - Zhiliang Chu
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, China.
| |
Collapse
|
5
|
Zhao X, Zhu X, Xiao C, Hu Z. LncRNA SH3BP5-AS1 promotes hepatocellular carcinoma progression by sponging miR-6838-5p and activation of PTPN4. Aging (Albany NY) 2024; 16:8511-8523. [PMID: 38761175 PMCID: PMC11164516 DOI: 10.18632/aging.205811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/09/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Long noncoding RNAs (LncRNAs) have been demonstrated to have significant roles in the carcinogenesis of hepatocellular carcinoma (HCC). In this work, we sought to determine LncRNA SH3BP5-AS1's function and mechanism in the emergence of HCC. RESULTS First, we discovered that the advanced tumor stage was strongly correlated with high levels of LncRNA SH3BP5-AS1 expression in HCC. MiR-6838-5p expression was down-regulated and inversely correlated with SH3BP5-AS1 expression. Additionally, overexpression of SH3BP5-AS1 boosted cell invasion, migration, and proliferation. The oncogenic effects of the inhibitor of miR-6838-5p were eliminated when PTPN4 was suppressed, following the identification of PTPN4 as a direct target of miR-6838-5p. In addition, SH3BP5-AS1 promoted cellular glycolysis via miR-6838-5p sponging and PTPN4 activation. Lastly, by directly interacting to the promoter of SH3BP5-AS1, HIF-1α could control the transcription of the gene. CONCLUSIONS Our research suggests that SH3BP5-AS1 controls miR-6838-5p/PTPN4 in order to act as a new carcinogenic LncRNA during the growth of HCC cells. METHODS The expression levels of SH3BP5-AS1, miR-6838-5p and PTPN4 were detected by qRT-PCR and Western blot. The effects of LncRNA SH3BP5-AS1/miR-6838-5p/PTPN4 on the proliferation, metastasis and glycolysis of HCC cells were clarified by experimental cellular functionality assays, cell derived xenograft and Glycolysis assay.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 4/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 4/metabolism
- Gene Expression Regulation, Neoplastic
- Cell Proliferation/genetics
- Disease Progression
- Cell Line, Tumor
- Cell Movement/genetics
- Animals
- Male
- Glycolysis/genetics
- Mice
- Female
- Middle Aged
- Mice, Nude
Collapse
Affiliation(s)
- Xinyang Zhao
- Department of Hepatobiliary Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Xinfeng Zhu
- Department of Hepatobiliary Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Chaowen Xiao
- Department of Hepatobiliary Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Zouxiao Hu
- Department of Hepatobiliary Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| |
Collapse
|
6
|
Zhang W, Liu J, Zhou Y, Liu S, Wu J, Jiang H, Xu J, Mao H, Liu S, Chen B. Signaling pathways and regulatory networks in quail skeletal muscle development: insights from whole transcriptome sequencing. Poult Sci 2024; 103:103603. [PMID: 38457990 PMCID: PMC11067775 DOI: 10.1016/j.psj.2024.103603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Quail, as an advantageous avian model organism due to its compact size and short reproductive cycle, holds substantial potential for enhancing our understanding of skeletal muscle development. The quantity of skeletal muscle represents a vital economic trait in poultry production. Unraveling the molecular mechanisms governing quail skeletal muscle development is of paramount importance for optimizing meat and egg yield through selective breeding programs. However, a comprehensive characterization of the regulatory dynamics and molecular control underpinning quail skeletal muscle development remains elusive. In this study, through the application of HE staining on quail leg muscle sections, coupled with preceding fluorescence quantification PCR of markers indicative of skeletal muscle differentiation, we have delineated embryonic day 9 (E9) and embryonic day 14 (E14) as the start and ending points, respectively, of quail skeletal muscle differentiation. Then, we employed whole transcriptome sequencing to investigate the temporal expression profiles of leg muscles in quail embryos at the initiation of differentiation (E9) and upon completion of differentiation (E14). Our analysis revealed the expression patterns of 12,012 genes, 625 lncRNAs, 14,457 circRNAs, and 969 miRNAs in quail skeletal muscle samples. Differential expression analysis between the E14 and E9 groups uncovered 3,479 differentially expressed mRNAs, 124 lncRNAs, 292 circRNAs, and 154 miRNAs. Furthermore, enrichment analysis highlighted the heightened activity of signaling pathways related to skeletal muscle metabolism and intermuscular fat formation, such as the ECM-receptor interaction, focal adhesion, and PPAR signaling pathway during E14 skeletal muscle development. Conversely, the E9 stage exhibited a prevalence of pathways associated with myoblast proliferation, exemplified by cell cycle processes. Additionally, we constructed regulatory networks encompassing lncRNA‒mRNA, miRNA‒mRNA, lncRNA‒miRNA-mRNA, and circRNA-miRNA‒mRNA interactions, thus shedding light on their putative roles within quail skeletal muscle. Collectively, our findings illuminate the gene and non-coding RNA expression characteristics during quail skeletal muscle development, serving as a foundation for future investigations into the regulatory mechanisms governing non-coding RNA and quail skeletal muscle development in poultry production.
Collapse
Affiliation(s)
- Wentao Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Jing Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China
| | - Ya'nan Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Shuibing Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Jintao Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Hongxia Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Jiguo Xu
- Biotech Research Institute of Nanchang Normal University, Nanchang 330032, Jiangxi, P. R. China
| | - Huirong Mao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Sanfeng Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Biao Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China.
| |
Collapse
|
7
|
Tian P, Feng Y, Tao L. LINC00460 knockdown sensitizes cervical cancer to cisplatin by downregulating TGFBI. Chem Biol Drug Des 2024; 103:e14424. [PMID: 38230774 DOI: 10.1111/cbdd.14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
The acquired resistance of cancer to cisplatin (DDP) limits the efficacy of chemotherapy. The prognostic value of long noncoding RNA (lncRNA) LINC00460 has been reported in cervical cancer. However, its effect on DDP sensitivity in cervical cancer remains poorly understood. In present study, LINC00460 was screened out through bioinformatics analysis. The expression levels of mRNAs and proteins were measured by reverse transcription-quantitative PCR (RT-qPCR) or western blot analysis. The sensitivity to DDP was investigated using an CCK8 assay. Cell apoptosis was determined by flow cytometry. The differentially expressed genes that were associated with the poor prognosis of cervical cancer were screened, and their correlations with LINC00460 expression were explored using Pearson's correlation analysis. Tumor xenograft model was used to assess the effect of LINC00460 knockdown on DDP sensitivity in vivo. The interaction between miR-338-3p and LINC00460 or transforming growth factor β-induced protein (TGFBI) was confirmed by RNA immunoprecipitation (RIP) and luciferase reporter assays. LINC00460 expression was increased in cervical cancer tissues and cells. High expression of LINC00460 was associated with dismal prognosis in cervical cancer patients. Silencing of LINC00460 increased drug sensitivity and induced apoptosis in DDP-resistant-cervical cancer cells. LINC00460 knockdown enhanced DDP sensitivity in cervical cancer cells largely by downregulating TGFBI expression. LINC00460 knockdown enhanced the sensitivity of cervical cancer to DDP in vivo, and this effect was partly mediated by the downregulation of TGFBI. LINC00460 positively regulated TGFBI expression, possibly by acting as a sponge of miR-338-3p. LINC00460 knockdown contributed to DDP sensitivity of cervical cancer by downregulating TGFBI, providing a novel mechanism underlying the acquisition of DDP sensitivity.
Collapse
Affiliation(s)
- Ping Tian
- Xinyang Vocational and Technical College, Xinyang, China
| | - Yuanyuan Feng
- Department of Gynaecology and Obstetrics, Xinyang Central Hospital, Xinyang, China
| | - Ling Tao
- Xinyang Vocational and Technical College, Xinyang, China
| |
Collapse
|
8
|
Pan C, Lin J, Dai X, Jiao L, Liu J, Lin A. An m1A/m6A/m5C-associated long non-coding RNA signature: Prognostic and immunotherapeutic insights into cervical cancer. J Gene Med 2024; 26:e3618. [PMID: 37923390 DOI: 10.1002/jgm.3618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) remains a significant clinical challenge, even though its fatality rate has been declining in recent years. Particularly in developing countries, the prognosis for CC patients continues to be suboptimal despite numerous therapeutic advances. METHODS Using The Cancer Genome Atlas database, we extracted CC-related data. From this, 52 methylation-related genes (MRGs) were identified, leading to the selection of a 10 long non-coding RNA (lncRNA) signature co-expressed with these MRGs. R programming was employed to filter out the methylation-associated lncRNAs. Through univariate, least absolute shrinkage and selection operator (i.e. LASSO) and multivariate Cox regression analysis, an MRG-associated lncRNA model was constructed. The established risk model was further assessed via the Kaplan-Meier method, principal component analysis, functional enrichment annotation and a nomogram. Furthermore, we explored the potential of this model with respect to guiding immune therapeutic interventions and predicting drug sensitivities. RESULTS The derived 10-lncRNA signature, linked with MRGs, emerged as an independent prognostic factor. Segmenting patients based on their immunotherapy responses allowed for enhanced differentiation between patient subsets. Lastly, we highlighted potential compounds for distinguishing CC subtypes. CONCLUSIONS The risk model, associated with MRG-linked lncRNA, holds promise in forecasting clinical outcomes and gauging the efficacy of immunotherapies for CC patients.
Collapse
Affiliation(s)
- Chenxiang Pan
- Department of Gynaecology Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Jiali Lin
- Institute of Reproduction and Development, Affiliated Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiaoxiao Dai
- Department of Gynaecology Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Lili Jiao
- Department of Gynaecology Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Jinsha Liu
- Department of Laboratory Medicine, Meizhou Meixian District Hospital of Traditional Chinese Medicine, Meizhou, China
| | - Aidi Lin
- Department of Gynaecology Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Meng B, Wang P, Zhao C, Yin G, Meng X, Li L, Cai S, Yan C. Long non-coding RNA LINC00565 regulates ADAM19 expression through sponging microRNA-532-3p, thereby facilitating clear cell renal cell carcinoma progression. CHINESE J PHYSIOL 2023; 66:474-484. [PMID: 38149560 DOI: 10.4103/cjop.cjop-d-23-00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Proven by publications, long non-coding RNAs (lncRNAs) play critical roles in the development of clear cell renal cell carcinoma (ccRCC). Although lncRNA LINC00565 has been implicated in the progression of various cancers, its biological effects on ccRCC remain unknown. This study aimed to investigate the biological functions of LINC00565, as well as its potential mechanism in ccRCC. Here, the expression data of mature microRNAs (miRNAs) (normal: 71, tumor: 545), messenger RNAs (mRNAs), and lncRNAs (normal: 72, tumor: 539) of ccRCC were acquired from The Cancer Genome Atlas (TCGA) database and subjected to differential expression analysis. Quantitative reverse transcriptase polymerase chain reaction analyzed the expression levels of LINC00565, miR-532-3p, and ADAM19 mRNA. TCGA database, dual-luciferase report detection, and Argonaute 2 RNA immunoprecipitation were utilized to confirm the relationships between LINC00565 and miR-532-3p and between miR-532-3p and ADAM19, respectively. The progression of ccRCC cells was determined via CCK-8, colony formation, scratch healing, and transwell assays. Western blot was applied to detect the protein levels of epithelial-mesenchymal transition markers and ADAM19. We herein suggested that LINC00565 was prominently upregulated in ccRCC tissues and cells. Knockdown of LINC00565 repressed cell progression. We further predicted and validated miR-532-3p as a target of LINC00565, and miR-532-3p could target ADAM19. Knockdown of LINC00565 resulted in ADAM19 level downregulation in ccRCC cells and suppressed miR-532-3p could restore ADAM19 level. Thus, the three RNAs constructed a ceRNA network. Overexpressed ADAM19 could eliminate the anticancer effects caused by knocking down LINC00565 on ccRCC cells. In conclusion, LINC00565 upregulated ADAM19 via absorbing miR-532-3p, thereby facilitating the progression of ccRCC cells.
Collapse
Affiliation(s)
- Bin Meng
- Department of Urology, Tangshan Gongren Hospital, Tangshan, China
| | - Pengfei Wang
- Department of Urology, Tangshan Gongren Hospital, Tangshan, China
| | - Chaofei Zhao
- Department of Urology, Tangshan Gongren Hospital, Tangshan, China
| | - Guangwei Yin
- Department of Urology, Tangshan Gongren Hospital, Tangshan, China
| | - Xin Meng
- Department of Urology, Tangshan Gongren Hospital, Tangshan, China
| | - Lin Li
- Department of Urology, Tangshan Gongren Hospital, Tangshan, China
| | - Shengyong Cai
- Department of Urology, Tangshan Gongren Hospital, Tangshan, China
| | - Chengquan Yan
- Department of Urology, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
10
|
Kong X, Xiong Y. A novel necroptosis-related long non-coding RNA signature predicts prognosis and immune response in cervical cancer patients. J Cancer Res Clin Oncol 2023; 149:12947-12964. [PMID: 37466792 DOI: 10.1007/s00432-023-05158-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/09/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Necroptosis has been linked to the development of tumors. Long non-coding RNAs (IncRNAs) have been identified as having a major role in numerous biological and pathological procedures. Despite this, the precise role that necroptosis-related lncRNAs (NRLs) have in cervical cancer (CC) and their potential for predicting its prognosis is still to a large extent unclear. METHODS Gene expression RNA-sequencing data, mutational data, and clinical profiles for 309 CC patients were obtained from the Cancer Genome Atlas (TCGA) database. The NRLs were then identified with Pearson correlation analysis followed by splitting of the patients into training and validation sets in a 3:2 ratio. Cox and LASSO regression models were performed to construct a cervical cancer prognostic signature based on NRLs. This 5-NRLs signature was then verified by Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curve, and nomogram for prognostic prediction. Further, a correlation study between the risk score (RS) and immune cell infiltration, immune checkpoint molecules, tumor mutation burden (TMB), and the sensitivity of chemotherapy drug was conducted. To validate the 5-NRLs, a quantitative reverse transcription polymerase chain reaction (qRT-PCR) was finally performed. RESULTS The 5-NRLs signature was designed to accurately predict the prognosis of CC. It consists of AC092153.1, AC007686.3, LINC01281, AC009097.2, and RUSC1-AS1 and was found to be highly predictive using ROC and Kaplan-Meier curves. Furthermore, when analyzed through stratified survival analysis, it was confirmed to be an independent risk factor for prognosis. The nomogram and calibration curves further validated its clinical utility. Moreover, distinct differences between two risk groups were observed when examining immune cell infiltration, immune checkpoint molecules, somatic gene alterations and half-inhibitory concentration of anticancer drug. CONCLUSIONS The 5-NRLs signature is a novel and valuable tool for evaluating the prognosis of CC patients, providing clinicians with an informed decision-making framework to formulate tailored treatment plans for their patients.
Collapse
Affiliation(s)
- Xiaoyu Kong
- School of Public Health, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Yuanpeng Xiong
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, People's Republic of China.
| |
Collapse
|
11
|
Chen J, Liu Z, Zhong Y, Chen H, Xie L. Circ_0124208 Promotes the Progression of Hepatocellular Carcinoma by Regulating the miR-338-3p/LAMC1 Axis. Mol Biotechnol 2023; 65:1750-1763. [PMID: 36780058 DOI: 10.1007/s12033-023-00686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/29/2023] [Indexed: 02/14/2023]
Abstract
Hundreds of circular RNAs (circRNAs) have been identified as key regulators in biological processes; however, only few of these circRNAs have been functionally described to participate in the development of hepatocellular carcinoma (HCC). The present study aimed to reveal the function and molecular mechanisms of circ_0124208 in HCC. Real-time quantitative PCR revealed the upregulation of circ_0124208 in HCC tissues and cells. Based on cell functional experiments, silencing circ_0124208 attenuated proliferation and migration, but boosted the apoptosis of Hep 3B and Huh7 cells in vitro. The in vivo experiment further validated the repression of tumor growth via circ_0124208 knockdown. RNA immunoprecipitation and dual-luciferase reporter assays showed that circ_0124208 sponged miR-338-3p and reduced its expression. miR-338-3p inhibition was found to partially reverse the tumor-suppressive effects caused by circ_0124208 in Hep 3B and Huh7 cells. Furthermore, miR-338-3p directly targeted laminin subunit gamma 1 (LAMC1). The malignancy of Hep 3B and Huh7 cell was decreased by LAMC1 knockdown, and this effect was mitigated by miR-338-3p suppression. Overall, circ_0124208 was demonstrated for the first time to play a crucial role as an oncogene in HCC, implying that it could be a useful biomarker for HCC diagnosis. Furthermore, the circ_0124208/miR-338-3p/LAMC1 axis can be used as a potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Jianyu Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
| | - Zhi Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
| | - Yang Zhong
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
| | - Hui Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
| | - Liang Xie
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China.
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, No. 1 Maoyuan South Road, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
12
|
Rezaee A, Ahmadpour S, Jafari A, Aghili S, Zadeh SST, Rajabi A, Raisi A, Hamblin MR, Mahjoubin-Tehran M, Derakhshan M. MicroRNAs, long non-coding RNAs, and circular RNAs and gynecological cancers: focus on metastasis. Front Oncol 2023; 13:1215194. [PMID: 37854681 PMCID: PMC10580988 DOI: 10.3389/fonc.2023.1215194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Gynecologic cancer is a significant cause of death in women worldwide, with cervical cancer, ovarian cancer, and endometrial cancer being among the most well-known types. The initiation and progression of gynecologic cancers involve a variety of biological functions, including angiogenesis and metastasis-given that death mostly occurs from metastatic tumors that have invaded the surrounding tissues. Therefore, understanding the molecular pathways underlying gynecologic cancer metastasis is critical for enhancing patient survival and outcomes. Recent research has revealed the contribution of numerous non-coding RNAs (ncRNAs) to metastasis and invasion of gynecologic cancer by affecting specific cellular pathways. This review focuses on three types of gynecologic cancer (ovarian, endometrial, and cervical) and three kinds of ncRNAs (long non-coding RNAs, microRNAs, and circular RNAs). We summarize the detailed role of non-coding RNAs in the different pathways and molecular interactions involved in the invasion and metastasis of these cancers.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Derakhshan
- Shahid Beheshti Fertility Clinic, Department of Gynecology and Obsteterics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Liu X, Wang CX, Feng Q, Zhang T. lncRNA TINCR promotes the development of cervical cancer via the miRNA‑7/mTOR axis in vitro. Exp Ther Med 2023; 26:487. [PMID: 37745037 PMCID: PMC10515118 DOI: 10.3892/etm.2023.12186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/09/2023] [Indexed: 09/26/2023] Open
Abstract
The present study aimed to examine the effects of the long non-coding (lnc)RNA expressed by tissue differentiation-inducing non-protein coding RNA (TINCR) on cervical cancer development. For this purpose, adjacent normal and cancer tissues were obtained from patients with cervical cancer and the lncRNA TINCR level was examined using reverse transcription-quantitative PCR (RT-qPCR) and in situ hybridization. The association between lncRNA TINCR and the clinicopathological characteristics and prognosis of patients with cervical cancer was also analyzed. Furthermore, the expression levels of lncRNA TINCR, miRNA-7, mTOR, hypoxia-inducible factor 1 subunit α and VEGF were measured using RT-qPCR and western blot analysis. Cell proliferation, apoptosis, and invasion and migration were examined using MTT assay, 5-ethynyl-2'-deoxyuridine staining, flow cytometry, TUNEL assay, and Transwell and wound healing assays. The association between lncRNA TINCR, miRNA-7 and mTOR was also examined using a luciferase assay. The results revealed that the lncRNA TINCR level was significantly increased in cervical cancer tissues and was associated with the overall survival of patients (low vs. high expression group; P=0.0391). LncRNA TINCR was also associated with the clinicopathological characteristics of patients with cervical cancer. Following the knockdown of lncRNA TINCR using small interfering (si)RNA, cell proliferation was significantly decreased and cell apoptosis was significantly increased (P<0.001 for both); cell invasion and migration were also significantly decreased (P<0.001 for both) following transfection with mimics miRNA-7. Transfection with miRNA-7 antisense oligonucleotide decreased the antitumor effects of si-TINCR in Siha and HeLa cell lines. As shown using the dual-luciferase assay, lncRNA TINCR could target miRNA-7 and miRNA-7 could directly regulate mTOR in HeLa and SiHa cell lines. In conclusion, the present study demonstrated that lncRNA TINCR could promote cervical cancer development via regulation of the miRNA-7/mTOR axis in vitro.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Gynecology, Women and Children's Hospital, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Cui Xia Wang
- Department of Pediatrics, Eighth People's Hospital of Qingdao Shandong, Qingdao, Shandong 266000, P.R. China
| | - Qin Feng
- Department of Imaging, Women and Children's Hospital, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Tao Zhang
- Department of General Internal Medicine, Women and Children's Hospital, Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
14
|
Luo X, Liu J, Wang X, Wang Y, Yuan J, Zhang Y. Circ_0005615 promotes cervical cancer cell growth and metastasis by modulating the miR-138-5p/KDM2A axis. J Biochem Mol Toxicol 2023; 37:e23410. [PMID: 37393518 DOI: 10.1002/jbt.23410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/25/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
Cervical cancer (CC) is a highly fatal gynecological malignancy due to its high metastasis and recurrence rate. Circular RNA (circRNA) has been regarded as a regulator of CC. However, the underlying molecular mechanism of circ_0005615 in CC remains unclear. The levels of circ_0005615, miR-138-5p, and lysine demethylase 2A (KDM2A) were measured using qRT-PCR or western blot. Cell proliferation was assessed by Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, and colony formation experiments. Cell invasion and migration were tested by transwell assay and wound healing assay. Flow cytometry and Caspase-Glo 3/7 Assay kit were used to analyze cell apoptosis. The expression of proliferation-related and apoptosis-related markers was detected by western blot. The binding relationships among circ_0005615, miR-138-5p, and KDM2A were verified by dual-luciferase reporter assay or RNA immunoprecipitation assay. Xenograft assay was applied to detect the effect of circ_0005615 in vivo. Circ_0005615 and KDM2A were upregulated, while miR-138-5p was downregulated in CC tissues and cells. Circ_0005615 knockdown retarded cell proliferation, migration, and invasion, while promoting apoptosis. Besides, circ_0005615 sponged miR-138-5p, and miR-138-5p could target KDM2A. miR-138-5p inhibitor reversed the regulation of circ_0005615 knockdown on CC cell growth and metastasis, and KDM2A overexpression also abolished the inhibitory effect of miR-138-5p on CC cell growth and metastasis. In addition, we also discovered that circ_0005615 silencing inhibited CC tumor growth in vivo. Circ_0005615 acted as a tumor promoter in CC by regulating the miR-138-5p/KDM2A pathway.
Collapse
Affiliation(s)
- Xiaoning Luo
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiewen Liu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiangcai Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yili Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jun Yuan
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yu Zhang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
15
|
Jin Y, Jiang D. GATA6-AS1 via Sponging miR-543 to Regulate PTEN/AKT Signaling Axis Suppresses Cell Proliferation and Migration in Gastric Cancer. Mediators Inflamm 2023; 2023:9340499. [PMID: 37273453 PMCID: PMC10238141 DOI: 10.1155/2023/9340499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/16/2022] [Accepted: 04/05/2023] [Indexed: 06/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common and lethal cancers worldwide. In view of the prominent roles of long noncoding RNAs (lncRNAs) in cancers, we investigated the specific role and underlying mechanism of GATA binding protein 6 antisense RNA 1 (GATA6-AS1) in GC. Quantitative real-time polymerase chain reaction (qRT-PCR) detected GATA6-AS1 expression in GC cell lines. Functional assays were conducted to explore the role of GATA6-AS1 in GC. Furthermore, mechanism investigations were implemented to uncover the interaction among GATA6-AS1, microRNA-543 (miR-543), and phosphatase and tensin homolog (PTEN). In the present study, it was found that GATA6-AS1 expression is significantly downregulated in GC cell lines. Functionally, GATA6-AS1 markedly suppresses GC cell growth and migration in vitro and in vivo tumorigenesis. Besides tumor suppressor, GATA6-AS1 serves as a miR-543 sponge. Specifically speaking, GATA6-AS1 acts as a competing endogenous RNA (ceRNA) of miR-543 to upregulate the expression of PTEN, thus inactivating AKT signaling pathway to inhibit GC progression. In conclusion, this study has manifested that GATA6-AS1 inhibits GC cell proliferation and migration as a sponge of miR-543 by regulating PTEN/AKT signaling axis, offering new perspective into developing novel GC therapies.
Collapse
Affiliation(s)
- Yi Jin
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110001 Liaoning, China
| | - Daqing Jiang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110001 Liaoning, China
| |
Collapse
|
16
|
Ranga S, Yadav R, Chhabra R, Chauhan MB, Tanwar M, Yadav C, Kadian L, Ahuja P. Long non-coding RNAs as critical regulators and novel targets in cervical cancer: current status and future perspectives. Apoptosis 2023:10.1007/s10495-023-01840-6. [PMID: 37095313 PMCID: PMC10125867 DOI: 10.1007/s10495-023-01840-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
Cervical cancer is among the leading causes of cancer-associated mortality in women. In spite of vaccine availability, improved screening procedures, and chemoradiation therapy, cervical cancer remains the most commonly diagnosed cancer in 23 countries and the leading cause of cancer deaths in 36 countries. There is, therefore, a need to come up with novel diagnostic and therapeutic targets. Long non-coding RNAs (lncRNAs) play a remarkable role in genome regulation and contribute significantly to several developmental and disease pathways. The deregulation of lncRNAs is often observed in cancer patients, where they are shown to affect multiple cellular processes, including cell cycle, apoptosis, angiogenesis, and invasion. Many lncRNAs are found to be involved in the pathogenesis as well as progression of cervical cancer and have shown potency to track metastatic events. This review provides an overview of lncRNA mediated regulation of cervical carcinogenesis and highlights their potential as diagnostic and prognostic biomarkers as well as therapeutic targets for cervical cancer. In addition, it also discusses the challenges associated with the clinical implication of lncRNAs in cervical cancer.
Collapse
Affiliation(s)
- Shalu Ranga
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Yadav
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Ravindresh Chhabra
- Assistant Professor, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India.
| | - Meenakshi B Chauhan
- Department of Obstetrics and Gynaecology, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, 124001, India
| | - Mukesh Tanwar
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Chetna Yadav
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Lokesh Kadian
- School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Parul Ahuja
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
17
|
Zhang D, Hua M, Zhang N. LINC01232 promotes lung squamous cell carcinoma progression through modulating miR-181a-5p/SMAD2 axis. Am J Med Sci 2023; 365:386-395. [PMID: 36543302 DOI: 10.1016/j.amjms.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND LINC01232 has been implicated in the progression of multiple malignancies. Yet, the function of LINC01232 in the carcinogenesis of lung squamous cell carcinoma (LUSC) remains unclear. This study aims to examine the role LINC01232 plays in LUSC progression. METHODS mRNA and protein levels were assessed using qRT-PCR and western blot, respectively. Cell proliferation was assessed by CCK-8 and colony formation assays. Cell migration and invasion were evaluated by transwell assay. The interactions between LINC01232, miR-181a-5p, and SMAD2 were assessed using luciferase reporter, RNA pull-down, and RNA immunoprecipitation (RIP) assays. The subcellular distribution of LINC01232 was examined by cytosolic/nuclear fractionation assay RESULTS: LINC01232 was upregulated in both LUSC tissues and cell lines. Knockdown of LINC01232 impaired cell proliferation, migration and invasion capability in H1229 and A549 cells, a phenotype that could be reversed by miR-181a-5p silencing. In addition, LINC01232 silencing reduced levels of N-cadherin, Vimentin, and Snail in H1229 and A549 cells, but increased the level of E-cadherin, which can be abrogated by miR-181a-5p inhibitors. CONCLUSIONS In summary, our study demonstrates that LINC01232 expression increases in LUSC tissues and cell lines and promotes LUSC progression by modulating the miR-181a-5p/SMAD2 signaling, providing new potential drug targets for LUSC treatment.
Collapse
Affiliation(s)
- Dongliang Zhang
- Department of Thoracic Surgery, China Coast Guard Hospital of the People's Armed Police Force, Jiaxing, Zhejiang Province, China
| | - Minglei Hua
- Department of Respiratory Medicine, Xincheng Branch of Zaozhuang Municipal Hospital, Zaozhuang, Shandong Province, China
| | - Nan Zhang
- Department of Medical Oncology, China Coast Guard Hospital of the People's Armed Police Force, Jiaxing, Zhejiang Province, China.
| |
Collapse
|
18
|
Shan X, Zhang C, Li C, Fan X, Song G, Zhu J, Cao R, Zhang X, Zhu W. miR-338-3p acts as a tumor suppressor in lung squamous cell carcinoma by targeting FGFR2/FRS2. CANCER PATHOGENESIS AND THERAPY 2023; 1:87-97. [PMID: 38328402 PMCID: PMC10846316 DOI: 10.1016/j.cpt.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/02/2022] [Accepted: 12/23/2022] [Indexed: 02/09/2024]
Abstract
Background Lung cancer refers to the occurrence of malignant tumors in the lung, and squamous cell carcinoma is one of the most common pathological types of non-small cell lung cancer. Studies have shown that microRNAs (miRNAs) play an important role in the occurrence, development, early diagnosis, and treatment of lung cancer. This study aimed to explore the role and possible mechanism of MicroRNA-338-3p (miR-338-3p) in lung squamous cell carcinoma (LUSC). Method In this study, we compared 238 LUSC patients with relatively high miR-338-3p expression levels with 238 miR-338-3p expression levels in The Cancer Genome Atlas (TCGA)-LUSC dataset using first-line gene set enrichment analysis (GSEA). Second, the mRNA expression of miR-338-3p, FGFR2, and fibroblast growth factor receptor substrate 2 (FRS2) in 30 lung cancers and adjacent lung tissues was detected using quantitative real-time polymerase chain reaction (qRT-PCR). Finally, in vitro experiments were conducted, whereby the expression levels of miR-338-3p in lung cancer cells (H1703, SKMES1, H2170, H520) and normal lung epithelial cells (16HBE) were detected using qRT-PCR. miR-338-3p was overexpressed in lung cancer cells (H1703), and the cell proliferation (cell counting kit-8 [CCK8] assay), colony formation, cell apoptosis, cell cycle (BD-FACSVerse assay, Becton Dickinson, Bedford, MA, USA), cell invasion, and migration (Transwell assay, Thermo Fischer Corporation, Waltham, MA, USA) were detected. Results We found that the expression of miR-338-3p was significantly reduced in LUSC tissues (p < 0.001) and cancer cell lines (P < 0.01), and miR-338-3p was significantly negatively correlated with the expression of FGFR2 (P < 0.001) and FRS2 (P < 0.01). Furthermore, overexpression of miR-338-3p inhibited proliferation (P < 0.001), migration, and invasion (P < 0.001) of LUSC cell lines and increased apoptosis in the G1 phase (P < 0.001) and cell cycle arrest (P < 0.05). Conclusions Our study demonstrates that miR-338-3p inhibits tumor cell proliferation and migration by targeting FGFR2 and FRS2 in LUSC. We believe that miR-338-3p may be a promising target for the treatment of LUSC.
Collapse
Affiliation(s)
- Xia Shan
- Department of Respiration, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210000, China
| | - Cheng Zhang
- Women & Children Central Laboratory, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210036, China
| | - Chunyu Li
- Women & Children Intensive Care Unit, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210036, China
| | - Xingchen Fan
- Department of Oncology, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, China
| | - Guoxin Song
- Department of Pathology, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, China
| | - Jingfeng Zhu
- Department of Nephrology, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, China
| | - Risheng Cao
- Department of Science and Technology, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, China
| | - Xiuwei Zhang
- Department of Respiration, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210000, China
| | - Wei Zhu
- Department of Oncology, Jiangsu Province Hospital, And Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, China
| |
Collapse
|
19
|
Wu D, Li Y, Xu A, Tang W, Yu B. CircRNA RNA hsa_circ_0008234 Promotes Colon Cancer Progression by Regulating the miR-338-3p/ETS1 Axis and PI3K/AKT/mTOR Signaling. Cancers (Basel) 2023; 15:cancers15072068. [PMID: 37046729 PMCID: PMC10093195 DOI: 10.3390/cancers15072068] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Circular RNAs (circRNAs) have been shown to play a crucial role in cancer occurrence and progression. This present work investigated the link between hsa_circ_0008234 and colon cancer. Data retrieved from GSE172229 was used to compare the circRNA profiles of colon cancer and surrounding non-tumorous tissues. The amount of RNA and protein in the molecules was determined using quantitative real-time PCR (qRT-PCR) and Western blot analysis, respectively. The cell proliferation ability was assessed using CCK8, EdU, colon formation, and nude mice tumorigenesis tests. Cell invasion and migration abilities were evaluated using transwell wound healing and mice lung metastasis model. Hsa_circ_0008234 piqued our interest because bioinformatics and qRT-PCR analyses revealed that it is upregulated in colon cancer tissue. Cell phenotypic studies suggest that hsa_circ_0008234 may significantly increase colon cancer cell aggressiveness. Mice experiments revealed that inhibiting hsa_circ_0008234 significantly reduced tumor growth and metastasis. Moreover, the fluorescence in situ hybridization experiment demonstrated that hsa_circ_0008234 is primarily found in the cytoplasm, implying that it potentially functions via a competitive endogenous RNA pathway. These findings indicated that hsa_circ_0008234 may act as a “molecular sponge” for miR-338-3p, increasing the expression of miR-338-target 3p’s ETS1. In addition, the traditional oncogenic pathway PI3K/AKT/mTOR signaling was found to be the potential downstream pathway of the hsa_circ_0008234/miR-338-3p/ETS1 axis. In conclusion, hsa_circ_0008234 increases colon cancer proliferation, infiltration, and migration via the miR-338-3p/ETS1/PI3K/AKT axis; therefore, it could serve as a target and a focus for colon cancer therapy.
Collapse
Affiliation(s)
- Dejun Wu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai 201399, China
- Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai 201399, China
| | - Yuqin Li
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No.2800 Gongwei Road, Pudong New District, Shanghai 201399, China
| | - Anjun Xu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai 201399, China
| | - Wenqing Tang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai 201399, China
- Correspondence: (W.T.); (B.Y.)
| | - Bo Yu
- Vascular Surgery Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai 201399, China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai 201399, China
- Correspondence: (W.T.); (B.Y.)
| |
Collapse
|
20
|
Wang C, Wang Q, Weng Z. LINC00664/miR-411-5p/KLF9 feedback loop contributes to the human oral squamous cell carcinoma progression. Oral Dis 2023; 29:672-685. [PMID: 34582069 DOI: 10.1111/odi.14033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Oral squamous cell carcinoma (OSCC) is one of the most aggressive head and neck cancers with high incidence. Multiple studies have revealed that long non-coding RNAs (lncRNAs) play pivotal roles in tumorigenesis. However, the role of long intergenic non-protein coding RNA 664 (LINC00664) on the progression of OSCC was still unclear. SUBJECTS AND METHODS In this study, the expression of LINC00664 in OSCC tissues and cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The functional role of LINC0664 was estimated by cell counting kit-8 (CCK-8), transwell assays, Western blot in vitro, and xenograft tumor model in vivo. The regulatory mechanism was investigated by RNA-binding protein immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP), and luciferase reporter assays. RESULTS LINC00664 was found to be upregulated in OSCC tissues and cell lines and was associated with poor prognosis of OSCC patients. LINC00664 knockdown suppressed OSCC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Moreover, Kruppel like factor 9 (KLF9) enhanced LINC00664 expression at transcription level. Interestingly, LINC00664 upregulated KLF9 expression by sponging miR-411-5p. In addition, knockdown of LINC00664 restrained tumor growth of OSCC in vivo. CONCLUSION Our study identified the oncogenic roles of LINC00664 in OSCC tumorigenesis and EMT via KLF9/LINC00664/miR-411-5p/KLF9 feedback loop, which provides new perspectives of the potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Chengyong Wang
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qinglian Wang
- Department of Stomatology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
21
|
Dong Y, Wen W, Yuan T, Liu L, Li X. Novel Prognostic Biomarkers for Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC) Patients via Analysis of Competing Endogenous RNA (ceRNA) Network. DISEASE MARKERS 2023; 2023:1766080. [PMID: 36817087 PMCID: PMC9936453 DOI: 10.1155/2023/1766080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 02/10/2023]
Abstract
Background Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) is a common malignant gynecological cancer. The ceRNA networks play important roles in many tumors, while RILPL2-related ceRNA network has been seldom studied in CESC. Methods All CESC data was obtained from TCGA database. Differentially expressed RNAs and predicted target RNAs were cross analyzed to construct ceRNA network. RNA and clinicopathological characteristics' influence on overall survival (OS) were determined by univariate and multivariate Cox regression analyses. Lasso regression was used to construct the prediction model. Coexpression analysis was performed to explore the association of gene expression with CESC. This was followed by an experimental validation based on these results. Results Between high and low RILPL2 expression CESC patients, totally 1227 DEmRNAs, 39 DEmiRNAs, and 1544 DElncRNAs were identified. After multiple cross analyses, 1 miRNA hsa-miR-1293, 20 mRNAs, and 43 lncRNAs were maintained to construct ceRNA network. CADM3-AS1, LINC00092, and ZNF667-AS1 in ceRNA network were significantly associated with the OS of CESC patients, and patients with low expression of these lncRNAs had worse prognosis. Significant lower expressions of these lncRNAs were also observed in CESC cell line compared with normal cell line. Conclusion Low expressions of CADM3-AS1, LINC00092, and ZNF667-AS1 in ceRNA network were probably promising poor prognostic biomarkers for CESC patients. The genes show a prospective research area for CESC-targeted treatment in the future.
Collapse
Affiliation(s)
- Yanru Dong
- Department of Morphological Experiment Center, Medical College of Yanbian University, Yanji City, 133000 Jilin, China
| | - Weibo Wen
- Department of Morphological Experiment Center, Medical College of Yanbian University, Yanji City, 133000 Jilin, China
| | - Tiezheng Yuan
- Department of Morphological Experiment Center, Medical College of Yanbian University, Yanji City, 133000 Jilin, China
| | - Lan Liu
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji City, 133000 Jilin, China
| | - Xiangdan Li
- Department of Morphological Experiment Center, Medical College of Yanbian University, Yanji City, 133000 Jilin, China
| |
Collapse
|
22
|
Huang G, Jiang Z, Zhu W, Wu Z. Exosomal circKDM4A Induces CUL4B to Promote Prostate Cancer Cell Malignancy in a miR-338-3p-Dependent Manner. Biochem Genet 2023; 61:390-409. [PMID: 35930171 DOI: 10.1007/s10528-022-10251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/22/2022] [Indexed: 01/24/2023]
Abstract
Circular RNA lysine demethylase 4A (circKDM4A) is also named circ_0012098 and its abnormal expression has been confirmed in serum exosomes of prostate cancer (PC) patients. However, whether PC progression involves the exosomal circ_0012098 remains unknown. RNA expression of circKDM4A, microRNA-338-3p (miR-338-3p) and cullin 4B (CUL4B) was detected by quantitative real-time polymerase chain reaction. Protein expression was checked by Western blot. The positive expression rate of nuclear proliferation marker (ki-67) was analyzed by immunohistochemistry assay. Dual-luciferase reporter assay and RNA immunoprecipitation assay were used to identify the interaction between miR-338-3p and circKDM4A or CUL4B. Mouse model assay was performed to determine the effect of exosomal circKDM4A on tumorigenesis in vivo. CircKDM4A expression was significantly upregulated in the serum exosomes from PC patients compared with the exosomes from healthy volunteers. Exosomes treatment promoted the proliferation, migration and invasion of PC cells but inhibited apoptosis; however, these effects were attenuated after circKDM4A knockdown. Meanwhile, circKDM4A depletion restored exosome-increased circKDM4A expression. Additionally, circKDM4A acted as a miR-338-3p sponge, and miR-338-3p bound to CUL4B in PC cells. CircKDM4A regulated the effect of exosome-induced PC cell malignancy by interacting with miR-338-3p and CUL4B. Moreover, circKDM4A silencing relieved exosome-induced tumor growth in vivo. Exosomal circKDM4A promoted PC malignant progression by the miR-338-3p/CUL4B axis, providing a therapeutic target for PC.
Collapse
Affiliation(s)
- Guangyi Huang
- Department of Urology Surgery, the Fourth Affiliated Hospital Zhejiang University School of Medicine, Shangcheng Dadao, Yiwu City, 322001, Zhejiang Province, China.
| | - Zeping Jiang
- Department of Urology Surgery, the Fourth Affiliated Hospital Zhejiang University School of Medicine, Shangcheng Dadao, Yiwu City, 322001, Zhejiang Province, China
| | - Wuan Zhu
- Department of Urology Surgery, the Fourth Affiliated Hospital Zhejiang University School of Medicine, Shangcheng Dadao, Yiwu City, 322001, Zhejiang Province, China
| | - Zhiyue Wu
- Department of Urology Surgery, the Fourth Affiliated Hospital Zhejiang University School of Medicine, Shangcheng Dadao, Yiwu City, 322001, Zhejiang Province, China
| |
Collapse
|
23
|
Peña-Flores JA, Enríquez-Espinoza D, Muela-Campos D, Álvarez-Ramírez A, Sáenz A, Barraza-Gómez AA, Bravo K, Estrada-Macías ME, González-Alvarado K. Functional Relevance of the Long Intergenic Non-Coding RNA Regulator of Reprogramming (Linc-ROR) in Cancer Proliferation, Metastasis, and Drug Resistance. Noncoding RNA 2023; 9:ncrna9010012. [PMID: 36827545 PMCID: PMC9965135 DOI: 10.3390/ncrna9010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Cancer is responsible for more than 10 million deaths every year. Metastasis and drug resistance lead to a poor survival rate and are a major therapeutic challenge. Substantial evidence demonstrates that an increasing number of long non-coding RNAs are dysregulated in cancer, including the long intergenic non-coding RNA, regulator of reprogramming (linc-ROR), which mostly exerts its role as an onco-lncRNA acting as a competing endogenous RNA that sequesters micro RNAs. Although the properties of linc-ROR in relation to some cancers have been reviewed in the past, active research appends evidence constantly to a better comprehension of the role of linc-ROR in different stages of cancer. Moreover, the molecular details and some recent papers have been omitted or partially reported, thus the importance of this review aimed to contribute to the up-to-date understanding of linc-ROR and its implication in cancer tumorigenesis, progression, metastasis, and chemoresistance. As the involvement of linc-ROR in cancer is elucidated, an improvement in diagnostic and prognostic tools could promote and advance in targeted and specific therapies in precision oncology.
Collapse
|
24
|
Lv N, Shen S, Chen Q, Tong J. Long noncoding RNAs: glycolysis regulators in gynaecologic cancers. Cancer Cell Int 2023; 23:4. [PMID: 36639695 PMCID: PMC9838043 DOI: 10.1186/s12935-023-02849-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The three most common gynaecologic cancers that seriously threaten female lives and health are ovarian cancer, cervical cancer, and endometrial cancer. Glycolysis plays a vital role in gynaecologic cancers. Several long noncoding RNAs (lncRNAs) are known to function as oncogenic molecules. LncRNAs impact downstream target genes by acting as ceRNAs, guides, scaffolds, decoys, or signalling molecules. However, the role of glycolysis-related lncRNAs in regulating gynaecologic cancers remains poorly understood. In this review, we emphasize the functional roles of many lncRNAs that have been found to promote glycolysis in gynaecologic cancers and discuss reasonable strategies for future research.
Collapse
Affiliation(s)
- Nengyuan Lv
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Siyi Shen
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Qianying Chen
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Jinyi Tong
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| |
Collapse
|
25
|
Wu S, Zhu H, Wu Y, Wang C, Duan X, Xu T. Molecular mechanisms of long noncoding RNAs associated with cervical cancer radiosensitivity. Front Genet 2023; 13:1093549. [PMID: 36685972 PMCID: PMC9846343 DOI: 10.3389/fgene.2022.1093549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Despite advances in cervical cancer screening and human papilloma virus (HPV) vaccines, cervical cancer remains a global health burden. The standard treatment of cervical cancer includes surgery, radiation therapy, and chemotherapy. Radiotherapy (RT) is the primary treatment for advanced-stage disease. However, due to radioresistance, most patients in the advanced stage have an adverse outcome. Recent studies have shown that long noncoding RNAs (lncRNAs) participate in the regulation of cancer radiosensitivity by regulating DNA damage repair, apoptosis, cancer stem cells (CSCs), and epithelial-mesenchymal transition (EMT). In this review, we summarize the molecular mechanisms of long noncoding RNAs in cervical cancer and radiosensitivity, hoping to provide a theoretical basis and a new molecular target for the cervical cancer RT in the clinic.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianmin Xu
- Department of Obstetrics and Gynecology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
LncRNA MBNL1-AS1 Suppresses Cell Proliferation and Metastasis of Pancreatic Adenocarcinoma through Targeting Carcinogenic miR-301b-3p. Genet Res (Camb) 2023; 2023:6785005. [PMID: 36908851 PMCID: PMC9995204 DOI: 10.1155/2023/6785005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) has been a huge challenge to public health due to its increasing incidence, frequent early metastasis, and poor outcome. The molecular basis of tumorigenesis and metastasis in PAAD is largely unclear. Here, we identified a novel tumor-suppressor long noncoding RNA (lncRNA) MBNL1-AS1, in PAAD and revealed its downstream mechanism. Quantitative real-time PCR (qRT-PCR) data showed that MBNL1-AS1 expression was significantly downregulated in PAAD tissues and cells, which was closely associated with metastasis and poor prognosis. Cell counting kit-8 (CCK-8) assay, transwell assay, and western blot verified that overexpression of MBNL1-AS1 suppressed cell proliferation, migration, and epithelial mesenchymal transformation (EMT) behavior in PAAD cells. By using a dual luciferase reporter gene system, we confirmed that miR-301b-3p was a direct target of MBNL1-AS1. Further mechanismic study revealed that upregulation of miR-301b-3p abolished the inhibitory effect of MBNL1-AS1 overexpression on cell proliferation, tumorigenesis, migration and EMT. Our results demonstrate that MBNL1-AS1 plays a tumor-suppressive role in PAAD mainly by downregulating miR-301b-3p, providing a novel therapeutic target for PAAD.
Collapse
|
27
|
CircPIM3 regulates taxol resistance in non-small cell lung cancer via miR-338-3p/TNFAIP8 axis. Anticancer Drugs 2023; 34:115-125. [PMID: 36539365 DOI: 10.1097/cad.0000000000001347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Numerous work has revealed the involvement of circular RNA (circRNA) in regulating chemotherapy resistance. Here, we investigate circPIM3 role in taxol (Tax) resistance in non-small cell lung cancer (NSCLC). CircPIM3, microRNA (miR)-338-3p and tumor necrosis factor-alpha-induced protein-8 (TNFAIP8) expression were detected via quantitative real-time PCR, western blot or immunohistochemistry assay. Tax resistance was evaluated using cell counting kit-8, cell proliferation was measured by colony formation assay, cell cycle and apoptosis were examined via flow cytometry. The interplay between miR-338-3p and circPIM3 or TNFAIP8 was confirmed by dual-luciferase reporter assay. Finally, the effect of circPIM3 on Tax resistance in NSCLC in vivo was investigated by xenograft models. CircPIM3 and TNFAIP8 were upregulated in Tax-resistant NSCLC tissue and cell samples. Reducing circPIM3 expression inhibited Tax resistance, proliferation and induced cycle arrest and apoptosis in Tax-resistant NSCLC cells. Mechanically, circPIM3 absence led to downregulation of TNFAIP8 via absorbing miR-338-3p. Additionally, circPIM3 depletion increased Tax sensitivity of NSCLC in vivo. Silencing of circPIM3 suppressed Tax resistance in Tax-resistant NSCLC cells through regulation of the miR-338-3p/TNFAIP8 axis.
Collapse
|
28
|
Wang J, Li G, Lin M, Lin S, Wu L. microRNA-338-3p suppresses lipopolysaccharide-induced inflammatory response in HK-2 cells. BMC Mol Cell Biol 2022; 23:60. [PMID: 36564725 PMCID: PMC9789656 DOI: 10.1186/s12860-022-00455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Inflammation is the most common cause of kidney damage, and inflammatory responses in a number of diseases are mediated by microRNA-338-3p (miR-338-3p). However, there are only a few reports which described the regulation of miR-338-3p in human proximal tubular cells. The goal of this study was to see how miR-338-3p affected lipopolysaccharide (LPS)-caused inflammatory response in HK-2 cells. METHODS LPS was used to construct an inflammatory model in HK-2 cells. miR-338-3p mimic was used to increase the levels of miR-338-3p in HK-2 cells. MTT, JC-1 staining, and apoptosis assays were used to detect cell viability, mitochondrial membrane potential (MMP), and apoptosis, respectively. The production of inflammatory factors and the levels of p38, p65, phospho-p65, phospho-p38, Bax, Bcl-2, cleaved caspase-9, and cleaved caspase-3 were investigated using real-time polymerase chain reaction, western blotting, or enzyme-linked immunosorbent assay. RESULTS The levels of miR-338-3p were significantly lower in serum from patients with sepsis-induced kidney injury compared to the serum from healthy volunteers (P < 0.05). LPS reduced the level of miR-338-3p in HK-2 cells (P < 0.05). HK-2 cell viability, mitochondrial membrane potential, and Bcl-2 mRNA and protein levels were decreased by LPS (all P < 0.05). Apoptosis, the mRNA and protein levels of inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) and Bax, and the levels of cleaved caspase-9 and caspase-3 were increased by LPS (all P < 0.05). Raising the level of miR-338-3p mitigated these effects of LPS (all P < 0.05). CONCLUSION LPS-induced inflammation in HK-2 cells is reduced by miR-338-3p.
Collapse
Affiliation(s)
- Jing Wang
- Department of nosocomial infection management, Fujian Maternity and Child Health Hospital, Fujian Fuzhou, 350001 China
| | - Guokai Li
- Department of nosocomial infection management, Fujian Maternity and Child Health Hospital, Fujian Fuzhou, 350001 China
| | - Min Lin
- Pediatric intensive care unit, Fujian Maternity and Child Health Hospital, Fujian Fuzhou, 350001 China
| | - Sheng Lin
- Department of pediatrics, Fujian Maternity and Child Health Hospital, No. 18 Daoshan Road, Gulou District, Fujian Fuzhou, 350001 China
| | - Ling Wu
- Department of pediatrics, Fujian Maternity and Child Health Hospital, No. 18 Daoshan Road, Gulou District, Fujian Fuzhou, 350001 China
| |
Collapse
|
29
|
Zhang H, Du Y, Xin P, Man X. The LINC00852/miR-29a-3p/JARID2 axis regulates the proliferation and invasion of prostate cancer cell. BMC Cancer 2022; 22:1269. [PMID: 36471281 PMCID: PMC9724404 DOI: 10.1186/s12885-022-10263-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022] Open
Abstract
Long intergenic non-coding RNA 00852 (LINC00852) has been shown to promote the progression of many different cancers including prostate cancer. However, the involved mechanism in promoting the proliferation, migration and invasion of prostate cancer cells has not been reported. In this study, we found that LINC00852 was highly expressed in the tissue of prostate cancer using quantitative reverse transcription PCR (qRT-PCR). CCK-8 assay, colony formation experiment, Transwell migration and invasion experiments were performed to prove that the up-regulation of LINC00852 could promote the proliferation, migration and invasion of prostate cancer cells in vitro. Xenograft tumors experiments in nude mice confirmed that up-regulation of LINC00852 promoted the proliferation of prostate cancer cells in vivo. Bioinformatics predictions and dual-luciferase reporter gene assay showed that miR-29a-3p binds to the 3'-untranslated region of JARID2, and the enhancement of miR-29a-3p could reverse the effect of LINC00852 overexpression in vitro. Moreover, the results of qRT-PCR and western blot showed that LINC00852 could regulate the expression of JARID2 through miR-29a-3p induction. In summary, we demonstrated that LINC00852 played a key role in promoting the prostate cancer, and LINC00852/miR-29a-3p/JARID2 axis could be used as a target for prostate cancer treatment.
Collapse
Affiliation(s)
- Hao Zhang
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, 155 North Nanjing Street, 110001 Shenyang, Liaoning China ,grid.412449.e0000 0000 9678 1884Institute of Urology, China Medical University, Liaoning Shenyang, China
| | - Yang Du
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, 155 North Nanjing Street, 110001 Shenyang, Liaoning China
| | - Peng Xin
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, 155 North Nanjing Street, 110001 Shenyang, Liaoning China
| | - Xiaojun Man
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, 155 North Nanjing Street, 110001 Shenyang, Liaoning China
| |
Collapse
|
30
|
Qiao Z, Xing Y, Zhang Q, Tang Y, Feng R, Pang W. Tamoxifen resistance-related ceRNA network for breast cancer. Front Cell Dev Biol 2022; 10:1023079. [PMID: 36506097 PMCID: PMC9733938 DOI: 10.3389/fcell.2022.1023079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Tamoxifen (TMX) is one of the most widely used drugs to treat breast cancer (BC). However, acquired drug resistance is still a major obstacle to its application, rendering it crucial to explore the mechanisms of TMX resistance in BC. This aims of this study were to identify the mechanisms of TMX resistance and construct ceRNA regulatory networks in breast cancer. Methods: GEO2R was used to screen for differentially expressed mRNAs (DEmRNAs) leading to drug resistance in BC cells. MiRTarbase and miRNet were used to predict miRNAs and lncRNAs upstream, and the competing endogenous RNA (ceRNA) regulatory network of BC cell resistance was constructed by starBase. We used the Kaplan-Meier plotter and Gene Expression Profiling Interactive Analysis (GEPIA) to analyze the expression and prognostic differences of genes in the ceRNA network with core axis, and qRT-PCR was used to further verify the above conclusions. Results: We found that 21 DEmRNAs were upregulated and 43 DEmRNA downregulated in drug-resistant BC cells. DEmRNAs were noticeably enriched in pathways relevant to cancer. We then constructed a protein-protein interaction (PPI) network based on the STRING database and defined 10 top-ranked hub genes among the upregulated and downregulated DEmRNAs. The 20 DEmRNAs were predicted to obtain 113 upstream miRNAs and 501 lncRNAs. Among them, 7 mRNAs, 22 lncRNAs, and 11 miRNAs were used to structure the ceRNA regulatory network of drug resistance in BC cells. 4 mRNAs, 4 lncRNAs, and 3 miRNAs were detected by GEPIA and the Kaplan-Meier plotter to be significantly associated with BC expression and prognosis. The differential expression of the genes in BC cells was confirmed by qRT-PCR. Conclusion: The ceRNA regulatory network of TMX-resistant BC was successfully constructed and confirmed. This will provide an important resource for finding therapeutic targets for TMX resistance, where the discovery of candidate conventional mechanisms can aid clinical decision-making. In addition, this resource will help discover the mechanisms behind this type of resistance.
Collapse
Affiliation(s)
- Zipeng Qiao
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, China,School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Yu Xing
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, China,School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Qingquan Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, China,School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Yongjun Tang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, China,School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Ruifa Feng
- The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China,*Correspondence: Ruifa Feng, ; Weiyi Pang,
| | - Weiyi Pang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, China,School of Public Health, Guilin Medical University, Guilin, Guangxi, China,School of Humanities and Management, Guilin Medical University, Guilin, Guangxi, China,*Correspondence: Ruifa Feng, ; Weiyi Pang,
| |
Collapse
|
31
|
Sun Q, Wang L, Zhang C, Hong Z, Han Z. Cervical cancer heterogeneity: a constant battle against viruses and drugs. Biomark Res 2022; 10:85. [PMCID: PMC9670454 DOI: 10.1186/s40364-022-00428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/30/2022] [Indexed: 11/19/2022] Open
Abstract
Cervical cancer is the first identified human papillomavirus (HPV) associated cancer and the most promising malignancy to be eliminated. However, the ever-changing virus subtypes and acquired multiple drug resistance continue to induce failure of tumor prevention and treatment. The exploration of cervical cancer heterogeneity is the crucial way to achieve effective prevention and precise treatment. Tumor heterogeneity exists in various aspects including the immune clearance of viruses, tumorigenesis, neoplasm recurrence, metastasis and drug resistance. Tumor development and drug resistance are often driven by potential gene amplification and deletion, not only somatic genomic alterations, but also copy number amplifications, histone modification and DNA methylation. Genomic rearrangements may occur by selection effects from chemotherapy or radiotherapy which exhibits genetic intra-tumor heterogeneity in advanced cervical cancers. The combined application of cervical cancer therapeutic vaccine and immune checkpoint inhibitors has become an effective strategy to address the heterogeneity of treatment. In this review, we will integrate classic and recently updated epidemiological data on vaccination rates, screening rates, incidence and mortality of cervical cancer patients worldwide aiming to understand the current situation of disease prevention and control and identify the direction of urgent efforts. Additionally, we will focus on the tumor environment to summarize the conditions of immune clearance and gene integration after different HPV infections and to explore the genomic factors of tumor heterogeneity. Finally, we will make a thorough inquiry into completed and ongoing phase III clinical trials in cervical cancer and summarize molecular mechanisms of drug resistance among chemotherapy, radiotherapy, biotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Qian Sun
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Liangliang Wang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Cong Zhang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhenya Hong
- grid.33199.310000 0004 0368 7223Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhiqiang Han
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
32
|
Wu T, Han N, Zhao C, Huang X, Su P, Li X. The long non-sacoding RNA TMEM147-AS1/miR-133b/ZNF587 axis regulates the Warburg effect and promotes prostatic carcinoma invasion and proliferation. J Gene Med 2022; 24:e3453. [PMID: 36181243 DOI: 10.1002/jgm.3453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/05/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The Warburg effect is a characteristic tumor cell behavior regarded as one of the cancer hallmarks and promotes tumor progression by promoting glucose uptake and lactate production. Long non-coding RNAs (lncRNAs) had been reported to emerge as a vital function in cancer development. The present research is designed to investigate the underlying molecular mechanism of lncRNA TMEM147 antisense RNA 1 (TMEM147-AS1) on aerobic glycolysis in prostatic carcinoma. METHODS lncRNA TMEM147-AS1, miR-133b and ZNF587 levels in prostatic carcinoma tissues and cells were detected by a polymerase chain reaction or western blot assays. Cell viability or invasion was determined by Edu (i.e. 5-ethynyl-2'-deoxyuridine), MTT (i.e. 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) or transwell assays. Hematoxylin and eosin and immunohistochemical staining were applied for histopathological examination. Tumor xenograft model was employed to investigate tumor growth in vivo. The combinative relationship between TMEM147-AS1 or ZNF587 and miR-133b was confirmed by a luciferase reporter assay. RESULTS TMEM147-AS1 and ZNF587 were up-regulated in prostatic carcinoma tissues and cells. Knockdown of TMEM147-AS1 or ZNF587 within prostate cancer cells significantly restrained cell viability, invasion and aerobic glycolysis in vitro and suppressed the neoplasia of prostatic carcinoma in vivo. miR-133b was directly targeted in both TMEM147-AS1 and ZNF587. Overexpression of miR-133b restrained prostate cancer cell viability, invasion and aerobic glycolysis. TMEM147-AS1 competitively targeted miR-133b, therefore counteracting miR-133b-mediated repression on ZNF587. CONCLUSIONS TMEM147-AS1 plays a tumor-promoting action in prostatic carcinoma aerobic glycolysis via affecting the miR-133b/ZNF587 axis, therefore regulating prostatic carcinoma cells invasion and proliferation. These outcomes implied that TMEM147-AS1 could be an effective treatment strategy for further study of prostatic carcinoma.
Collapse
Affiliation(s)
- Tao Wu
- Department of Urology, the Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Niwei Han
- Department of Laboratory Medicine, the Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Changyong Zhao
- Department of Urology, the Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiang Huang
- Department of Urology, the Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Peng Su
- Department of Urology, the Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaoguang Li
- Department of Urology, the Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
33
|
Yao Y, Meng Z, Li W, Xu Y, Wang Y, Suolang S, Xi G, Cao L, Guo M. Profiling and Functional Analysis of long non-coding RNAs in yak healthy and atretic follicles. Anim Reprod 2022; 19:e20210131. [PMID: 36313598 PMCID: PMC9613354 DOI: 10.1590/1984-3143-ar2021-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 09/13/2022] [Indexed: 11/26/2022] Open
Abstract
Yak is the livestock on which people live in plateau areas, but its fecundity is low. Follicular development plays a decisive role in yak reproductive performance. As an important regulatory factor, the expression of long non-coding RNA (lncRNAs) in yak follicular development and its regulatory mechanism remains unclear. To explore the differentially expressed lncRNAs between healthy and atretic follicular in yaks. We used RNA-seq to construct lncRNA, miRNA, and mRNA expression profiles in yak atretic and healthy follicles, and the RNA sequence results were identified by qPCR. In addition, the correlation of lncRNA and targeted mRNA was also analyzed by Starbase software. Moreover, lncRNA/miRNA/mRNA networks were constructed by Cytoscape software, and the network was verified by dual-luciferase analysis. A total of 682 novel lncRNAs, 259 bta-miRNAs, and 1704 mRNAs were identified as differentially expressed between healthy and atretic follicles. Among them, 135 mRNAs were positively correlated with lncRNA expression and 97 were negatively correlated, which may be involved in the yak follicular development. In addition, pathway enrichment analysis of differentially expressed lncRNA host genes by Kyoto Genome Encyclopedia (KEGG) showed that host genes were mainly involved in hormone secretion, granulosa cell apoptosis, and follicular development. In conclusion, we identified a series of novel lncRNAs, constructed the lncRNA ceRNA regulatory network, and provided comprehensive resources for exploring the role of lncRNAs in yak ovarian follicular development.
Collapse
Affiliation(s)
- Yilong Yao
- Animal Science Department, Tibet Agriculture & Animal Husbandry College, Nyingchi, Tibet, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaoyi Meng
- Animal Science Department, Tibet Agriculture & Animal Husbandry College, Nyingchi, Tibet, China.,Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease Research, Tibet Agriculture & Animal Husbandry College, Nyingchi, Tibet, China
| | - Wangchang Li
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yefen Xu
- Animal Science Department, Tibet Agriculture & Animal Husbandry College, Nyingchi, Tibet, China.,Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease Research, Tibet Agriculture & Animal Husbandry College, Nyingchi, Tibet, China
| | - Yunlu Wang
- Animal Science Department, Tibet Agriculture & Animal Husbandry College, Nyingchi, Tibet, China.,Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease Research, Tibet Agriculture & Animal Husbandry College, Nyingchi, Tibet, China
| | - Sizhu Suolang
- Animal Science Department, Tibet Agriculture & Animal Husbandry College, Nyingchi, Tibet, China
| | - Guangyin Xi
- College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Lei Cao
- Animal Science Department, Tibet Agriculture & Animal Husbandry College, Nyingchi, Tibet, China
| | - Min Guo
- College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| |
Collapse
|
34
|
Chen C, Liu L. Silencing of lncRNA KLF3-AS1 represses cell growth in osteosarcoma via miR-338-3p/MEF2C axis. J Clin Lab Anal 2022; 36:e24698. [PMID: 36250223 DOI: 10.1002/jcla.24698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a highly recurrent malignancy occurring among adolescents. The goal of this research was to scrutinize the role and action mechanism of KLF3-AS1 in OS. METHODS Western blotting and quantitative reverse transcription real-time PCR were conducted to ascertain the mRNA expressions of miR-338-3p, KLF3-AS1, and MEF2C in OS cell lines and tissue samples. Colony formation and CCK-8 experiments were done to evaluate the proliferative capacity of the cells. Western blotting was also executed to measure the relative expressions of the proteins Bcl-2 and Bax. RNA immunoprecipitation and dual luciferase reporter experiments were carried out to validate the target relationships among MEF2C, KLF3-AS1, and miR-338-3p. Mouse xenograft models were created to assess the influences of KLF3-AS1 on the growth of tumors in vivo. RESULTS Elevated levels of KLF3-AS1 and MEF2C and reduced amounts of miR-338-3p were identified in OS. KLF3-AS1 targeted miR-338-3p, and miR-338-3p further targeted MEF2C. Silencing KLF3-AS1 induced apoptosis and attenuated proliferation in vitro and repressed the tumor growth in vivo. Inhibiting miR-338-3p inverted the cancer-suppressing effects of KLF3-AS1 silencing. Meanwhile, loss of MEF2C partially eliminated the effects brought about by miR-338-3p downregulation, namely the stimulation of cell growth and suppression of apoptosis. CONCLUSIONS Silencing of KLF3-AS1 could repress the growth of cells and induce apoptosis by regulating miR-338-3p/MEF2C in OS. This suggests that the regulatory axis KLF3-AS1/miR-338-3p/MEF2C is a prospective target for OS treatment.
Collapse
Affiliation(s)
- Chunfa Chen
- Department of Emergency Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Liang Liu
- Department of Spinal Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| |
Collapse
|
35
|
Cai Y, Li Y. LncRNA Gm43843 Promotes Cardiac Hypertrophy via miR-153-3p/Cacna1c Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2160804. [PMID: 36262165 PMCID: PMC9576395 DOI: 10.1155/2022/2160804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been reported to engage in many human diseases, including cardiac hypertrophy. Cardiac hypertrophy was mainly caused by excessive pressure load, which can eventually lead to a decline in myocardial contractility. Gm43843, a novel lncRNA, has not been well explored in cardiac hypertrophy so far. Herein, we are going to search the function and the underlying molecular mechanism of Gm43843 in cardiac hypertrophy. Gm43843 levels were measured via qRT-PCR in mouse myocardial cells when they are treated with angiogenin II (Ang II) or transfected with different plasmids. Western blot assay was implemented to detect the cardiac hypertrophy-related protein markers, while the cell was analyzed via immunofluorescence (IF) assay to evaluate the hypertrophy. Meanwhile, the binding of Gm43843 and the putative targets was examined based on mechanistic assay results. We found that Gm43843 expression was increased with the elevated concentration of Ang II. Inhibited Gm43843 was detected to reduce the hypertrophy of mouse myocardial cells. Meanwhile, Gm43843/miR-153-3p/Cacna1c axis was found to modulate cardiac hypertrophy. In short, Gm43843 promotes cardiac hypertrophy via miR-153-3p/Cacna1c axis.
Collapse
Affiliation(s)
- Yuhua Cai
- Department of Cardiology, Jingzhou First Municipal Hospital, Jingzhou 434000, Hubei Province, China
| | - Yunpeng Li
- Department of Cardiovasology, Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| |
Collapse
|
36
|
Xu H, Tang Y, He C, Tian Y, Ni R. Prognostic value of lncRNA HOXA-AS3 in cervical cancer by targeting miR-29a-3p and its regulatory effect on tumor progression. J Obstet Gynaecol Res 2022; 48:2594-2602. [PMID: 35817473 DOI: 10.1111/jog.15360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND With the promotion of human papillomavirus (HPV) vaccine, cervical cancer has become a current research hotspot, and lncRNA has been confirmed to be used in the research of different diseases. This article systematically expounds the regulation and potential mechanisms of HOXA cluster antisense RNA 3 (HOXA-AS3) in cervical cancer, and discusses its possibility as a prognostic biomarker for cervical cancer. METHODS Relative expression levels of HOXA-AS3 and miR-29a-3p in tissues and cells were determined by real-time quantitative polymerase chain reaction (RT-qPCR). The survival of cervical cancer patients was analyzed by Kaplan-Meier method and the cumulative survival function table was drawn. The proliferation, migration, and invasion levels of HOXA-AS3 in cells were detected according to cell counting kit-8 (CCK-8) and transwell method. The dual-luciferase reporter gene assay confirmed the mechanism of action between HOXA-AS3 and miR-29a-3p. RESULTS HOXA-AS3 was elevated and miR-29a-3p was decreased in tissues and cells of cervical cancer patients. Knockdown of HOXA-AS3 could inhibit the progression of cervical cancer and was more conducive to patient survival. Bioinformatics analysis confirmed that HOXA-AS3 negatively regulates cervical cancer development by sponging miR-29a-3p. CONCLUSION In this research, knockdown of HOXA-AS3 could alleviate the process of cervical cancer by sponging miR-29a-3p, suggesting that HOXA-AS3 may be a potential prognostic target of cervical cancer, which could provide a theoretical basis for future clinical research of cervical cancer.
Collapse
Affiliation(s)
- Hui Xu
- Department of Obstetrics and Gynecology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Yan Tang
- Department of Obstetrics and Gynecology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Chuanyong He
- Department of Obstetrics and Gynecology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Yong Tian
- Department of Obstetrics and Gynecology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Rong Ni
- Department of Obstetrics and Gynecology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| |
Collapse
|
37
|
Integrated Bioinformatics and Validation of lncRNA-Mediated ceRNA Network in Myocardial Ischemia/Reperfusion Injury. J Immunol Res 2022; 2022:7260801. [PMID: 36189147 PMCID: PMC9519285 DOI: 10.1155/2022/7260801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Background Myocardial ischemia/reperfusion (MI/R) injury is a common pathology in ischemia heart disease. Long noncoding RNAs (lncRNAs) are significant regulators related to many ischemia/reperfusion conditions. This study is aimed at exploring the molecule mechanism of lncRNA-mediated competing endogenous RNA (ceRNA) network in MI/R. Methods The dataset profiles of MI/R and normal tissues (GSE130217 and GSE124176) were obtained from the GEO database. Integrated bioinformatics were performed to screen out differentially expressed genes (DEGs). Thereafter, an lncRNA-mediated ceRNA network was constructed by the starBase database. The GO annotations and KEGG pathway analysis were conducted to study action mechanism and related pathways of DEGs in MI/R. A model of hypoxia/reoxygenation- (H/R-) treated HL-1 cell was performed to verify the expression of lncRNAs through qRT-PCR. Results 2406 differentially expressed- (DE-) mRNAs, 70 DE-lncRNAs, and 156 DE-miRNAs were acquired. These DEGs were conducted to construct an lncRNA-mediated ceRNA network, and a subnetwork including lncRNA Xist/miRNA-133c/mRNA (Slc30a9) was screen out. The functional enrichment analyses revealed that the lncRNAs involved in the ceRNA network might functions in oxidative stress and calcium signaling pathway. The lncRNA Xist expression is reduced under H/R conditions, followed by the increased level of miRNA-133c, thus downregulating the expression of Slc30a9. Conclusion In sum, the identified ceRNA network which included the lncRNA Xist/miR-133c/Slc30a9 axis might contribute a better understanding to the pathogenesis and development of MI/R injury and offer a novel targeted therapy way.
Collapse
|
38
|
Liu X, Zhou L, Gao M, Dong S, Hu Y, Hu C. Signature of seven cuproptosis-related lncRNAs as a novel biomarker to predict prognosis and therapeutic response in cervical cancer. Front Genet 2022; 13:989646. [PMID: 36204323 PMCID: PMC9530991 DOI: 10.3389/fgene.2022.989646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Given the high incidence and high mortality of cervical cancer (CC) among women in developing countries, identifying reliable biomarkers for the prediction of prognosis and therapeutic response is crucial. We constructed a prognostic signature of cuproptosis-related long non-coding RNAs (lncRNAs) as a reference for individualized clinical treatment. Methods: A total of seven cuproptosis-related lncRNAs closely related to the prognosis of patients with CC were identified and used to construct a prognostic signature via least absolute shrinkage and selection operator regression analysis in the training set. The predictive performance of the signature was evaluated by Kaplan-Meier (K-M) analysis, receiver operating characteristic (ROC) analysis, and univariate and multivariate Cox analyses. Functional enrichment analysis and single-sample gene set enrichment analysis were conducted to explore the potential mechanisms of the prognostic signature, and a lncRNA-microRNA-mRNA network was created to investigate the underlying regulatory relationships between lncRNAs and cuproptosis in CC. The associations between the prognostic signature and response to immunotherapy and targeted therapy were also assessed. Finally, the prognostic value of the signature was validated using the CC tissues with clinical information in my own center. Results: A prognostic signature was developed based on seven cuproptosis-related lncRNAs, including five protective factors (AL441992.1, LINC01305, AL354833.2, CNNM3-DT, and SCAT2) and two risk factors (AL354733.3 and AC009902.2). The ROC curves confirmed the superior predictive performance of the signature compared with conventional clinicopathological characteristics in CC. The ion transport-related molecular function and various immune-related biological processes differed significantly between the two risk groups according to functional enrichment analysis. Furthermore, we discovered that individuals in the high-risk group were more likely to respond to immunotherapy and targeted therapies including trametinib and cetuximab than those in the low-risk group. Finally, CC tissues with clinical data from my own center further verify the robustness of the seven-lncRNA risk signature. Conclusion: We generated a cuproptosis-related lncRNA risk signature that could be used to predict prognosis of CC patients. Moreover, the signature could be used to predict response to immunotherapy and chemotherapy and thus could assist clinicians in making personalized treatment plans for CC patients.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Lei Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Minghui Gao
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Shuhong Dong
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Yanan Hu
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Chunjie Hu
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| |
Collapse
|
39
|
Guo Q, Zhang L, Zhao L, Pang X, Wang P, Sun H, Liu S. MEF2C-AS1 regulates its nearby gene MEF2C to mediate cervical cancer cell malignant phenotypes in vitro. Biochem Biophys Res Commun 2022; 632:48-54. [DOI: 10.1016/j.bbrc.2022.09.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 12/24/2022]
|
40
|
Si C, Yang L, Cai X. LncRNA LINC00649 aggravates the progression of cervical cancer through sponging miR-216a-3p. J Obstet Gynaecol Res 2022; 48:2853-2862. [PMID: 36054700 DOI: 10.1111/jog.15405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
Abstract
AIM Increasing studies have revealed the participation of lncRNAs in the occurrence and development of cervical cancer. This study explored the influence of lncRNA LINC00649 in cervical cancer. METHODS Expression of LINC00649 and miR-216a-3p in cervical cancer was detected by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). The Kaplan-Meier curve and Cox regression analyses were conducted to evaluate the clinical value of LINC00649 in cervical cancer. The roles of LINC00649 in cervical cancer cells were detected by transfecting siRNA through cellular function assays. RESULTS LINC00649 expression was increased in cervical cancer tissues, especially in squamous histology, positive lymph node metastasis, and high-FIGO stage tissues. The higher expression of LINC00649 predicted a shorter survival rate for patients. LINC00649 could bind directly with miR-216a-3p. Silence of LINC00649 could enhance the expression of miR-216a-3p and suppress the cervical cancer cell proliferation abilities, migration capacities, and invasion power. Whereas, transfection of miR-216a-3p inhibitor partially reverses the above cellular activities changes in cervical cancer cells. CONCLUSIONS The LINC00649 expression may act as a prognostic predictor and may aggravate cervical cancer progression by targeting miR-216a-3p, providing potential therapeutic targets for patients with cervical cancer.
Collapse
Affiliation(s)
- Congying Si
- Operation Room, Zhuji Maternal and Child Health Hospital, Zhuji, China
| | - Lanlan Yang
- Delivery Room, Xinchang County People's Hospital, Shaoxing, China
| | - Xu Cai
- Department of Gynaecology, Wenling Women's and Children's Hospital, Wenling, China
| |
Collapse
|
41
|
miRNA-338-3p inhibits the migration, invasion and proliferation of human lung adenocarcinoma cells by targeting MAP3K2. Aging (Albany NY) 2022; 14:6094-6110. [PMID: 35929837 PMCID: PMC9417240 DOI: 10.18632/aging.204198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/15/2022] [Indexed: 11/25/2022]
Abstract
Objective: This study aimed to investigate the effects of micro ribonucleic acid (miR)-338-3p on the migration, invasion and proliferation of lung adenocarcinoma (LUAD) cells. Methods: Bioinformatics analysis was employed to evaluate the function and expression of related genes in lung cancer. Human A549 and NCI-H1299 cells cultured to logarithmic growth stage were assigned to negative control (NC) mimic group, miR-338-3p mimic group (miR-mimic group), NC inhibitor group and miR-338-3p inhibitor group (miR-inhibitor group) treated with or without MAP3K2 overexpression (OE)-lentivirus, or TBHQ or FR180204. Transwell assay, cell colony formation assay, Western blotting and cell-cycle analysis were carried out. Results: Bioinformatics results manifested that miR-338 and MAP3K2 were involved in LUAD. The expression levels of MAP3K2, p-ERK1/2, MMP-2, MMP-3, MMP-9, cyclin A2 and cyclin D1 were increased after addition of miR-338-3p inhibitor, consistent with the raised amount of LUAD cells in migration and invasion experiments and number of colonies formed, as well as the cell cycle, but miR-338-3p mimic reversed these results. Moreover, MAP3K2 overexpression elevated the level of p-ERK1/2. Meanwhile, after treatment with TBHQ or FR180204, the influence of miR-338-3p inhibitor or mimic was also verified. Conclusions: MiR-338-3p overexpression can modulate the ERK1/2 signaling pathway by targeting MAP3K2, thus inhibiting the migration, invasion and proliferation of human LUAD cells.
Collapse
|
42
|
Long Noncoding XLOC_006390 Regulates the Proliferation and Metastasis of Human Colorectal Cancer via miR-296/ONECUT2 Axis. JOURNAL OF ONCOLOGY 2022; 2022:4897201. [PMID: 35874630 PMCID: PMC9307412 DOI: 10.1155/2022/4897201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022]
Abstract
Long noncoding RNA (LncRNA) XLOC_006390 has been shown to be dysregulated in cancer tissues and regulates cancer growth and development. Nonetheless, the molecular role of lncRNA-XLOC_006390 in colorectal cancer via modulation of miR-296/ONECUT2 axis is still unclear. Against this backdrop, the current study was designed to explore the role of lncRNA-XLOC_006390 in colorectal cancer proliferation and metastasis. The results revealed significant (
) overexpression of lncRNA-XLOC_006390 in colorectal cancer tissues and cell lines, and the transcript levels increased with the advancement of the disease. Moreover, its high expression was shown to be associated with poor patient survival. Silencing of lncRNA-XLOC_006390 in colorectal cancer cells significantly (
) suppressed their viability via onset of apoptosis and restricted cancer cell migration and invasion. In vivo tumor growth was significantly (
) inhibited under lncRNA-XLOC_006390 repression. LncRNA-XLOC_006390 was shown to sponge the expression of miR-296-3p which in turn acted via post-transcriptional suppression of ONECUT 2 transcription factor to regulate the growth of colorectal cancer. Taken together, the results revealed the oncogenic role of lncRNA-XLOC_006390 in colorectal cancer via modulation of miR-296/ONECUT2 axis. The results also point towards its prognostic and therapeutic potential in the treatment of colorectal cancer.
Collapse
|
43
|
Chinese Herbal Formula Huayu-Qiangshen-Tongbi Decoction Attenuates Rheumatoid Arthritis through Upregulating miR-125b to Suppress NF-κB-Induced Inflammation by Targeting CK2. J Immunol Res 2022; 2022:2836128. [PMID: 35832651 PMCID: PMC9273410 DOI: 10.1155/2022/2836128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022] Open
Abstract
The Huayu-Qiangshen-Tongbi (HQT) decoction, a Chinese medical formula, has been identified to show a potent therapeutic effect on rheumatoid arthritis (RA). However, the specific molecular mechanism of HQT in RA has not been well studied. In the present study, LPS-treated human rheumatoid fibroblast-like synoviocyte (FLS) MH7A cells and collagen-induced arthritis (CIA) mice were utilized as in vitro and in vivo models. Our results demonstrated that HQT could efficiently inhibit RA-induced inflammation by reducing the production of cytokines including tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6). Moreover, HQT significantly upregulated the expression of miR-125b. Besides, analysis of bioinformatics suggested casein kinase 2 (CK2) was a potential target of miR-125b. Luciferase reporter assay was performed and revealed that miR-125b suppressed CK2 expression in MH7A cells. Furthermore, miR-125b inhibited LPS-induced NF-kappa-B (NF-κB) activation, which is a downstream target of CK2. In addition, the NF-κB inhibitor ammonium pyrrolidinedithiocarbamate (PDTC) and NF-kappa-B inhibitor alpha (IkB-α) enhanced the inhibitory effect of miR-125b on the expression of TNF-α, IL-1β, and IL-6. Taken together, our study revealed that HQT could attenuate RA through upregulating miR-125b to suppress NF-κB-induced inflammation by targeting CK2. The findings of this study should facilitate investigating the mechanism of HQT on RA and discovering novel therapeutic targets for RA.
Collapse
|
44
|
LncRNA FAM13A-AS1 Regulates Proliferation and Apoptosis of Cervical Cancer Cells by Targeting miRNA-205-3p/DDI2 Axis. JOURNAL OF ONCOLOGY 2022; 2022:8411919. [PMID: 35783157 PMCID: PMC9246599 DOI: 10.1155/2022/8411919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022]
Abstract
The aim of this study was to explore the function of long noncoding RNA (lncRNA) FAM13A-AS1 and its associated mechanism in cervical cancer. A total of 30 cervical cancer tissues and adjacent tissues were collected. Cervical cancer cell lines, including SiHa and HeLa, were transfected with constructs expressing LV-FAM13A-AS1, silencing RNA LV-siFAM13A-AS1, miRNA mimics, and miRNA inhibitors. RT-qPCR was used to detect the expression of FAM13A-AS1 in cervical cancer tissues, including SiHa, HeLa, and HUCEC cells. MTT, flow cytometry, and transwell assays were performed to explore the influence of FAM13A-AS1 on cervical cancer cell proliferation, apoptosis, invasion, and migration. A bioinformatics analysis and a dual-luciferase assay were carried to confirm the target relationship between FAM13A-AS1 or DDI2 and miRNA-205-3p. Finally, in vivo tumorigenesis experiments were performed in nude mice to explore the effect of FAM13A-AS1 expression on cervical cancer. Low FAM13A-AS1 expression and high miRNA-205-3p expression were observed in cervical cancer tissues and cell lines (SiHa and HeLa). Upregulating the expression of FAM13A-AS1 inhibited proliferation, migration, and invasion of SiHa and HeLa cells, while the apoptosis of SiHa and HeLa cells was increased. More importantly, LV-FAM13A-AS1 could improve tumor development in vivo. In addition, FAM13A-AS1 negatively regulated the expression of miRNA-205-3p, while miRNA-205-3p reduced DDI2 expression, and miRNA-205-3p mimic reversed the effects of FAM13A-AS1 overexpression in vitro. In conclusion, FAM13A-AS1 inhibits the progression of cervical cancer by targeting the miRNA-205-3p/DDI2 axis, suggesting that FAM13A-AS1 might be a potential target for cancer cell treatment.
Collapse
|
45
|
Wang B, Wang X, Li P, Niu X, Liang X, Liu G, Liu Z, Ge H. Osteosarcoma Cell-Derived Exosomal ELFN1-AS1 Mediates Macrophage M2 Polarization via Sponging miR-138-5p and miR-1291 to Promote the Tumorgenesis of Osteosarcoma. Front Oncol 2022; 12:881022. [PMID: 35785218 PMCID: PMC9248260 DOI: 10.3389/fonc.2022.881022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/08/2022] [Indexed: 12/28/2022] Open
Abstract
BackgroundExosomes play an important role in cell-cell communication by transferring genetic materials such as long non-coding RNAs (lncRNAs) between cancer cells and tumor-associated macrophages (TAMs) in the tumor microenvironment (TME). Recent studies revealed that lncRNA ELFN1-AS1 could function as an oncogene in many human cancers. However, the role of extracellular lncRNA ELFN1-AS1 in cell-to-cell communication of osteosarcoma (OS) has not been fully investigated.MethodsFunctional studies, including CCK-8, EdU staining and transwell assay were performed to investigate the role of ELFN1-AS1 in the progression of OS. 143B via xenograft mouse model was established to assess the role of ELFN1-AS1 in vivo. In addition, transmission electron microscopy (TEM) and real-time quantitative PCR (RT-qPCR) assay were used to verify the existence of exosomal ELFN1-AS1.ResultsThe level of ELFN1-AS1 was markedly upregulated in patients with advanced OS and in OS cells. In addition, overexpression of ELFN1-AS1 significantly promoted the proliferation, migration and invasion of OS cells, while knockdown of ELFN1-AS1 exhibited the opposite effects. Meanwhile, ELFN1-AS1 could be transferred from OS cells to macrophages via exosomes. Exosomal ELFN1-AS1 from 143B cells was able to promote macrophage M2 polarization, and M2 macrophage in return facilitated OS progression. Mechanistically, overexpression of ELFN1-AS1 upregulated CREB1 level via sponging miR-138-5p and miR-1291 in macrophage via.ConclusionOS cell-derived exosomal ELFN1-AS1 was able to induce macrophage M2 polarization via sponging miR-138-5p and miR-1291, and M2 macrophage notably facilitated the progression of OS. These data suggested that ELFN1-AS1 might serve as a potential therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Bangmin Wang
- Department of Bone Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xin Wang
- Department of Bone Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Po Li
- Department of Bone Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoying Niu
- Department of Bone Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoxiao Liang
- Department of Bone Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Guancong Liu
- Department of Bone Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhiyong Liu
- Department of Bone Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Hong Ge
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Hong Ge,
| |
Collapse
|
46
|
Yang S, Wang L, Gu L, Wang Z, Wang Y, Wang J, Zhang Y. Mesenchymal stem cell-derived extracellular vesicles alleviate cervical cancer by delivering miR-331-3p to reduce LIMS2 methylation in tumor cells. Hum Mol Genet 2022; 31:3829-3845. [PMID: 35708510 DOI: 10.1093/hmg/ddac130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
This study is to investigate if extracellular vesicles (EVs) from bone marrow mesenchymal stem cells (BMSCs) deliver miR-331-3p to regulate LIMS2 methylation in cervical cancer cells. Cervical cancer cells were incubated with EVs from BMSCs with altered expression of miR-331-3p, DNMT3A or/and LIMS2 and then subjected to EdU, Transwell, flow cytometry and Western blotting analyses. Dual-luciferase reporter assay was conducted to verify the binding between miR-331-3p and DNMT3A. A xenograft model was established to evaluate the effect of BMSC-derived EV-miR-331-3p on cervical tumor growth. miR-331-3p was lowly and DNMT3A was highly expressed in cervical cancer. BMSC-derived EVs delivered miR-331-3p to control the behaviors of cervical cancer cells. miR-331-3p inhibited the expression of DNMT3A by binding DNMT3A mRNA. DNMT3A promoted LIMS2 methylation and reduced the expression of LIMS2. Overexpression of DNMT3A or silencing of LIMS2 in BMSCs counteracted the tumor suppressive effects of miR-331-3p. BMSC-derived EV-miR-331-3p also inhibited the growth of cervical tumors in vivo. BMSC-derived EVs alleviate cervical cancer partially by delivering miR-331-3p to reduce DNMT3A-dependent LIMS2 methylation in tumor cells.
Collapse
Affiliation(s)
- Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Le Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Lina Gu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Zhao Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Yuan Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Jianan Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Yunyan Zhang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| |
Collapse
|
47
|
LncRNA PTAR activates the progression of bladder cancer by modulating miR-299-3p/CD164 axis. Pathol Res Pract 2022; 237:153994. [DOI: 10.1016/j.prp.2022.153994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/01/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022]
|
48
|
Liu C, Xu R. Dexmedetomidine protects H9C2 rat cardiomyocytes against hypoxia/reoxygenation injury by regulating the long non-coding RNA colon cancer-associated transcript 1/microRNA-8063/Wnt/β-catenin axis. Bioengineered 2022; 13:13300-13311. [PMID: 35635079 PMCID: PMC9275899 DOI: 10.1080/21655979.2022.2080420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dexmedetomidine (Dex) protects the heart from ischemia/reperfusion (I/R) injury. The differential expression of long non-coding RNAs (lncRNAs) is associated with myocardial injury, but whether the lncRNA colon cancer-associated transcript 1 (CCAT1) is associated with Dex-mediated myocardial protection remains unclear. In this study, a hypoxia/reoxygenation (H/R) H9C2 model was established to simulate the in vitro characteristics of I/R. CCAT1 and microRNA (miR)-8063 expression levels in H/R H9C2 cells pretreated with Dex were determined via quantitative reverse transcription-polymerase chain reaction. The survival and apoptotic rates of H9C2 cells were determined via cell counting kit-8 and flow cytometry assays. Wnt3a, Wnt5a, and β-catenin protein levels were measured via western blotting. Luciferase and RNA immunoprecipitation assays were used to explore the binding relationship between miR-8063 and CCAT1. Dex pretreatment increased H/R H9C2 cell viability and CCAT1 expression, while decreasing the cell apoptosis and Wnt3a, Wnt5a, and β-catenin protein levels. Knockdown of CCAT1 abolished the protective effects of Dex on H/R H9C2 cells, and the downregulation of miR-8063 expression eliminated the effect of CCAT1 knockdown. These results revealed that CCAT1, a sponge for miR-8063, is involved in Dex-mediated H9C2 cell H/R injury by negatively targeting miR-8063 and inactivating the Wnt/β-catenin pathway. Dex protects H9C2 cells from H/R impairment by regulating the lncRNA CCAT1/miR-8063/Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Chundong Liu
- Department of Anesthesiology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Rui Xu
- Department of Anesthesiology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| |
Collapse
|
49
|
LncRNA LINC01116 Regulates the Proliferation, Migration, and Invasion of Cervical Cancer Cells by Targeting miR-744-5p. Cell Microbiol 2022. [DOI: 10.1155/2022/2615523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objective. To investigate the effects and potential molecular mechanisms of LncRNA LINC01116 on proliferation, migration, and invasion of cervical cancer cells. Method(s). The content of miR-744-5p and LINC01116 in cervical cancer cells HeLa, SiHa, and C33a was detected by RT-PCR, the proliferative activity and clone number of SiHa cells were determined by MTT and clone formation assay, the number of invaded and migrated cells was determined by Transwell assay, the expressions of Cyclin D1 and MMP-2 in cells were detected by Western blot, and the activity of luciferase detected by dual-luciferase reporting system verified the regulatory relationship between LINC01116 and miR-744-5p. Result(s). Compared with human normal cervical epithelial cells Ect1/E6E7, the content of LINC01116 in cervical cancer cells HeLa, SiHa, and C33a was increased significantly [(
) vs. (
)/(
)/(
)] (
), the content of miR-744-5p was decreased significantly [(
) vs. (
)/(
)/(
)] (
). Silencing LINC01116 could inhibit the protein expression of Cyclin D1 [(
) vs. (
)] and MMP-2 [(
) vs. (
)] in SiHa cells, and inhibition of cell proliferation [(
)% vs. (
)%], clone formation ability [(
) vs. (
)], migration [(
) vs. (
)], and invasion [(
) vs. (
)]. LINC01116 targeted and negatively regulates the expression of miR-744-5p. Overexpression of miR-744-5p could inhibit the proliferation of cervical cancer SiHa cells [(
)% vs. (
)%], clone formation ability [(
) vs. (
)], migration [(
) vs. (
)], and invasion [(
) vs. (
)]. Inhibition of miR-744-5p reversed the effects of silencing LINC01116 on SiHa cell proliferation [(
)% vs. (
)%], clone formation ability [(
) vs. (
)], migration [(
) vs. (
)], and invasion [(69.12 ± 5.56) vs (94.31 ± 7.44)]. Conclusion(s). LncRNA LINC01116 inhibits proliferation, migration, and invasion of SiHa cells by targeting miR-744-5p, and LINC01116 is a potential molecular target for cervical cancer.
Collapse
|
50
|
A ceRNA Network Composed of Survival-Related lncRNAs, miRNAs, and mRNAs in Clear Cell Renal Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8504441. [PMID: 35529267 PMCID: PMC9071875 DOI: 10.1155/2022/8504441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 03/31/2022] [Indexed: 12/02/2022]
Abstract
Clear cell renal carcinoma (ccRCC) is one of the most common renal carcinomas worldwide, which has worse prognosis compared with other subtypes of tumors. We propose a potential RNA regulatory mechanism associated with ccRCC progression. Accordingly, we screened out clinical factors and the expression of RNAs and miRNAs of ccRCC from the TCGA database. 9 lncRNAs (FGF12-AS2, WT1-AS, TRIM36-IT1, AC009093.1, LINC00443, TCL6, COL18A1-AS1, AC110619.1, HOTTIP), 2 miRNAs (mir-155 and mir-21), and 3 mRNAs (COL4A4, ERMP1, PRELID2) were selected from differential expression RNAs and built predictive survival models. The survival models performed very well in predicting prognosis and were found to be highly correlated with tumor stage. In addition, the survival-related lncRNA-miRNA-mRNA (ceRNA) network was constructed by 18 RNAs including 12 mRNAs, 2 miRNAs, and 4 lncRNAs. It is found that the “ECM-receptor interaction,” “Pathways in cancer,” and “Chemokine signaling pathway” as the main pathways in KEGG pathway analysis. Overall, we established predictive survival model and ceRNA network based on multivariate Cox regression analysis. It may open a new approach and potential biomarkers for clinical prognosis and treatment of ccRCC patients.
Collapse
|