1
|
Wang Z, He K, Liu M, Lv W, Cheng B, Zhang G, Wang X, Zeng M, Jiao L, Han S, Zheng Y, Feng Z. Enhanced mitochondrial biogenesis facilitates the development of cutaneous squamous cell carcinoma. Cancer Lett 2025; 618:217623. [PMID: 40074070 DOI: 10.1016/j.canlet.2025.217623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/25/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Mitochondrial malfunction is traditionally viewed as a major factor in tumor growth and malignancy, while recent studies have introduced conflicting views suggesting the necessity of functional mitochondria for tumor growth. Despite these differing perspectives, the specific role of mitochondria in cutaneous squamous cell carcinoma (cSCC) remains poorly understood. In this study, we observed increased mitochondrial abundance and function during the development of cSCC. We also identified retinoic acid receptor response 1 (RARRES1), which is dramatically decreased in human cSCC samples, as a key regulator of mitochondrial homeostasis. Mechanistically, RARRES1 can translocate into mitochondria and facilitate the degradation of TFAM by binding to LONP1, thereby regulating mitochondrial biogenesis. While RARRES1 suppression unleashed TFAM to promote mitochondrial biogenesis, leading to the progression of cSCC. Targeting RARRES1-LONP1/TFAM axis shows significant potential for inhibiting cSCC development. This study reveals a unique network for regulating mitochondrial homeostasis and emphasizes the crucial role of mitochondria in cSCC development, positioning the RARRES1-LONP1/TFAM axis as promising therapeutic target for future clinical applications.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ke He
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Liu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Weiqiang Lv
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Baochen Cheng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanfei Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xueqiang Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Mengqi Zeng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Lianying Jiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shujun Han
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Zhihui Feng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Li M, Zhang W, Zhang M, Li L, Yao Y, Qin Y, Wang D, Yan G, Qiao Y, Tang C. LONP1 facilitates pulmonary artery smooth muscle cell glycolytic reprogramming by degrading MPC1 in pulmonary hypertension. Clin Sci (Lond) 2025; 139:CS20255922. [PMID: 40332105 DOI: 10.1042/cs20255922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 05/07/2025] [Indexed: 05/08/2025]
Abstract
Pulmonary hypertension (PH) is a chronic and life-threatening disease characterized by pulmonary vascular remodeling (PVR), which involves the abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs). These cells exhibit metabolic characteristics akin to cancer cells, particularly in their shift toward glycolysis. The Lon protease 1 (LONP1) has been shown to promote glycolytic reprogramming of tumor cells, conferring a malignant proliferative phenotype. However, the precise role of LONP1 in PH remains unclear. In the present study, Su5416/hypoxia-induced and monocrotaline (MCT)-induced PH rodent models and platelet-derived growth factor BB (PDGF-BB)-induced PASMCs were used to investigate the role and mechanism of LONP1 in PH. The results revealed an up-regulation of LONP1 expression in lung tissues from two PH rodent models, as well as in PDGF-BB-induced PASMCs. In vivo knockdown of LONP1 significantly alleviated PASMC mitochondrial dysfunction, reduced glycolytic enzyme expression, and decreased lactate accumulation, thereby mitigating PVR. Additionally, in vitro experiments demonstrated that knockdown or inhibition of LONP1 attenuated glycolytic reprogramming, proliferation, and migration of PASMCs, whereas overexpression of LONP1 had converse effects. Mechanistic studies confirmed that mitochondrial pyruvate carrier 1 (MPC1) was a direct substrate for LONP1-mediated degradation. Functional experiments with MPC1 knockdown and overexpression further elucidated its role in the proliferation and migration of PASMCs. Rescue experiments indicated that MPC1 knockdown abrogated the suppressive effects of LONP1 knockdown on glycolytic reprogramming, proliferation, and migration in PASMCs. Therapeutically, knockdown or pharmacological inhibition of LONP1 significantly reversed MCT-induced PH in rats. Thus, targeting LONP1 may represent a promising therapeutic strategy for PH.
Collapse
MESH Headings
- Animals
- Pulmonary Artery/pathology
- Pulmonary Artery/metabolism
- Glycolysis
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/physiopathology
- Cell Proliferation
- Male
- Rats, Sprague-Dawley
- Monocarboxylic Acid Transporters/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Rats
- Becaplermin
- Disease Models, Animal
- Cell Movement
- Monocrotaline
- Cells, Cultured
- Pyrroles
- Indoles
- Vascular Remodeling
Collapse
Affiliation(s)
- Mingkang Li
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenkang Zhang
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Minhao Zhang
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Linqing Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yuyu Yao
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yuhan Qin
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| |
Collapse
|
3
|
Banerjee S, Lv J, He C, Qi B, Ding W, Long K, Chen J, Wen J, Chen P. Visceral fat distribution: Interracial studies. Adv Clin Chem 2024; 124:57-85. [PMID: 39818438 DOI: 10.1016/bs.acc.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Visceral adipose tissue, a type of abdominal adipose tissue, is highly involved in lipolysis. Because increased visceral adiposity is strongly associated with the metabolic complications related with obesity, such as type 2 diabetes and cardiovascular disease, there is a need for precise, targeted, personalized and site-specific measures clinically. Existing studies showed that ectopic fat accumulation may be characterized differently among different populations due to complex genetic architecture and non-genetic or epigenetic components, ie, Asians have more and Africans have less visceral fat vs Europeans. In this review, we summarize the effects of multiple non-genetic and genetic factors on visceral fat distribution across races. Non-genetic factors include diet, socioeconomic status, sex hormones and psychological factors, etc. We examine genetic factors of racial differences in visceral fat content as well as possible regulatory pathways associated with interracial visceral fat distribution. A comprehensive understanding of both genetic and non-genetic factors that influence the distribution of visceral fat among races, leads us to predict risk of abdominal obesity and metabolic diseases in ethnic groups that enables targeted interventions through accurate diagnosis and treatment as well as reduced risk of obesity-associated complications.
Collapse
Affiliation(s)
- Santasree Banerjee
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiayin Lv
- Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Chang He
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Baiyu Qi
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Weijie Ding
- Teaching Department, First Affiliated Hospital of Jilin University, Changchun, China
| | - Kongrong Long
- Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Junrong Chen
- Teaching Department, First Affiliated Hospital of Jilin University, Changchun, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Carneiro FS, Katashima CK, Dodge JD, Cintra DE, Pauli JR, Da Silva ASR, Ropelle ER. Tissue-specific roles of mitochondrial unfolded protein response during obesity. Obes Rev 2024; 25:e13791. [PMID: 38880974 DOI: 10.1111/obr.13791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/20/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
Obesity is a worldwide multifactorial disease caused by an imbalance in energy metabolism, increasing adiposity, weight gain, and promoting related diseases such as diabetes, cardiovascular diseases, neurodegeneration, and cancer. Recent findings have reported that metabolic stress related to obesity induces a mitochondrial stress response called mitochondrial unfolded protein response (UPRmt), a quality control pathway that occurs in a nuclear DNA-mitochondria crosstalk, causing transduction of chaperones and proteases under stress conditions. The duality of UPRmt signaling, with both beneficial and detrimental effects, acts in different contexts depending on the tissue, cell type, and physiological states, affecting the mitochondrial function and efficiency and the metabolism homeostasis during obesity, which remains not fully clarified. Therefore, this review discusses the most recent findings regarding UPRmt signaling during obesity, bringing an overview of UPRmt across different metabolic tissues.
Collapse
Affiliation(s)
- Fernanda S Carneiro
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Carlos K Katashima
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Joshua D Dodge
- Department of Biology, The University of Texas at Arlington (UTA), Arlington, Texas, USA
| | - Dennys E Cintra
- Laboratory of Nutritional Genomic, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Adelino S R Da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
5
|
Wu M, Wu J, Liu K, Jiang M, Xie F, Yin X, Wu J, Meng Q. LONP1 ameliorates liver injury and improves gluconeogenesis dysfunction in acute-on-chronic liver failure. Chin Med J (Engl) 2024; 137:190-199. [PMID: 38184784 PMCID: PMC10798737 DOI: 10.1097/cm9.0000000000002969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is a severe liver disease with complex pathogenesis. Clinical hypoglycemia is common in patients with ACLF and often predicts a worse prognosis. Accumulating evidence suggests that glucose metabolic disturbance, especially gluconeogenesis dysfunction, plays a critical role in the disease progression of ACLF. Lon protease-1 (LONP1) is a novel mediator of energy and glucose metabolism. However, whether gluconeogenesis is a potential mechanism through which LONP1 modulates ACLF remains unknown. METHODS In this study, we collected liver tissues from ACLF patients, established an ACLF mouse model with carbon tetrachloride (CCl 4 ), lipopolysaccharide (LPS), and D-galactose (D-gal), and constructed an in vitro hypoxia and hyperammonemia-triggered hepatocyte injury model. LONP1 overexpression and knockdown adenovirus were used to assess the protective effect of LONP1 on liver injury and gluconeogenesis regulation. Liver histopathology, biochemical index, mitochondrial morphology, cell viability and apoptosis, and the expression and activity of key gluconeogenic enzymes were detected to explore the underlying protective mechanisms of LONP1 in ACLF. RESULTS We found that LONP1 and the expressions of gluconeogenic enzymes were downregulated in clinical ACLF liver tissues. Furthermore, LONP1 overexpression remarkably attenuated liver injury, which was characterized by improved liver histopathological lesions and decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in ACLF mice. Moreover, mitochondrial morphology was improved upon overexpression of LONP1. Meanwhile, the expression and activity of the key gluconeogenic enzymes were restored by LONP1 overexpression. Similarly, the hepatoprotective effect was also observed in the hepatocyte injury model, as evidenced by improved cell viability, reduced cell apoptosis, and improved gluconeogenesis level and activity, while LONP1 knockdown worsened liver injury and gluconeogenesis disorders. CONCLUSION We demonstrated that gluconeogenesis dysfunction exists in ACLF, and LONP1 could ameliorate liver injury and improve gluconeogenic dysfunction, which would provide a promising therapeutic target for patients with ACLF.
Collapse
Affiliation(s)
- Muchen Wu
- Department of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Jing Wu
- Department of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Kai Liu
- Department of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Institute of Hepatology, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Minjie Jiang
- Department of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Fang Xie
- Department of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Institute of Hepatology, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Xuehong Yin
- Department of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Jushan Wu
- Department of General Surgery, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Qinghua Meng
- Department of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
6
|
Xie Y, Chen S, Guo Z, Tian Y, Hong X, Feng P, Xie Q, Yu Q. Down-regulation of Lon protease 1 lysine crotonylation aggravates mitochondrial dysfunction in polycystic ovary syndrome. MedComm (Beijing) 2023; 4:e396. [PMID: 37817894 PMCID: PMC10560969 DOI: 10.1002/mco2.396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent reproductive endocrine disorder, with metabolic abnormalities and ovulation disorders. The post-translational modifications (PTMs) are functionally relevant and strengthen the link between metabolism and cellular functions. Lysine crotonylation is a newly identified PTM, the function of which in PCOS has not yet been reported. To explore the molecular mechanisms of crotonylation involved in the abnormalities of metabolic homeostasis and oocyte maturation in PCOS, by using liquid chromatography-tandem mass spectrometry analysis, we constructed a comprehensive map of crotonylation modifications in ovarian tissue of PCOS-like mouse model established by dehydroepiandrosterone induction. The crotonylation levels of proteins involved in metabolic processes were significantly decreased in PCOS ovaries compared to control samples. Further investigation showed that decrotonylation of Lon protease 1 (LONP1) at lysine 390 was associated with mitochondrial dysfunction in PCOS. Moreover, LONP1 crotonylation levels in PCOS were correlated with ovarian tissue oxidative stress levels, androgen levels, and oocyte development. Consistently, down-regulation of LONP1 and LONP1 crotonylation levels were also observed in the blood samples of PCOS patients. Collectively, our study revealed a mechanism by which the decrotonylation of LONP1 may attenuate its activity and alter follicular microenvironment to affect oocyte maturation in PCOS.
Collapse
Affiliation(s)
- Yuan Xie
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Shuwen Chen
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Zaixin Guo
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Ying Tian
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Xinyu Hong
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Penghui Feng
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Qiu Xie
- Department of Medical Research CenterState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Qi Yu
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| |
Collapse
|
7
|
Todosenko N, Khaziakhmatova O, Malashchenko V, Yurova K, Bograya M, Beletskaya M, Vulf M, Gazatova N, Litvinova L. Mitochondrial Dysfunction Associated with mtDNA in Metabolic Syndrome and Obesity. Int J Mol Sci 2023; 24:12012. [PMID: 37569389 PMCID: PMC10418437 DOI: 10.3390/ijms241512012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Metabolic syndrome (MetS) is a precursor to the major health diseases associated with high mortality in industrialized countries: cardiovascular disease and diabetes. An important component of the pathogenesis of the metabolic syndrome is mitochondrial dysfunction, which is associated with tissue hypoxia, disruption of mitochondrial integrity, increased production of reactive oxygen species, and a decrease in ATP, leading to a chronic inflammatory state that affects tissues and organ systems. The mitochondrial AAA + protease Lon (Lonp1) has a broad spectrum of activities. In addition to its classical function (degradation of misfolded or damaged proteins), enzymatic activity (proteolysis, chaperone activity, mitochondrial DNA (mtDNA)binding) has been demonstrated. At the same time, the spectrum of Lonp1 activity extends to the regulation of cellular processes inside mitochondria, as well as outside mitochondria (nuclear localization). This mitochondrial protease with enzymatic activity may be a promising molecular target for the development of targeted therapy for MetS and its components. The aim of this review is to elucidate the role of mtDNA in the pathogenesis of metabolic syndrome and its components as a key component of mitochondrial dysfunction and to describe the promising and little-studied AAA + LonP1 protease as a potential target in metabolic disorders.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Bograya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Beletskaya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Natalia Gazatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
8
|
Sergeeva E, Ruksha T, Fefelova Y. Effects of Obesity and Calorie Restriction on Cancer Development. Int J Mol Sci 2023; 24:ijms24119601. [PMID: 37298551 DOI: 10.3390/ijms24119601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The risk of malignant tumor development is increasing in the world. Obesity is an established risk factor for various malignancies. There are many metabolic alterations associated with obesity which promote cancerogenesis. Excessive body weight leads to increased levels of estrogens, chronic inflammation and hypoxia, which can play an important role in the development of malignancies. It is proved that calorie restriction can improve the state of patients with various diseases. Decreased calorie uptake influences lipid, carbohydrate and protein metabolism, hormone levels and cell processes. Many investigations have been devoted to the effects of calorie restriction on cancer development in vitro and in vivo. It was revealed that fasting can regulate the activity of the signal cascades including AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), p53, mTOR, insulin/ insulin-like growth factor 1 (IGF1) and JAK-STAT. Up- or down-regulation of the pathways results in the decrease of cancer cell proliferation, migration and survival and the increase of apoptosis and effects of chemotherapy. The aim of this review is to discuss the connection between obesity and cancer development and the mechanisms of calorie restriction influence on cancerogenesis that stress the importance of further research of calorie restriction effects for the inclusion of this approach in clinical practice.
Collapse
Affiliation(s)
- Ekaterina Sergeeva
- Department of Pathological Physiology, Krasnoyarsk State Medical University, No. 1 P. Zheleznyaka Str., 660022 Krasnoyarsk, Russia
| | - Tatiana Ruksha
- Department of Pathological Physiology, Krasnoyarsk State Medical University, No. 1 P. Zheleznyaka Str., 660022 Krasnoyarsk, Russia
| | - Yulia Fefelova
- Department of Pathological Physiology, Krasnoyarsk State Medical University, No. 1 P. Zheleznyaka Str., 660022 Krasnoyarsk, Russia
| |
Collapse
|
9
|
Zhang J, Qiao W, Luo Y. Mitochondrial quality control proteases and their modulation for cancer therapy. Med Res Rev 2023; 43:399-436. [PMID: 36208112 DOI: 10.1002/med.21929] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 02/05/2023]
Abstract
Mitochondria, the main provider of energy in eukaryotic cells, contains more than 1000 different proteins and is closely related to the development of cells. However, damaged proteins impair mitochondrial function, further contributing to several human diseases. Evidence shows mitochondrial proteases are critically important for protein maintenance. Most importantly, quality control enzymes exert a crucial role in the modulation of mitochondrial functions by degrading misfolded, aged, or superfluous proteins. Interestingly, cancer cells thrive under stress conditions that damage proteins, so targeting mitochondrial quality control proteases serves as a novel regulator for cancer cells. Not only that, mitochondrial quality control proteases have been shown to affect mitochondrial dynamics by regulating the morphology of optic atrophy 1 (OPA1), which is closely related to the occurrence and progression of cancer. In this review, we introduce mitochondrial quality control proteases as promising targets and related modulators in cancer therapy with a focus on caseinolytic protease P (ClpP), Lon protease (LonP1), high-temperature requirement protein A2 (HrtA2), and OMA-1. Further, we summarize our current knowledge of the advances in clinical trials for modulators of mitochondrial quality control proteases. Overall, the content proposed above serves to suggest directions for the development of novel antitumor drugs.
Collapse
Affiliation(s)
- Jiangnan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, Western China Hospital of Sichuan University, Chengdu, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Chu DT, Nguyen TL. Frizzled receptors and SFRP5 in lipid metabolism: Current findings and potential applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:377-393. [PMID: 36631199 DOI: 10.1016/bs.pmbts.2022.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lipid metabolism plays a very important role as the central metabolic process of the body. Lipid metabolism interruptions may cause many chronic diseases, for example, non-alcoholic fatty liver disease (NAFLD), diabetes, and obesity. Secreted Frizzled Related Protein 5 (SFRP5) and Frizzled receptors (FZD) are two newly discovered adipokines that are involved in lipid metabolism as well as lipogenesis. Both of these adipokines affect lipid metabolism and adipogenesis through three WNT signaling pathways (WNTSP): WNT/β-catenin, WNT/Ca2+, and WNT/JNK. FZD consists of 10 species, which have a cysteine-rich domain (CRD) to bind to the WNT protein for signal transduction. Depending on the type of ligand or co-receptor, they can stimulate or inhibit adipogenesis. In lipid metabolism, they play a role in recognizing fatty acids. In obesity, gene expression of the WNT/FZD receptors is significantly increased. In contrast, SFPR5 serves as an antagonist that can compete with FZD for inhibition of WNTSP. It is believed to have anti-inflammatory potential in obesity and diseases related to abnormal lipid metabolism. In these cases, the expression of SFRP5 is found to be very low leading to the promoted production of proinflammatory cytokines (PICS). Some methods that include using recombinant SFRP5 to improve non-alcoholic steatohepatitis (NASH), using secreted Ly-6/uPAR-related protein 1 (Slurp1) to regulate fat accumulation in the liver through SFRP5, and dietary and lifestyle interventions to improve overweight/obesity have been studied. However, understandings of the molecular mechanisms of these two adipokines and their interactions are very limited. Therefore, more in-depth studies are needed in the future.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| | - Thanh-Lam Nguyen
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
11
|
Zhou Z, Fan Y, Zong R, Tan K. The mitochondrial unfolded protein response: A multitasking giant in the fight against human diseases. Ageing Res Rev 2022; 81:101702. [PMID: 35908669 DOI: 10.1016/j.arr.2022.101702] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023]
Abstract
Mitochondria, which serve as the energy factories of cells, are involved in cell differentiation, calcium homeostasis, amino acid and fatty acid metabolism and apoptosis. In response to environmental stresses, mitochondrial homeostasis is regulated at both the organelle and molecular levels to effectively maintain the number and function of mitochondria. The mitochondrial unfolded protein response (UPRmt) is an adaptive intracellular stress mechanism that responds to stress signals by promoting the transcription of genes encoding mitochondrial chaperones and proteases. The mechanism of the UPRmt in Caenorhabditis elegans (C. elegans) has been clarified over time, and the main regulatory factors include ATFS-1, UBL-5 and DVE-1. In mammals, the activation of the UPRmt involves eIF2α phosphorylation and the uORF-regulated expression of CHOP, ATF4 and ATF5. Several additional factors, such as SIRT3 and HSF1, are also involved in regulating the UPRmt. A deep and comprehensive exploration of the UPRmt can provide new directions and strategies for the treatment of human diseases, including aging, neurodegenerative diseases, cardiovascular diseases and diabetes. In this review, we mainly discuss the function of UPRmt, describe the regulatory mechanisms of UPRmt in C. elegans and mammals, and summarize the relationship between UPRmt and various human diseases.
Collapse
Affiliation(s)
- Zixin Zhou
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Yumei Fan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ruikai Zong
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ke Tan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|