1
|
Chen C, Huang Y, Li S, Li Z, Xu F, Zhou B, Lin J. Non-targeted metabolomics revealed the effect of starvation to juvenile Onychostoma sima liver. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:96. [PMID: 40366427 DOI: 10.1007/s10695-025-01507-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Artificial breeding and releasing can effectively restore fishery resources. However, it is important to note that released juvenile fish were highly susceptible to starvation during their adaptation to the natural environment. This study investigated the metabolomic changes in the liver of Onychostoma sima after 14 days using ultra-high pressure liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) analysis under starvation exposure. The experiment was divided into a control group (C Group) and a starvation group (S Group), with six biological replicates in each group and one fish per replicate. The results indicated significant changes in the starvation group compared to the control group, as demonstrated by the principal component analysis (PCA) score plots and orthogonal partial least squares discriminant analysis (OPLS-DA). The 297 differential metabolites screened were mainly involved in the metabolism of organic acids and derivatives, and lipids and lipid-like molecules. Furthermore, KEGG results revealed that differential metabolites were primarily enriched in 33 metabolic pathways. The majority of the amino acid metabolic pathways in the liver were significantly affected by starvation stress. Moreover, biosynthesis of amino acids, protein digestion and absorption, and mineral absorption were upregulated, while glycerophospholipid metabolism and the hedgehog signaling pathway were downregulated in response to energy demands during starvation. In conclusion, these findings provide physiological insights into the metabolism of juvenile O. sima under starvation stress, offering new perspectives for the optimization of fish proliferation and release technology.
Collapse
Affiliation(s)
- Chunna Chen
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences (Sichuan Fisheries Research Institute), Chengdu, Sichuan, 644000, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611731, Sichuan, China
| | - Yingying Huang
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences (Sichuan Fisheries Research Institute), Chengdu, Sichuan, 644000, China
| | - Shengxuan Li
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences (Sichuan Fisheries Research Institute), Chengdu, Sichuan, 644000, China
| | - Zhengyi Li
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences (Sichuan Fisheries Research Institute), Chengdu, Sichuan, 644000, China
| | - Fei Xu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences (Sichuan Fisheries Research Institute), Chengdu, Sichuan, 644000, China
| | - Bo Zhou
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences (Sichuan Fisheries Research Institute), Chengdu, Sichuan, 644000, China
| | - Jue Lin
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences (Sichuan Fisheries Research Institute), Chengdu, Sichuan, 644000, China.
| |
Collapse
|
2
|
Adhish M, Manjubala I. An in-silico approach to the potential modulatory effect of taurine on sclerostin (SOST) and its probable role during osteoporosis. J Biomol Struct Dyn 2024; 42:9002-9017. [PMID: 37608541 DOI: 10.1080/07391102.2023.2249103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/12/2023] [Indexed: 08/24/2023]
Abstract
The cysteine-knot containing negative regulator of the Wnt (Wingless-related integration site) signaling pathway, sclerostin (SOST) is an emerging therapeutic target for osteoporosis. Its inhibition is responsible for the promotion of osteoblastogenesis. In this study, taurine, an amino sulfonic acid was used to study its mechanism of action for the inhibition of the SOST protein. Molecular docking and dynamic studies were performed as a part of the study whereby, it was observed that taurine binds to a probable allosteric pocket which allows it to modulate the structure of the SOST protein affecting all of the loops - loops 1, loop 2, and loop 3 - as well as the cysteine residues forming the cysteine-knot. The study also identified a set of seven taurine analogues that have better pharmacological activity than their parent compound using screening techniques. The conclusions derived from the study support that taurine has a probable antagonistic effect on the SOST protein directly through the modulation of HNQS motif and loops 2 and 3 and indirectly through its influence on the cysteine residues - 134, 165 and 167 C. Based on the results, it can be assumed that the binding of taurine with SOST protein probably reduces its binding affinity to the LRP6 protein greatly, while also inhibiting the target protein from anchoring to LRP4. Furthermore, it was noted that probable additional binding with any small molecule inhibitor (SMI) at the active site (PNAIG motif), in the presence of an already allosterically bound taurine, of the SOST protein would result in a complete potential antagonism of the target protein. Additionally, the study also uncovers the possible role of the GKWWRPS motif in providing stability to the PNAIG motif for the purpose of binding with LRP6.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mazumder Adhish
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - I Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Lopez AN, Bazer FW, Wu G. Functions and Metabolism of Amino Acids in Bones and Joints of Cats and Dogs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:155-175. [PMID: 38625528 DOI: 10.1007/978-3-031-54192-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The bone is a large and complex organ (12-15% of body weight) consisting of specialized connective tissues (bone matrix and bone marrow), whereas joints are composed of cartilage, tendons, ligaments, synovial joint capsules and membranes, and a synovial joint cavity filled with synovial fluid. Maintaining healthy bones and joints is a dynamic and complex process, as bone deposition (formation of new bone materials) and resorption (breakdown of the bone matrix to release calcium and phosphorus) are the continuous processes to determine bone balance. Bones are required for locomotion, protection of internal organs, and have endocrine functions to maintain mineral homeostasis. Joints are responsible for resisting mechanical stress/trauma, aiding in locomotion, and supporting the overall musculoskeletal system. Amino acids have multiple regulatory, compositional, metabolic, and functional roles in maintaining the health of bones and joints. Their disorders are prevalent in mammals and significantly reduce the quality of life. These abnormalities in companion animals, specifically cats and dogs, commonly lead to elective euthanasia due to the poor quality of life. Multiple disorders of bones and joints result from genetic predisposition and are heritable, but other factors such as nutrition, growth rate, trauma, and physical activity affect how the disorder manifests. Treatments for cats and dogs are primarily to slow the progression of these disorders and assist in pain management. Therapeutic supplements such as Cosequin and formulated diets rich in amino acids are used commonly as treatments for companion animals to reduce pain and slow the progression of those diseases. Also, amino acids (e.g., taurine, arginine, glycine, proline, and 4-hydroxyproline), and glucosamine reduce inflammation and pain in animals with bone and joint disorders. Gaining insight into how amino acids function in maintaining bone and joint health can aid in developing preventative diets and therapeutic supplementations of amino acids to improve the quality of life in companion animals.
Collapse
Affiliation(s)
- Arianna N Lopez
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Ho KM, Lee A, Wu W, Chan MT, Ling L, Lipman J, Roberts J, Litton E, Joynt GM, Wong M. Flattening the biological age curve by improving metabolic health: to taurine or not to taurine, that' s the question. J Geriatr Cardiol 2023; 20:813-823. [PMID: 38098466 PMCID: PMC10716614 DOI: 10.26599/1671-5411.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
The aging population is an important issue around the world especially in developed countries. Although medical advances have substantially extended life span, the same cannot be said for the duration of health span. We are seeing increasing numbers of elderly people who are frail and/or have multiple chronic conditions; all of these can affect the quality of life of the elderly population as well as increase the burden on the healthcare system. Aging is mechanistically related to common medical conditions such as diabetes mellitus, ischemic heart disease, cognitive decline, and frailty. A recently accepted concept termed 'Accelerated Biological Aging' can be diagnosed when a person's biological age-as measured by biomarkers of DNA methylation-is older than their corresponding chronological age. Taurine, a conditionally essential amino acid, has received much attention in the past few years. A substantial number of animal studies have provided a strong scientific foundation suggesting that this amino acid can improve cellular and metabolic health, including blood glucose control, so much that it has been labelled one of the 'longevity amino acids'. In this review article, we propose the rationale that an adequately powered randomized-controlled-trial (RCT) is needed to confirm whether taurine can meaningfully improve metabolic and microbiome health, and biological age. This trial should incorporate certain elements in order to provide the much-needed evidence to guide doctors, and also the community at large, to determine whether this promising and inexpensive amino acid is useful in improving human metabolic health.
Collapse
Affiliation(s)
- Kwok M. Ho
- Department of Intensive Care Medicine, Fiona Stanley Hospital, Perth, Australia
- Medical School, The University of Western Australia, Perth, Australia
- School of Veterinary & Life Sciences, Murdoch University, Perth, Australia
| | - Anna Lee
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - William Wu
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Matthew T.V. Chan
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Lowell Ling
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Jeffrey Lipman
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Jason Roberts
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Edward Litton
- Department of Intensive Care Medicine, Fiona Stanley Hospital, Perth, Australia
- Medical School, The University of Western Australia, Perth, Australia
| | - Gavin M. Joynt
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Martin Wong
- JC School of Public Health and Primary Care, Centre for Health Education and Health Promotion, Chinese University of Hong Kong, Hong Kong, China
- School of Public Health, Peking University, Beijing, China
- School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Yin M, Zhou D, Jia F, Su X, Li X, Sun R, Li J. Metabolomics analysis of the potential mechanism of Yi-Guan-Jian decoction to reverse bone loss in glucocorticoid-induced osteoporosis. J Orthop Surg Res 2023; 18:409. [PMID: 37277810 DOI: 10.1186/s13018-023-03778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/02/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Glucocorticoid-induced osteoporosis (GIOP) is a disease in which long-term use of glucocorticoid causes bone loss, deterioration of bone microstructure and fracture. Currently, clinical drugs targeting this disease have certain side effects. There is still a need to find effective drugs with fewer side effects. The theory of traditional Chinese medicine suggests that YGJ has therapeutic effect on GIOP, but it has not been explained. Therefore, this study aims to explore the protective effect of YGJ on GIOP mouse models and elucidate the underlying mechanism through LC-MS-based metabolomics analysis. METHODS The general condition of 8 week age male C57BL/6J mice was recorded after 8 weeks of treatment with dexamethasone (DEX) and YGJ. Bone-related parameters and bone morphology were determined by Micro-CT. HE staining was used to observe the pathological changes of bone tissue. Serum levels of bone metabolism markers were detected by ELISA. Liver metabolomics analysis was conducted to search for the significant markers of anti-GIOP of YGJ and the metabolic pathway affecting it. RESULTS After treatment, YGJ significantly reversed the weight loss caused by DEX; increase the number of bone trabecular in ROI region, significantly improve the bone-related parameters of GIOP mice, and increase the levels of alkaline phosphatase and osteocalcin. In the study of metabolic mechanism, YGJ reversed 24 potential markers in GIOP mice. These included cortisol, 3-hydroxybutyric acid, taurine, esculin and uric acid, which are closely associated with osteoporosis. Topological analysis results showed that YGJ had the most significant effect on taurine and hypotaurine metabolism, with - log10 (P) > 2.0 and Impact > 0.4. CONCLUSIONS Yi-Guan-Jian decoction can increase bone density and improve bone microstructure by regulating the levels of alkaline phosphatase and osteocalcin and reverse bone loss in GIOP mouse model. The underlying metabolic mechanism may be related to taurine and hypotaurine metabolic pathway.
Collapse
Affiliation(s)
- Mengxing Yin
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Dezhi Zhou
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Fu Jia
- Department of Orthopedics, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China.
| | - Xiaosan Su
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiufang Li
- West Yunnan University of Applied Sciences, Dali, Yunnan, China
| | - Ruifen Sun
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junmin Li
- Department of Orthopedics, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
6
|
Prada D, Rexrode K, Kalia V, Kooperberg C, Reiner A, Balasubramanian R, Wu HC, Miller G, Lonita-Laza I, Crandall C, Cantu-de-Leon D, Liao D, Yanosky J, Stewart J, Whitsel E, Baccarelli A. Metabolomic Evaluation of Air Pollution-related Bone Damage and Potential Mediation. RESEARCH SQUARE 2023:rs.3.rs-2652887. [PMID: 37034583 PMCID: PMC10081369 DOI: 10.21203/rs.3.rs-2652887/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Ambient air pollution has been associated with bone damage. However, no studies have evaluated the metabolomic response to air pollutants and its potential influence on bone health in postmenopausal women. We analyzed data from WHI participants with plasma samples. Whole-body, total hip, femoral neck, and spine BMD at enrollment and follow-up (Y1, Y3, Y6). Daily particulate matter NO, NO2, PM10 and SO2 were averaged over 1-, 3-, and 5-year periods before metabolomic assessments. Statistical analyses included multivariable-adjusted linear mixed models, pathways analyses, and mediation modeling. NO, NO2, and SO2, but not PM10, were associated with taurine, inosine, and C38:4 phosphatidylethanolamine (PE), at all averaging periods. We found a partial mediation of C38:4 PE in the association between 1-year average NO and lumbar spine BMD (p-value: 0.032). This is the first study suggesting that a PE may partially mediate air pollution-related bone damage in postmenopausal women.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Jeff Yanosky
- Pennsylvania State University College of Medicine
| | | | | | | |
Collapse
|