1
|
Gao M, Yang N, Shao Y, Shen T, Li W, Ma B, Wei X, Ruan YL, Ma F, Li M. An insertion in the promoter of a malate dehydrogenase gene regulates malic acid content in apple fruit. PLANT PHYSIOLOGY 2024; 196:432-445. [PMID: 38788771 DOI: 10.1093/plphys/kiae303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Malic acid is an important flavor determinant in apple (Malus × domestica Borkh.) fruit. One known variation controlling malic acid is the A/G single nucleotide polymorphism in an aluminum-activated malate transporter gene (MdMa1). Nevertheless, there are still differences in malic acid content in apple varieties with the same Ma1 genotype (Ma1/Ma1 homozygous), such as 'Honeycrisp' (high malic acid content) and 'Qinguan' (low malic acid content), indicating that other loci may influence malic acid and fruit acidity. Here, the F1 (Filial 1) hybrid generation of 'Honeycrisp' × 'Qinguan' was used to analyze quantitative trait loci for malic acid content. A major locus (Ma7) was identified on chromosome 13. Within this locus, a malate dehydrogenase gene, MDH1 (MdMa7), was the best candidate for further study. Subcellular localization suggested that MdMa7 encodes a cytosolic protein. Overexpression and RNA interference of MdMa7 in apple fruit increased and decreased malic acid content, respectively. An insertion/deletion (indel) in the MdMa7 promoter was found to affect MdMa7 expression and malic acid content in both hybrids and other cultivated varieties. The insertion and deletion genotypes were designated as MA7 and ma7, respectively. The transcription factor MdbHLH74 was found to stimulate MdMa7 expression in the MA7 genotype but not in the ma7 genotype. Transient transformation of fruit showed that MdbHLH74 affected MdMa7 expression and malic acid content in 'Gala' (MA7/MA7) but not in 'Fuji' (ma7/ma7). Our results indicated that genetic variation in the MdMa7 (MDH1) promoter alters the binding ability of the transcription factor MdbHLH74, which alters MdMa7 (MDH1) transcription and the malic acid content in apple fruit, especially in Ma1/Ma1 homozygous accessions.
Collapse
Affiliation(s)
- Meng Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Nanxiang Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingli Shao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tian Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenxin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong-Ling Ruan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingjun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
2
|
Li C, Krishnan S, Zhang M, Hu D, Meng D, Riedelsberger J, Dougherty L, Xu K, Piñeros MA, Cheng L. Alternative Splicing Underpins the ALMT9 Transporter Function for Vacuolar Malic Acid Accumulation in Apple. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310159. [PMID: 38514904 PMCID: PMC11165477 DOI: 10.1002/advs.202310159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Vacuolar malic acid accumulation largely determines fruit acidity, a key trait for the taste and flavor of apple and other fleshy fruits. Aluminum-activated malate transporter 9 (ALMT9/Ma1) underlies a major genetic locus, Ma, for fruit acidity in apple, but how the protein transports malate across the tonoplast is unclear. Here, it is shown that overexpression of the coding sequence of Ma1 (Ma1α) drastically decreases fruit acidity in "Royal Gala" apple, leading to uncovering alternative splicing underpins Ma1's function. Alternative splicing generates two isoforms: Ma1β is 68 amino acids shorter with much lower expression than the full-length protein Ma1α. Ma1β does not transport malate itself but interacts with the functional Ma1α to form heterodimers, creating synergy with Ma1α for malate transport in a threshold manner (When Ma1β/Ma1α ≥ 1/8). Overexpression of Ma1α triggers feedback inhibition on the native Ma1 expression via transcription factor MYB73, decreasing the Ma1β level well below the threshold that leads to significant reductions in Ma1 function and malic acid accumulation in fruit. Overexpression of Ma1α and Ma1β or genomic Ma1 increases both isoforms proportionally and enhances fruit malic acid accumulation. These findings reveal an essential role of alternative splicing in ALMT9-mediated malate transport underlying apple fruit acidity.
Collapse
Affiliation(s)
- Chunlong Li
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | | | - Mengxia Zhang
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Dagang Hu
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Dong Meng
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Janin Riedelsberger
- Center for Bioinformatics, Simulation and Modeling, Department of Bioinformatics, Faculty of EngineeringUniversity of TalcaTalca3460000Chile
| | - Laura Dougherty
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment StationCornell UniversityGenevaNY14456USA
| | - Kenong Xu
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment StationCornell UniversityGenevaNY14456USA
| | - Miguel A. Piñeros
- Plant Biology Section, School of Integrative Plant Science and Robert W. Holley Center for Agriculture and HealthUSDA‐ARS Cornell UniversityIthacaNY14853USA
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| |
Collapse
|
3
|
Miao Y, Hu X, Wang L, Schultze-Kraft R, Wang W, Chen Z. Characterization of SgALMT genes reveals the function of SgALMT2 in conferring aluminum tolerance in Stylosanthes guianensis through the mediation of malate exudation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108535. [PMID: 38503187 DOI: 10.1016/j.plaphy.2024.108535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Aluminum (Al) toxicity is the major constraint on plant growth and productivity in acidic soils. An adaptive mechanism to enhance Al tolerance in plants is mediated malate exudation from roots through the involvement of ALMT (Al-activated malate transporter) channels. The underlying Al tolerance mechanisms of stylo (Stylosanthes guianensis), an important tropical legume that exhibits superior Al tolerance, remain largely unknown, and knowledge of the potential contribution of ALMT genes to Al detoxification in stylo is limited. In this study, stylo root growth was inhibited by Al toxicity, accompanied by increases in malate and citrate exudation from roots. A total of 11 ALMT genes were subsequently identified in the stylo genome and named SgALMT1 to SgALMT11. Diverse responses to metal stresses were observed for these SgALMT genes in stylo roots. Among them, the expressions of 6 out of the 11 SgALMTs were upregulated by Al toxicity. SgALMT2, a root-specific and Al-activated gene, was selected for functional characterization. Subcellular localization analysis revealed that the SgALMT2 protein is localized to the plasma membrane. The function of SgALMT2 in mediating malate release was confirmed by analysis of the malate exudation rate from transgenic composite stylo plants overexpressing SgALMT2. Furthermore, overexpression of SgALMT2 led to increased root growth in transgenic stylo plants treated with Al through decreased Al accumulation in roots. Taken together, the results of this study suggest that malate secretion mediated by SgALMT2 contributes to the ability of stylo to cope with Al toxicity.
Collapse
Affiliation(s)
- Ye Miao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; National Key Laboratory for Tropical Crop Breeding, Sanya, 572024, China
| | - Xuan Hu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; National Key Laboratory for Tropical Crop Breeding, Sanya, 572024, China
| | - Linjie Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Rainer Schultze-Kraft
- Alliance of Bioversity International and International Center for Tropical Agriculture, Cali, 763537, Colombia
| | - Wenqiang Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Zhijian Chen
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; National Key Laboratory for Tropical Crop Breeding, Sanya, 572024, China.
| |
Collapse
|
4
|
Huang XY, Xiang Y, Zhao YW, Wang CK, Wang JH, Wang WY, Liu XL, Sun Q, Hu DG. Regulation of a vacuolar proton-pumping P-ATPase MdPH5 by MdMYB73 and its role in malate accumulation and vacuolar acidification. ABIOTECH 2023; 4:303-314. [PMID: 38106434 PMCID: PMC10721769 DOI: 10.1007/s42994-023-00115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/17/2023] [Indexed: 12/19/2023]
Abstract
As the main organic acid in fruits, malate is produced in the cytoplasm and is then transported into the vacuole. It accumulates by vacuolar proton pumps, transporters, and channels, affecting the taste and flavor of fruits. Among the three types of proton pumps (V-ATPases, V-PPases, and P-ATPases), the P-ATPases play an important role in the transport of malate into vacuoles. In this study, the transcriptome data, collected at different stages after blooming and during storage, were analyzed and the results demonstrated that the expression of MdPH5, a vacuolar proton-pumping P-ATPase, was associated with both pre- and post-harvest malate contents. Moreover, MdPH5 is localized at the tonoplast and regulates malate accumulation and vacuolar pH. In addition, MdMYB73, an upstream MYB transcription factor of MdPH5, directly binds to its promoter, thereby transcriptionally activating its expression and enhancing its activity. In this way, MdMYB73 can also affect malate accumulation and vacuolar pH. Overall, this study clarifies how MdMYB73 and MdPH5 act to regulate vacuolar malate transport systems, thereby affecting malate accumulation and vacuolar pH. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00115-7.
Collapse
Affiliation(s)
- Xiao-Yu Huang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Ying Xiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Yu-Wen Zhao
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Chu-Kun Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Jia-Hui Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Wen-Yan Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Xiao-Long Liu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| |
Collapse
|
5
|
Peng Y, Yuan Y, Chang W, Zheng L, Ma W, Ren H, Liu P, Zhu L, Su J, Ma F, Li M, Ma B. Transcriptional repression of MdMa1 by MdMYB21 in Ma locus decreases malic acid content in apple fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1231-1242. [PMID: 37219375 DOI: 10.1111/tpj.16314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Malic acid is a major organic acid component of apples and a crucial determinant of fruit organoleptic quality. A candidate gene for malic acid content, designated MdMa1, was previously identified in the Ma locus, which is a major quantitative trait locus (QTL) for apple fruit acidity located on the linkage group 16. Region-based association mapping to detect candidate genes in the Ma locus identified MdMa1 and an additional MdMYB21 gene putatively associated with malic acid. MdMYB21 was significantly associated with fruit malic acid content, accounting for ~7.48% of the observed phenotypic variation in the apple germplasm collection. Analyses of transgenic apple calli, fruits and tomatoes demonstrated that MdMYB21 negatively regulated malic acid accumulation. The apple fruit acidity-related MdMa1 and its tomato ortholog, SlALMT9, exhibited lower expression profiles in apple calli, mature fruits and tomatoes in which MdMYB21 was overexpressed, compared with their corresponding wild-type variety. MdMYB21 directly binds to the MdMa1 promoter and represses its expression. Interestingly, a 2-bp variation in the MdMYB21 promoter region altered its expression and regulation of its target gene, MdMa1, expression. Our findings not only demonstrate the efficiency of integrating QTL and association mapping in the identification of candidate genes controlling complex traits in apples, but also provide insights into the complex regulatory mechanism of fruit malic acid accumulation.
Collapse
Affiliation(s)
- Yunjing Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yangyang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenjing Chang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Litong Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenfang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hang Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peipei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lingcheng Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Su
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
6
|
Zheng L, Liao L, Duan C, Ma W, Peng Y, Yuan Y, Han Y, Ma F, Li M, Ma B. Allelic variation of MdMYB123 controls malic acid content by regulating MdMa1 and MdMa11 expression in apple. PLANT PHYSIOLOGY 2023; 192:1877-1891. [PMID: 36810940 PMCID: PMC10315266 DOI: 10.1093/plphys/kiad111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Acidity is a key determinant of fruit organoleptic quality. Here, a candidate gene for fruit acidity, designated MdMYB123, was identified from a comparative transcriptome study of two Ma1Ma1 apple (Malus domestica) varieties, "Qinguan (QG)" and "Honeycrisp (HC)" with different malic acid content. Sequence analysis identified an A→T SNP, which was located in the last exon, resulting in a truncating mutation, designated mdmyb123. This SNP was significantly associated with fruit malic acid content, accounting for 9.5% of the observed phenotypic variation in apple germplasm. Differential MdMYB123- and mdmyb123-mediated regulation of malic acid accumulation was observed in transgenic apple calli, fruits, and plantlets. Two genes, MdMa1 and MdMa11, were up- and down-regulated in transgenic apple plantlets overexpressing MdMYB123 and mdmyb123, respectively. MdMYB123 could directly bind to the promoter of MdMa1 and MdMa11, and induce their expression. In contrast, mdmyb123 could directly bind to the promoters of MdMa1 and MdMa11, but with no transcriptional activation of both genes. In addition, gene expression analysis in 20 different apple genotypes based on SNP locus from "QG" × "HC" hybrid population confirmed a correlation between A/T SNP with expression levels of MdMa1 and MdMa11. Our finding provides valuable functional validation of MdMYB123 and its role in the transcriptional regulation of both MdMa1 and MdMa11, and apple fruit malic acid accumulation.
Collapse
Affiliation(s)
- Litong Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan 430074, China
| | - Chenbo Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenfang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunjing Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yangyang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan 430074, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
7
|
Jiang X, Liu K, Peng H, Fang J, Zhang A, Han Y, Zhang X. Comparative network analysis reveals the dynamics of organic acid diversity during fruit ripening in peach (Prunus persica L. Batsch). BMC PLANT BIOLOGY 2023; 23:16. [PMID: 36617558 PMCID: PMC9827700 DOI: 10.1186/s12870-023-04037-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Organic acids are important components that determine the fruit flavor of peach (Prunus persica L. Batsch). However, the dynamics of organic acid diversity during fruit ripening and the key genes that modulate the organic acids metabolism remain largely unknown in this kind of fruit tree which yield ranks sixth in the world. RESULTS In this study, we used 3D transcriptome data containing three dimensions of information, namely time, phenotype and gene expression, from 5 different varieties of peach to construct gene co-expression networks throughout fruit ripening of peach. With the network inferred, the time-ordered network comparative analysis was performed to select high-acid specific gene co-expression network and then clarify the regulatory factors controlling organic acid accumulation. As a result, network modules related to organic acid synthesis and metabolism under high-acid and low-acid comparison conditions were identified for our following research. In addition, we obtained 20 candidate genes as regulatory factors related to organic acid metabolism in peach. CONCLUSIONS The study provides new insights into the dynamics of organic acid accumulation during fruit ripening, complements the results of classical co-expression network analysis and establishes a foundation for key genes discovery from time-series multiple species transcriptome data.
Collapse
Affiliation(s)
- Xiaohan Jiang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kangchen Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huixiang Peng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Fang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aidi Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| | - Xiujun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|
8
|
Zhang C, Geng Y, Liu H, Wu M, Bi J, Wang Z, Dong X, Li X. Low-acidity ALUMINUM-DEPENDENT MALATE TRANSPORTER4 genotype determines malate content in cultivated jujube. PLANT PHYSIOLOGY 2023; 191:414-427. [PMID: 36271866 PMCID: PMC9806563 DOI: 10.1093/plphys/kiac491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Jujube (Ziziphus jujuba Mill.), the most economically important fruit tree in Rhamnaceae, was domesticated from sour jujube (Z. jujuba Mill. var. spinosa (Bunge) Hu ex H.F.Chow.). During domestication, fruit sweetness increased and acidity decreased. Reduction in organic acid content is crucial for the increase in sweetness of jujube fruit. In this study, the determination of malate content among 46 sour jujube and 35 cultivated jujube accessions revealed that malate content varied widely in sour jujube (0.90-13.31 mg g-1) but to a lesser extent in cultivated jujube (0.33-2.81 mg g-1). Transcriptome sequencing analysis showed that the expression level of Aluminum-Dependent Malate Transporter 4 (ZjALMT4) was substantially higher in sour jujube than in jujube. Correlation analysis of mRNA abundance and fruit malate content and transient gene overexpression showed that ZjALMT4 participates in malate accumulation. Further sequencing analyses revealed that three genotypes of the W-box in the promoter of ZjALMT4 in sour jujube associated with malate content were detected, and the genotype associated with low malate content was fixed in jujube. Yeast one-hybrid screening showed that ZjWRKY7 binds to the W-box region of the high-acidity genotype in sour jujube, whereas the binding ability was weakened in jujube. Transient dual-luciferase and overexpression analyses showed that ZjWRKY7 directly binds to the promoter of ZjALMT4, activating its transcription, and thereby promoting malate accumulation. These findings provide insights into the mechanism by which ZjALMT4 modulates malate accumulation in sour jujube and jujube. The results are of theoretical and practical importance for the exploitation and domestication of germplasm resources.
Collapse
Affiliation(s)
- Chunmei Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yanqiu Geng
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hanxiao Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Mengjia Wu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jingxin Bi
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | | | | | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Liu W, Chen Z, Jiang S, Wang Y, Fang H, Zhang Z, Chen X, Wang N. Research Progress on Genetic Basis of Fruit Quality Traits in Apple ( Malus × domestica). FRONTIERS IN PLANT SCIENCE 2022; 13:918202. [PMID: 35909724 PMCID: PMC9330611 DOI: 10.3389/fpls.2022.918202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/23/2022] [Indexed: 06/01/2023]
Abstract
Identifying the genetic variation characteristics of phenotypic traits is important for fruit tree breeding. During the long-term evolution of fruit trees, gene recombination and natural mutation have resulted in a high degree of heterozygosity. Apple (Malus × domestica Borkh.) shows strong ecological adaptability and is widely cultivated, and is among the most economically important fruit crops worldwide. However, the high level of heterozygosity and large genome of apple, in combination with its perennial life history and long juvenile phase, complicate investigation of the genetic basis of fruit quality traits. With continuing augmentation in the apple genomic resources available, in recent years important progress has been achieved in research on the genetic variation of fruit quality traits. This review focuses on summarizing recent genetic studies on apple fruit quality traits, including appearance, flavor, nutritional, ripening, and storage qualities. In addition, we discuss the mapping of quantitative trait loci, screening of molecular markers, and mining of major genes associated with fruit quality traits. The overall aim of this review is to provide valuable insights into the mechanisms of genetic variation and molecular breeding of important fruit quality traits in apple.
Collapse
Affiliation(s)
- Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, China
| | - Zijing Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, China
| | - Shenghui Jiang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yicheng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hongcheng Fang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, China
| |
Collapse
|
10
|
Fotirić Akšić M, Nešović M, Ćirić I, Tešić Ž, Pezo L, Tosti T, Gašić U, Dojčinović B, Lončar B, Meland M. Polyphenolics and Chemical Profiles of Domestic Norwegian Apple (Malus × domestica Borkh.) Cultivars. Front Nutr 2022; 9:941487. [PMID: 35845808 PMCID: PMC9280294 DOI: 10.3389/fnut.2022.941487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
Using modern analytical techniques, a comprehensive study of the chemical composition of fruits from apple cultivars grown in Western Norway during 2019 and 2020 was done. Metals, sugars, organic acids, antioxidant tests, and polyphenol content have been observed. In all investigated samples, the most dominant sugars were glucose, fructose, and sucrose. Among 11 tested organic acids, the dominant was malic acid, followed by citric and maleic acid. The most common metal was potassium, followed by magnesium and zinc. The quantification of polyphenols showed that among the 11 quantified polyphenols, chlorogenic acid, quercetin 3-O-rhamnoside, quercetin 3-O-glucoside, quercetin, and phlorizin were the most abundant. A detailed study of the polyphenolic profile of nine investigated apple samples provided 30 identified polyphenolic compounds from the class of hydroxybenzoic and hydroxycinnamic acids, flavonoids, and dihydrochalcones. In addition to the identified 3-O-caffeoylquinic acid, its two isomers of 5-O-caffeoylquinic acid and three esters were also found. Present polyphenols of the tested apples provided significant data on the quality of Norwegian apples, and they contribute to the distinguishing of these apple samples.
Collapse
Affiliation(s)
| | - Milica Nešović
- Institute of General and Physical Chemistry, Belgrade, Serbia
| | - Ivanka Ćirić
- Innovative Centre Faculty of Chemistry Belgrade, University of Belgrade, Belgrade, Serbia
| | - Živoslav Tešić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Lato Pezo
- Institute of General and Physical Chemistry, Belgrade, Serbia
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Biljana Dojčinović
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Biljana Lončar
- University of Novi Sad-Faculty of Technology Novi Sad, Novi Sad, Serbia
| | - Mekjell Meland
- Department of Horticulture, NIBIO Ullensvang, Norwegian Institute of Bioeconomy Research, Lofthus, Norway
- *Correspondence: Mekjell Meland
| |
Collapse
|
11
|
Qin Z, Chen S, Feng J, Chen H, Qi X, Wang H, Deng Y. Identification of aluminum-activated malate transporters (ALMT) family genes in hydrangea and functional characterization of HmALMT5/9/11 under aluminum stress. PeerJ 2022; 10:e13620. [PMID: 35769137 PMCID: PMC9235816 DOI: 10.7717/peerj.13620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/02/2022] [Indexed: 01/17/2023] Open
Abstract
Hydrangea (Hydrangea macrophylla (Thunb.) Ser.) is a famous ornamental plant species with high resistance to aluminum (Al). The aluminum-activated malate transporter (ALMT) family encodes anion channels, which participate in many physiological processes, such as Al tolerance, pH regulation, stomatal movement, and mineral nutrition. However, systematic studies on the gene family have not been reported in hydrangea. In this study, 11 candidate ALMT family members were identified from the transcriptome data for hydrangea, which could be divided into three clusters according to the phylogenetic tree. The protein physicochemical properties, phylogeny, conserved motifs and protein structure were analyzed. The distribution of base conservative motifs of HmALMTs was consistent with that of other species, with a highly conserved WEP motif. Furthermore, tissue-specific analysis showed that most of the HmALMTs were highly expressed in the stem under Al treatment. In addition, overexpression of HmALMT5, HmALMT9 and HmALMT11 in yeasts enhanced their tolerance to Al stress. Therefore, the above results reveal the functional role of HmALMTs underlying the Al tolerance of hydrangea. The present study provides a reference for further research to elucidate the functional mechanism and expression regulation of the ALMT gene family in hydrangea.
Collapse
Affiliation(s)
- Ziyi Qin
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Shuangshuang Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Jing Feng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Huijie Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xiangyu Qi
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Huadi Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China,School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanming Deng
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China,School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
12
|
Zhang L, Ma B, Wang C, Chen X, Ruan YL, Yuan Y, Ma F, Li M. MdWRKY126 modulates malate accumulation in apple fruit by regulating cytosolic malate dehydrogenase (MdMDH5). PLANT PHYSIOLOGY 2022; 188:2059-2072. [PMID: 35078249 PMCID: PMC8968328 DOI: 10.1093/plphys/kiac023] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 05/10/2023]
Abstract
The content of organic acids greatly influences the taste and storage life of fleshy fruit. Our current understanding of the molecular mechanism of organic acid accumulation in apple (Malus domestica) fruit focuses on the aluminum-activated malate transporter 9/Ma1 gene. In this study, we identified a candidate gene, MdWRKY126, for controlling fruit acidity independent of Ma1 using homozygous recessive mutants of Ma1, namely Belle de Boskoop "BSKP" and Aifeng "AF." Analyses of transgenic apple calli and flesh and tomato (Solanum lycopersicum) fruit demonstrated that MdWRKY126 was substantially associated with malate content. MdWRKY126 was directly bound to the promoter of the cytoplasmic NAD-dependent malate dehydrogenase MdMDH5 and promoted its expression, thereby enhancing the malate content of apple fruit. In MdWRKY126 overexpressing calli, the mRNA levels of malate-associated transporters and proton pump genes also significantly increased, which contributed to the transport of malate accumulated in the cytoplasm to the vacuole. These findings demonstrated that MdWRKY126 regulates malate anabolism in the cytoplasm and coordinates the transport between cytoplasm and vacuole to regulate malate accumulation. Our study provides useful information to improve our understanding of the complex mechanism regulating apple fruit acidity.
Collapse
Affiliation(s)
| | | | - Changzhi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingyu Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Yangyang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | |
Collapse
|
13
|
Wang Q, Cao K, Cheng L, Li Y, Guo J, Yang X, Wang J, Khan IA, Zhu G, Fang W, Chen C, Wang X, Wu J, Xu Q, Wang L. Multi-omics approaches identify a key gene, PpTST1, for organic acid accumulation in peach. HORTICULTURE RESEARCH 2022; 9:uhac026. [PMID: 35184194 PMCID: PMC9171119 DOI: 10.1093/hr/uhac026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Organic acid content in fruit is an important determinant of peach organoleptic quality, which undergoes considerable variations during development and maturation. However, its molecular mechanism remains largely unclear. In this study, an integrative approach of genome-wide association studies and comparative transcriptome analysis were applied to identify candidate genes involved in organic acid accumulation in peach. A key gene PpTST1, encoding tonoplast sugar transporter, was identified and the genotype of PpTST1 with a single-base transversion (G1584T) in the third exon which leads to a single amino acid substitution (Q528H) was associated with low level of organic acid content in peach. Overexpression of PpTST1His resulted in reduced organic acid content along with increased sugar content both in peach and tomato fruits, suggesting its dual function in sugar accumulation and organic acid content reduction. Two V-type proton ATPases interact with PpTST1 in yeast two-hybridization assay. In addition, the G1584T transversion appeared and gradually accumulated during domestication and improvement, which indicated that PpTST1 was under selection. The identification and characterization of PpTST1 would facilitate the improvement of peach fruit quality.
Collapse
Affiliation(s)
- Qi Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jian Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xuanwen Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jiao Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Irshad Ahmad Khan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Gengrui Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Weichao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Changwen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xinwei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jinlong Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Qiang Xu
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
14
|
James T, Johnson A, Schaller A, Vanderzande S, Luo F, Sandefur P, Ru S, Peace C. As It Stands: The Palouse Wild Cider Apple Breeding Program. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040517. [PMID: 35214849 PMCID: PMC8877849 DOI: 10.3390/plants11040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 05/10/2023]
Abstract
Providing hands-on education for the next generation of plant breeders would help maximize effectiveness of future breeding efforts. Such education should include training in introgression of crop wild relative alleles, which can increase genetic diversity while providing cultivar attributes that meet industry and consumer demands in a crop such as cider apple. Incorporation of DNA information in breeding decisions has become more common and is another skill future plant breeders need. The Palouse Wild Cider apple breeding program (PWCabp) was established at Washington State University in early 2014 as a student-run experiential learning opportunity. The objectives of this study were to describe the PWCabp's approaches, outcomes, and student involvement to date that has relied on a systematic operational structure, utilization of wild relatives, and incorporation of DNA information. Students chose the crop (cider apple) and initial target market and stakeholders (backyard growers and hobbyists of the Palouse region). Twelve target attributes were defined including high phenolics and red flesh. Phase one and two field trials were established. Two promising high-bitterness selections were identified and propagated. By running the PWCabp, more than 20 undergraduate and graduate students gained experience in the decisions and operations of a fruit breeding program. PWCabp activities have produced desirable new germplasm via utilization of highly diverse Malus germplasm and trained new plant breeding professionals via experiential learning.
Collapse
Affiliation(s)
- Tymon James
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (T.J.); (A.J.); (S.V.)
| | - Alexandra Johnson
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (T.J.); (A.J.); (S.V.)
| | - Alexander Schaller
- Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611, USA;
| | - Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (T.J.); (A.J.); (S.V.)
| | - Feixiong Luo
- Department of Pomology, Hunan Agricultural University, Changsha 410128, China;
| | - Paul Sandefur
- Fall Creek Farm and Nursery, Inc., Lowell, OR 97452, USA;
| | - Sushan Ru
- Department of Horticulture, Auburn University, Auburn, AL 36849, USA;
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (T.J.); (A.J.); (S.V.)
- Correspondence:
| |
Collapse
|
15
|
Gao M, Zhao H, Zheng L, Zhang L, Peng Y, Ma W, Tian R, Yuan Y, Ma F, Li M, Ma B. Overexpression of apple Ma12, a mitochondrial pyrophosphatase pump gene, leads to malic acid accumulation and the upregulation of malate dehydrogenase in tomato and apple calli. HORTICULTURE RESEARCH 2022; 9:uhab053. [PMID: 35039848 PMCID: PMC8769031 DOI: 10.1093/hr/uhab053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/13/2021] [Accepted: 08/09/2021] [Indexed: 05/21/2023]
Abstract
Acidity is an important factor influencing the organoleptic quality of apple fruits. In this study, an apple pyrophosphate-energized proton pump (PEPP) gene was isolated and designated MdMa12. On the basis of a phylogenetic analysis in Rosaceae species, PEPP genes were divided into three groups, with apple PEPP genes most closely related to pear PEPP genes. Gene expression analysis revealed that high malic acid content was generally accompanied by high MdMa12 expression levels. Moreover, MdMa12 was mainly expressed in the fruit. A subcellular localization analysis suggested that MdMa12 is a mitochondrial protein. The ectopic expression and overexpression of MdMa12 in "Micro-Tom" tomato and apple calli, respectively, increased the malic acid content. One (MDH12) of four malate dehydrogenase genes highly expressed in transgenic apple calli was confirmed to encode a protein localized in mitochondria. The overexpression of MDH12 increased the malate content in apple calli. Furthermore, MdMa12 overexpression increased MdDTC1, MdMa1, and MdMa10 expression levels, which were identified to transport malate. These findings imply that MdMa12 has important functions related to apple fruit acidity. Our study explored the regulatory effects of mitochondria on the complex mechanism underlying apple fruit acidity.
Collapse
Affiliation(s)
| | | | - Litong Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lihua Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yunjing Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenfang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rui Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yangyang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | | |
Collapse
|
16
|
Genome-Wide Identification, Characterization and Expression Profiling of Aluminum-Activated Malate Transporters in Eriobotrya japonica Lindl. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aluminum-activated malate transporters (ALMTs) have multiple potential roles in plant metabolism such as regulation of organic acids in fruits, movement of guard cells and inducing tolerance against aluminum stress. However, the systematic characterization of ALMT genes in loquat is yet to be performed. In the current study, 24 putative ALMT genes were identified in the genome of Eriobotrya japonica Lindl. To further investigate the role of those ALMT genes, comprehensive bioinformatics and expression analysis were performed. In bioinformatics analysis, the physiochemical properties, conserved domains, gene structure, conserved motif, phylogenetic and syntenic analysis of EjALMT genes were conducted. The result revealed that the ALMT superfamily domain was conserved in all EjALMT proteins. EjALMT proteins were predicted to be localized in the plasma membrane. Genomic structural and motif analysis showed that the exon and motif number of each EjALMT gene ranged dramatically, from 5 to 7, and 6 to 10, respectively. Syntenic analysis indicated that the segmental or whole-genome duplication played a vital role in extension of the EjALMT gene family. The Ka and Ks values of duplicated genes depicted that EjALMT genes have undergone a strong purifying selection. Furthermore, the expression analysis of EjALMT genes was performed in the root, mature leaf, stem, full-bloom flower and ripened fruit of loquat. Some genes were expressed differentially in examined loquat tissues, signifying their differential role in plant growth and development. This study provides the first genome-wide identification, characterization, and relative expression of the ALMT gene family in loquat and provides the foundation for further functional analysis.
Collapse
|
17
|
Huang XY, Wang CK, Zhao YW, Sun CH, Hu DG. Mechanisms and regulation of organic acid accumulation in plant vacuoles. HORTICULTURE RESEARCH 2021; 8:227. [PMID: 34697291 PMCID: PMC8546024 DOI: 10.1038/s41438-021-00702-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
In fleshy fruits, organic acids are the main source of fruit acidity and play an important role in regulating osmotic pressure, pH homeostasis, stress resistance, and fruit quality. The transport of organic acids from the cytosol to the vacuole and their storage are complex processes. A large number of transporters carry organic acids from the cytosol to the vacuole with the assistance of various proton pumps and enzymes. However, much remains to be explored regarding the vacuolar transport mechanism of organic acids as well as the substances involved and their association. In this review, recent advances in the vacuolar transport mechanism of organic acids in plants are summarized from the perspectives of transporters, channels, proton pumps, and upstream regulators to better understand the complex regulatory networks involved in fruit acid formation.
Collapse
Affiliation(s)
- Xiao-Yu Huang
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chu-Kun Wang
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yu-Wen Zhao
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Cui-Hui Sun
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
18
|
Li N, Wang J, Wang B, Huang S, Hu J, Yang T, Asmutola P, Lan H, Qinghui Y. Identification of the Carbohydrate and Organic Acid Metabolism Genes Responsible for Brix in Tomato Fruit by Transcriptome and Metabolome Analysis. Front Genet 2021; 12:714942. [PMID: 34539743 PMCID: PMC8446636 DOI: 10.3389/fgene.2021.714942] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
Background Sugar and organic acids not only contribute to the formation of soluble solids (Brix) but also are an essential factor affecting the overall flavor intensity. However, the possible metabolic targets and molecular synthesis mechanisms remain to be further clarified. Methods UHPLC-HRMS (ultrahigh-performance liquid chromatography and high-resolution mass spectrometry) combined with comparative transcriptome analysis were performed in fruits at green ripe (S1), turning-color (S2), and red ripe (S3) stages of two tomato genotypes TM-1 (Solanum galapagense L., LA0436) and TM-38 (S. lycopersicum L. cultivar M82, LA3475) that vary in fruit Brix. Results The fruit Brix of TM-1 was nearly twice that of TM-38 at S3. Nevertheless, TM-1 accumulated 1.84- and 2.77-fold the L-malic acid and citric acid in red ripe fruit (S3) compared with TM-38, respectively. D-glucose and D-fructose in TM-1 and TM-38 fruits tended to be similar at S3. Concomitantly, the sugar/organic acid ratio of TM-38 fruits were 23. 08-, 4. 38-, and 2.59-fold higher than that of TM-1 fruits at S1, S2, and S3, respectively. Among starch and sucrose (carbohydrate, CHO) metabolism (ko00500) genes, SUS (Solyc07g042550.3) and BAM (Solyc08g077530.3) were positively (r = 0.885–0.931) correlated with the sugar/organic acid ratio. Besides, INV (Solyc09g010080.3 and Solyc09g010090.5.1), AAM (Solyc04g082090.3), 4-α-GTase (Solyc02g020980.2.1), BGL2 (Solyc06g073750.4, Solyc06g073760.3, and Solyc01g081170.3), TPS (Solyc01g005210.2 and Solyc07g006500.3), and TPP (Solyc08g079060.4) were negatively (r = −0.823 to −0.918) correlated with the sugar/organic acid ratio. The organic acid (TCA cycle) metabolism (ko00020) gene ALMT (Solyc01g096140.3) was also negatively (r = −0.905) correlated with the sugar/organic acid ratio. Conclusion Citric acid may play a more dominant role in the sugar/organic acid ratio of the tomato fruit, and the contribution of both L-malic acid and citric acid to the fruit Brix was much greater than that of D-glucose and D-fructose. Genes involved in CHO and TCA metabolism, which have a significant correlation with the sugar/organic acid ratio were considered to be the contributing factors of fruit Brix.
Collapse
Affiliation(s)
- Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Shaoyong Huang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Jiahui Hu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Patiguli Asmutola
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yu Qinghui
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
19
|
Combined Profiling of Transcriptome and DNA Methylome Reveal Genes Involved in Accumulation of Soluble Sugars and Organic Acid in Apple Fruits. Foods 2021; 10:foods10092198. [PMID: 34574306 PMCID: PMC8467953 DOI: 10.3390/foods10092198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Organic acids and soluble sugars are the major determinants of fruit organoleptic quality. Additionally, DNA methylation has crucial regulatory effects on various processes. However, the epigenetic modifications in the regulation of organic acid and soluble sugar accumulation in apple fruits remain uncharacterized. In this study, DNA methylation and the transcriptome were compared between ‘Honeycrisp’ and ‘Qinguan’ mature fruits, which differ significantly regarding soluble sugar and organic acid contents. In both ‘Honeycrisp’ and ‘Qinguan’ mature fruits, the CG context had the highest level of DNA methylation, and then CHG and CHH contexts. The number and distribution of differentially methylated regions (DMRs) varied among genic regions and transposable elements. The DNA methylation levels in all three contexts in the DMRs were significantly higher in ‘Honeycrisp’ mature fruits than in ‘Qinguan’ mature fruits. A combined methylation and transcriptome analysis revealed a negative correlation between methylation levels and gene expression in DMRs in promoters and gene bodies in the CG and CHG contexts and in gene bodies in the CHH context. Two candidate genes (MdTSTa and MdMa11), which encode tonoplast-localized proteins, potentially associated with fruit soluble sugar contents and acidity were identified based on expression and DNA methylation levels. Overexpression of MdTSTa in tomato increased the fruit soluble sugar content. Moreover, transient expression of MdMa11 in tobacco leaves significantly decreased the pH value. Our results reflect the diversity in epigenetic modifications influencing gene expression and will facilitate further elucidating the complex mechanism underlying fruit soluble sugar and organic acid accumulation.
Collapse
|
20
|
Liao L, Zhang W, Zhang B, Fang T, Wang XF, Cai Y, Ogutu C, Gao L, Chen G, Nie X, Xu J, Zhang Q, Ren Y, Yu J, Wang C, Deng CH, Ma B, Zheng B, You CX, Hu DG, Espley R, Lin-Wang K, Yao JL, Allan AC, Khan A, Korban SS, Fei Z, Ming R, Hao YJ, Li L, Han Y. Unraveling a genetic roadmap for improved taste in the domesticated apple. MOLECULAR PLANT 2021; 14:1454-1471. [PMID: 34022440 DOI: 10.1016/j.molp.2021.05.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/13/2021] [Accepted: 05/17/2021] [Indexed: 05/26/2023]
Abstract
Although taste is an important aspect of fruit quality, an understanding of its genetic control remains elusive in apple and other fruit crops. In this study, we conducted genomic sequence analysis of 497 Malus accessions and revealed erosion of genetic diversity caused by apple breeding and possible independent domestication events of dessert and cider apples. Signatures of selection for fruit acidity and size, but not for fruit sugar content, were detected during the processes of both domestication and improvement. Furthermore, we found that single mutations in major genes affecting fruit taste, including Ma1, MdTDT, and MdSOT2, dramatically decrease malate, citrate, and sorbitol accumulation, respectively, and correspond to important domestication events. Interestingly, Ma1 was identified to have pleiotropic effects on both organic acid content and sugar:acid ratio, suggesting that it plays a vital role in determining fruit taste. Fruit taste is unlikely to have been negatively affected by linkage drag associated with selection for larger fruit that resulted from the pyramiding of multiple genes with minor effects on fruit size. Collectively, our study provides new insights into the genetic basis of fruit quality and its evolutionary roadmap during apple domestication, pinpointing several candidate genes for genetic manipulation of fruit taste in apple.
Collapse
Affiliation(s)
- Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Weihan Zhang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Ting Fang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiao-Fei Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Yaming Cai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Collins Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Gang Chen
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqing Nie
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsheng Xu
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Quanyan Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Yiran Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Jianqiang Yu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Chukun Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Cecilia H Deng
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Baiquan Ma
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Beibei Zheng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Da-Gang Hu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Richard Espley
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - Schuyler S Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yu-Jin Hao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China.
| | - Li Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
21
|
Population-scale peach genome analyses unravel selection patterns and biochemical basis underlying fruit flavor. Nat Commun 2021; 12:3604. [PMID: 34127667 PMCID: PMC8203738 DOI: 10.1038/s41467-021-23879-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
A narrow genetic basis in modern cultivars and strong linkage disequilibrium in peach (Prunus persica) has restricted resolution power for association studies in this model fruit species, thereby limiting our understanding of economically important quality traits including fruit flavor. Here, we present a high-quality genome assembly for a Chinese landrace, Longhua Shui Mi (LHSM), a representative of the Chinese Cling peaches that have been central in global peach genetic improvement. We also map the resequencing data for 564 peach accessions to this LHSM assembly at an average depth of 26.34× per accession. Population genomic analyses reveal a fascinating history of convergent selection for sweetness yet divergent selection for acidity in eastern vs. western modern cultivars. Molecular-genetics and biochemical analyses establish that PpALMT1 (aluminum-activated malate transporter 1) contributes to their difference of malate content and that increases fructose content accounts for the increased sweetness of modern peach fruits, as regulated by PpERDL16 (early response to dehydration 6-like 16). Our study illustrates the strong utility of the genomics resources for both basic and applied efforts to understand and exploit the genetic basis of fruit quality in peach.
Collapse
|
22
|
Jia D, Wu P, Shen F, Li W, Zheng X, Wang Y, Yuan Y, Zhang X, Han Z. Genetic variation in the promoter of an R2R3-MYB transcription factor determines fruit malate content in apple (Malus domestica Borkh.). PLANT PHYSIOLOGY 2021; 186:549-568. [PMID: 33624810 PMCID: PMC8154052 DOI: 10.1093/plphys/kiab098] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/13/2021] [Indexed: 05/25/2023]
Abstract
Deciphering the mechanism of malate accumulation in apple (Malus domestica Borkh.) fruits can help to improve their flavor quality and enhance their benefits for human health. Here, we analyzed malate content as a quantitative trait that is determined mainly by genetic effects. In a previous study, we identified an R2R3-MYB transcription factor named MdMYB44 that was a candidate gene in qtl08.1 (quantitative trait locus mapped to chromosome 8) of fruit malate content. In the present study, we established that MdMYB44 negatively regulates fruit malate accumulation by repressing the promoter activity of the malate-associated genes Ma1 (Al-Activated Malate Transporter 9), Ma10 (P-type ATPase 10), MdVHA-A3 (V-type ATPase A3), and MdVHA-D2 (V-type ATPase D2). Two single-nucleotide polymorphisms (SNPs) in the MdMYB44 promoter, SNP A/G and SNP T/-, were experimentally shown to associate with fruit malate content. The TATA-box in the MdMYB44 promoter in the presence of SNP A enhances the basal activity of the MdMYB44 promoter. The binding of a basic-helix-loop-helix transcription factor MdbHLH49 to the MdMYB44 promoter was enhanced by the presence of SNP T, leading to increased MdMYB44 transcript levels and reduced malate accumulation. Furthermore, MdbHLH49 interacts with MdMYB44 and enhances MdMYB44 activity. The two SNPs could be used in combination to select for sour or non-sour apples, providing a valuable tool for the selection of fruit acidity by the apple breeding industry. This research is important for understanding the complex molecular mechanisms of fruit malate accumulation and accelerating the development of germplasm innovation in apple species and cultivars.
Collapse
Affiliation(s)
- Dongjie Jia
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng Wu
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Fei Shen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei Li
- College of Horticulture, Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
| | - Xiaodong Zheng
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yongzhang Wang
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yongbing Yuan
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinzhong Zhang
- College of Horticulture, Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
| | - Zhenhai Han
- College of Horticulture, Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
| |
Collapse
|
23
|
Genome-Wide Analysis, Evolutionary History and Response of ALMT Family to Phosphate Starvation in Brassica napus. Int J Mol Sci 2021; 22:ijms22094625. [PMID: 33924853 PMCID: PMC8125224 DOI: 10.3390/ijms22094625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Low phosphorus (P) availability is one of the major constraints to plant growth, particularly in acidic soils. A possible mechanism for enhancing the use of sparsely soluble P forms is the secretion of malate in plants by the aluminum-activated malate transporter (ALMT) gene family. Despite its significance in plant biology, the identification of the ALMT gene family in oilseed rape (Brassica napus; B. napus), an allotetraploid crop, is unveiled. Herein, we performed genome-wide identification and characterization of ALMTs in B. napus, determined their gene expression in different tissues and monitored transcriptional regulation of BnaALMTs in the roots and leaves at both a sufficient and a deficient P supply. Thirty-nine BnaALMT genes were identified and were clustered into five branches in the phylogenetic tree based on protein sequences. Collinearity analysis revealed that most of the BnaALMT genes shared syntenic relationships among BnaALMT members in B. napus, which suggested that whole-genome duplication (polyploidy) played a major driving force for BnaALMTs evolution in addition to segmental duplication. RNA-seq analyses showed that most BnaALMT genes were preferentially expressed in root and leaf tissues. Among them, the expression of BnaC08g13520D, BnaC08g15170D, BnaC08g15180D, BnaC08g13490D, BnaC08g13500D, BnaA08g26960D, BnaC05g14120D, BnaA06g12560D, BnaC05g20630D, BnaA07g02630D, BnaA04g15700D were significantly up-regulated in B. napus roots and leaf at a P deficient supply. The current study analyzes the evolution and the expression of the ALMT family in B. napus, which will help in further research on their role in the enhancement of soil P availability by secretion of organic acids.
Collapse
|
24
|
Wang L, Jiang X, Zhao L, Wang F, Liu Y, Zhou H, He H, Han Y. A candidate PpRPH gene of the D locus controlling fruit acidity in peach. PLANT MOLECULAR BIOLOGY 2021; 105:321-332. [PMID: 33128723 DOI: 10.1007/s11103-020-01089-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
A candidate gene, designate PpRPH, in the D locus was identified to control fruit acidity in peach. Fruit acidity has a strong impact on organoleptic quality of fruit. Peach fruit acidity is controlled by a large-effect D locus on chromosome 5. In this study, the D locus was mapped to a 509-kb interval, with two markers, 5dC720 and 5C1019, co-segregating with the non-acid/acid trait of peach fruit. Within this interval, a candidate gene encoding a putative small protein, designated PpRPH, showed a consistency between gene expression and fruit acidity, with up- and down-regulation in non-acidic and acidic fruits, respectively. Transient ectopic expression of PpRPH in tobacco leaves caused an increase of pH by approximately 40% compared to the control transformed with empty vector. Whereas, the concentrations of citrate and malate decreased significantly by 22% and 37%, respectively, with respect to the empty vector control. All these results suggest that PpRPH is a strong candidate gene of the D locus. These findings contribute to our overall understanding of the complex mechanism underlying fruit acidity in peach as well as that in other fruit crops.
Collapse
Affiliation(s)
- Lu Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiaohan Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Li Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Furong Wang
- Institute of Fruit Tree and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430209, China
| | - Yudi Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Hui Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Huaping He
- Institute of Fruit Tree and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430209, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
25
|
Umer MJ, Bin Safdar L, Gebremeskel H, Zhao S, Yuan P, Zhu H, Kaseb MO, Anees M, Lu X, He N, Gong C, Liu W. Identification of key gene networks controlling organic acid and sugar metabolism during watermelon fruit development by integrating metabolic phenotypes and gene expression profiles. HORTICULTURE RESEARCH 2020; 7:193. [PMID: 33328462 PMCID: PMC7705761 DOI: 10.1038/s41438-020-00416-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/14/2020] [Accepted: 09/10/2020] [Indexed: 05/03/2023]
Abstract
The organoleptic qualities of watermelon fruit are defined by the sugar and organic acid contents, which undergo considerable variations during development and maturation. The molecular mechanisms underlying these variations remain unclear. In this study, we used transcriptome profiles to investigate the coexpression patterns of gene networks associated with sugar and organic acid metabolism. We identified 3 gene networks/modules containing 2443 genes highly correlated with sugars and organic acids. Within these modules, based on intramodular significance and Reverse Transcription Quantitative polymerase chain reaction (RT-qPCR), we identified 7 genes involved in the metabolism of sugars and organic acids. Among these genes, Cla97C01G000640, Cla97C05G087120 and Cla97C01G018840 (r2 = 0.83 with glucose content) were identified as sugar transporters (SWEET, EDR6 and STP) and Cla97C03G064990 (r2 = 0.92 with sucrose content) was identified as a sucrose synthase from information available for other crops. Similarly, Cla97C07G128420, Cla97C03G068240 and Cla97C01G008870, having strong correlations with malic (r2 = 0.75) and citric acid (r2 = 0.85), were annotated as malate and citrate transporters (ALMT7, CS, and ICDH). The expression profiles of these 7 genes in diverse watermelon genotypes revealed consistent patterns of expression variation in various types of watermelon. These findings add significantly to our existing knowledge of sugar and organic acid metabolism in watermelon.
Collapse
Affiliation(s)
- Muhammad Jawad Umer
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou, China
| | - Luqman Bin Safdar
- Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Haileslassie Gebremeskel
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou, China
| | - Shengjie Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou, China
| | - Pingli Yuan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou, China
| | - Hongju Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou, China
| | - M O Kaseb
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou, China
| | - Muhammad Anees
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou, China
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou, China
| | - Nan He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou, China
| | - Chengsheng Gong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou, China
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou, China.
| |
Collapse
|
26
|
Peng Q, Cai Y, Lai E, Nakamura M, Liao L, Zheng B, Ogutu C, Cherono S, Han Y. The sucrose transporter MdSUT4.1 participates in the regulation of fruit sugar accumulation in apple. BMC PLANT BIOLOGY 2020; 20:191. [PMID: 32375636 PMCID: PMC7203859 DOI: 10.1186/s12870-020-02406-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/27/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Sugar content is an important determinant of fruit sweetness, but details on the complex molecular mechanism underlying fruit sugar accumulation remain scarce. Here, we report the role of sucrose transporter (SUT) family in regulating fruit sugar accumulation in apple. RESULTS Gene-tagged markers were developed to conduct candidate gene-based association study, and an SUT4 member MdSUT4.1 was found to be significantly associated with fruit sugar accumulation. MdSUT4.1 encodes a tonoplast localized protein and its expression level had a negative correlation with fruit sugar content. Overexpression of MdSUT4.1 in strawberry and apple callus had an overall negative impact on sugar accumulation, suggesting that it functions to remobilize sugar out of the vacuole. In addition, MdSUT4.1 is located on chromosomal region harboring a previously reported QTL for sugar content, suggesting that it is a candidate gene for fruit sugar accumulation in apple. CONCLUSIONS MdSUT4.1 is involved in the regulation of fruit sugar accumulation in apple. This study is not only helpful for understanding the complex mechanism of fruit sugar accumulation, but it also provides molecular tools for genetic improvement of fruit quality in breeding programs of apple.
Collapse
Affiliation(s)
- Qian Peng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yaming Cai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Enhui Lai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Masayoshi Nakamura
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Beibei Zheng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Collins Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Sylvia Cherono
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
27
|
Zhao J, Quan P, Liu H, Li L, Qi S, Zhang M, Zhang B, Li H, Zhao Y, Ma B, Han M, Zhang H, Xing L. Transcriptomic and Metabolic Analyses Provide New Insights into the Apple Fruit Quality Decline during Long-Term Cold Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4699-4716. [PMID: 32078318 DOI: 10.1021/acs.jafc.9b07107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Long-term low-temperature conditioning (LT-LTC) decreases apple fruit quality, but the underlying physiological and molecular basis is relatively uncharacterized. We identified 12 clusters of differentially expressed genes (DEGs) involved in multiple biological processes (i.e., sugar, malic acid, fatty acid, lipid, complex phytohormone, and stress-response pathways). The expression levels of genes in sugar pathways were correlated with decreasing starch levels during LT-LTC. Specifically, starch-synthesis-related genes (e.g., BE, SBE, and GBSS genes) exhibited downregulated expression, whereas sucrose-metabolism-related gene expression levels were up- or downregulated. The expression levels of genes in the malic acid pathway (ALMT9, AATP1, and AHA2) were upregulated, as well as the content of malic acid in apple fruit during LT-LTC. A total of 151 metabolites, mainly related to amino acids and their isoforms, amines, organic acids, fatty acids, sugars, and polyols, were identified during LT-LTC. Additionally, 35 organic-acid-related metabolites grouped into three clusters, I (3), II (22), and III (10), increased in abundance during LT-LTC. Multiple phytohormones regulated the apple fruit chilling injury response. The ethylene (ET) and abscisic acid (ABA) levels increased at CS2 and CS3, and jasmonate (JA) levels also increased during LT-LTC. Furthermore, the expression levels of genes involved in ET, ABA, and JA synthesis and response pathways were upregulated. Finally, some key transcription factor genes (MYB, bHLH, ERF, NAC, and bZIP genes) related to the apple fruit cold acclimation response were differentially expressed. Our results suggest that the multilayered mechanism underlying apple fruit deterioration during LT-LTC is a complex, transcriptionally regulated process involving cell structures, sugars, lipids, hormones, and transcription factors.
Collapse
Affiliation(s)
- Juan Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Pengkun Quan
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Hangkong Liu
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Lei Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Siyan Qi
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Mengsheng Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Bo Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Hao Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Yanru Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Baiquan Ma
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Haihui Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| |
Collapse
|
28
|
Genome-Wide Identification and Characterization of Apple P3A-Type ATPase Genes, with Implications for Alkaline Stress Responses. FORESTS 2020. [DOI: 10.3390/f11030292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The P3A-type ATPases play crucial roles in various physiological processes via the generation of a transmembrane H+ gradient (∆pH). However, the P3A-type ATPase superfamily in apple remains relatively uncharacterized. In this study, 15 apple P3A-type ATPase genes were identified based on the new GDDH13 draft genome sequence. The exon-intron organization of these genes, the physical and chemical properties, and conserved motifs of the encoded enzymes were investigated. Analyses of the chromosome localization and ω values of the apple P3A-type ATPase genes revealed the duplicated genes were influenced by purifying selection pressure. Six clades and frequent old duplication events were detected. Moreover, the significance of differences in the evolutionary rates of the P3A-type ATPase genes were revealed. An expression analysis indicated that all of the P3A-type ATPase genes were specifically expressed in more than one tissue. The expression of one P3A-type ATPase gene (MD15G1108400) was significantly upregulated in response to alkaline stress. Furthermore, a subcellular localization assay indicated that MD15G1108400 is targeted to the plasma membrane. These results imply that MD15G1108400 may be involved in responses to alkaline stress. Our data provide insights into the molecular characteristics and evolutionary patterns of the apple P3A-type ATPase gene family and provide a theoretical foundation for future in-depth functional characterizations of P3A-type ATPase genes under alkaline conditions.
Collapse
|
29
|
Duchêne É, Dumas V, Butterlin G, Jaegli N, Rustenholz C, Chauveau A, Bérard A, Le Paslier MC, Gaillard I, Merdinoglu D. Genetic variations of acidity in grape berries are controlled by the interplay between organic acids and potassium. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:993-1008. [PMID: 31932953 DOI: 10.1007/s00122-019-03524-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/23/2019] [Indexed: 05/08/2023]
Abstract
In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K+ accumulation capacities.
Collapse
Affiliation(s)
- Éric Duchêne
- SVQV, Univ. Strasbourg, INRAE, 68000, Colmar, France.
| | - Vincent Dumas
- SVQV, Univ. Strasbourg, INRAE, 68000, Colmar, France
| | | | | | | | | | | | | | - Isabelle Gaillard
- BPMP, Univ. Montpellier, CNRS, INRAE, SupAgro, 34000, Montpellier, France
| | | |
Collapse
|
30
|
Peace CP, Bianco L, Troggio M, van de Weg E, Howard NP, Cornille A, Durel CE, Myles S, Migicovsky Z, Schaffer RJ, Costes E, Fazio G, Yamane H, van Nocker S, Gottschalk C, Costa F, Chagné D, Zhang X, Patocchi A, Gardiner SE, Hardner C, Kumar S, Laurens F, Bucher E, Main D, Jung S, Vanderzande S. Apple whole genome sequences: recent advances and new prospects. HORTICULTURE RESEARCH 2019; 6:59. [PMID: 30962944 PMCID: PMC6450873 DOI: 10.1038/s41438-019-0141-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 05/19/2023]
Abstract
In 2010, a major scientific milestone was achieved for tree fruit crops: publication of the first draft whole genome sequence (WGS) for apple (Malus domestica). This WGS, v1.0, was valuable as the initial reference for sequence information, fine mapping, gene discovery, variant discovery, and tool development. A new, high quality apple WGS, GDDH13 v1.1, was released in 2017 and now serves as the reference genome for apple. Over the past decade, these apple WGSs have had an enormous impact on our understanding of apple biological functioning, trait physiology and inheritance, leading to practical applications for improving this highly valued crop. Causal gene identities for phenotypes of fundamental and practical interest can today be discovered much more rapidly. Genome-wide polymorphisms at high genetic resolution are screened efficiently over hundreds to thousands of individuals with new insights into genetic relationships and pedigrees. High-density genetic maps are constructed efficiently and quantitative trait loci for valuable traits are readily associated with positional candidate genes and/or converted into diagnostic tests for breeders. We understand the species, geographical, and genomic origins of domesticated apple more precisely, as well as its relationship to wild relatives. The WGS has turbo-charged application of these classical research steps to crop improvement and drives innovative methods to achieve more durable, environmentally sound, productive, and consumer-desirable apple production. This review includes examples of basic and practical breakthroughs and challenges in using the apple WGSs. Recommendations for "what's next" focus on necessary upgrades to the genome sequence data pool, as well as for use of the data, to reach new frontiers in genomics-based scientific understanding of apple.
Collapse
Affiliation(s)
- Cameron P. Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Luca Bianco
- Computational Biology, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - Michela Troggio
- Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - Eric van de Weg
- Plant Breeding, Wageningen University and Research, Wageningen, 6708PB The Netherlands
| | - Nicholas P. Howard
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108 USA
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
| | - Amandine Cornille
- GQE – Le Moulon, Institut National de la Recherche Agronomique, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Charles-Eric Durel
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
| | - Sean Myles
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Robert J. Schaffer
- The New Zealand Institute for Plant and Food Research Ltd, Motueka, 7198 New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1142 New Zealand
| | - Evelyne Costes
- AGAP, INRA, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Gennaro Fazio
- Plant Genetic Resources Unit, USDA ARS, Geneva, NY 14456 USA
| | - Hisayo Yamane
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Chris Gottschalk
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Fabrizio Costa
- Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4474 New Zealand
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | | | - Susan E. Gardiner
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4474 New Zealand
| | - Craig Hardner
- Queensland Alliance of Agriculture and Food Innovation, University of Queensland, St Lucia, 4072 Australia
| | - Satish Kumar
- New Cultivar Innovation, Plant and Food Research, Havelock North, 4130 New Zealand
| | - Francois Laurens
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
| | - Etienne Bucher
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
- Agroscope, 1260 Changins, Switzerland
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
31
|
Ma B, Liao L, Fang T, Peng Q, Ogutu C, Zhou H, Ma F, Han Y. A Ma10 gene encoding P-type ATPase is involved in fruit organic acid accumulation in apple. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:674-686. [PMID: 30183123 PMCID: PMC6381788 DOI: 10.1111/pbi.13007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/02/2018] [Accepted: 08/31/2018] [Indexed: 05/23/2023]
Abstract
Acidity is one of the main determinants of fruit organoleptic quality. Here, comparative transcriptome analysis was conducted between two cultivars that showed a significant difference in fruit acidity, but contained homozygous non-functional alleles at the major gene Ma1 locus controlling apple fruit acidity. A candidate gene for fruit acidity, designated M10, was identified. The M10 gene encodes a P-type proton pump, P3A -ATPase, which facilitates malate uptake into the vacuole. The Ma10 gene is significantly associated with fruit malate content, accounting for ~7.5% of the observed phenotypic variation in apple germplasm. Subcellular localization assay showed that the Ma10 is targeted to the tonoplast. Overexpression of the Ma10 gene can complement the defect in proton transport of the mutant YAK2 yeast strain and enhance the accumulation of malic acid in apple callus. Moreover, its ectopic expression in tomato induces a decrease in fruit pH. These results suggest that the Ma10 gene has the capacity for proton pumping and plays an important role in fruit vacuolar acidification in apple. Our study provides useful knowledge towards comprehensive understanding of the complex mechanism regulating apple fruit acidity.
Collapse
Affiliation(s)
- Baiquan Ma
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden of the Chinese Academy of SciencesWuhanChina
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Liao Liao
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden of the Chinese Academy of SciencesWuhanChina
- Sino‐African Joint Research CenterChinese Academy of SciencesWuhanChina
| | - Ting Fang
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden of the Chinese Academy of SciencesWuhanChina
- Graduate University of Chinese Academy of SciencesBeijingChina
| | - Qian Peng
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden of the Chinese Academy of SciencesWuhanChina
- Graduate University of Chinese Academy of SciencesBeijingChina
| | - Collins Ogutu
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden of the Chinese Academy of SciencesWuhanChina
- Graduate University of Chinese Academy of SciencesBeijingChina
| | - Hui Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden of the Chinese Academy of SciencesWuhanChina
- Sino‐African Joint Research CenterChinese Academy of SciencesWuhanChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden of the Chinese Academy of SciencesWuhanChina
- Sino‐African Joint Research CenterChinese Academy of SciencesWuhanChina
| |
Collapse
|
32
|
Zhang Q, Feng C, Li W, Qu Z, Zeng M, Xi W. Transcriptional regulatory networks controlling taste and aroma quality of apricot (Prunus armeniaca L.) fruit during ripening. BMC Genomics 2019; 20:45. [PMID: 30646841 PMCID: PMC6332858 DOI: 10.1186/s12864-019-5424-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/02/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Taste and aroma, which are important organoleptic qualities of apricot (Prunus armeniaca L.) fruit, undergo rapid and substantial changes during ripening. However, the associated molecular mechanisms remain unclear. The goal of this study was to identify candidate genes for flavor compound metabolism and to construct a regulatory transcriptional network. RESULTS We characterized the transcriptome of the 'Jianali' apricot cultivar, which exhibits substantial changes in flavor during ripening, at 50 (turning), 73 (commercial maturation) and 91 (full ripe) days post anthesis (DPA) using RNA sequencing (RNA-Seq). A weighted gene co-expression network analysis (WGCNA) revealed that four of 19 modules correlated highly with flavor compound metabolism (P < 0.001). From them, we identified 1237 differentially expressed genes, with 16 intramodular hubs. A proposed pathway model for flavor compound biosynthesis is presented based on these genes. Two SUS1 genes, as well as SPS2 and INV1 were correlated with sugar biosynthesis, while NADP-ME4, two PK-like and mitochondrial energy metabolism exerted a noticeable effect on organic acid metabolism. CCD1 and FAD2 were identified as being involved in apocarotenoid aroma volatiles and lactone biosynthesis, respectively. Five sugar transporters (Sweet10, STP13, EDR6, STP5.1, STP5.2), one aluminum-activated malate transporter (ALMT9) and one ABCG transporter (ABCG11) were associated with the transport of sugars, organic acids and volatiles, respectively. Sixteen transcription factors were also highlighted that may also play regulatory roles in flavor quality development. CONCLUSIONS Apricot RNA-Seq data were obtained and used to generate an annotated set of predicted expressed genes, providing a platform for functional genomic research. Using network analysis and pathway mapping, putative molecular mechanisms for changes in apricot fruit taste and aroma during ripening were elucidated.
Collapse
Affiliation(s)
- Qiuyun Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Chao Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People’s Republic of China
| | - Wenhui Li
- Agriculture National Fruit Tree Germplasm Repository, Xinjiang Academy of Agricultural Sciences, Luntai, Xinjiang, 841600 People’s Republic of China
| | - Zehui Qu
- College of Computer and Information Sciences, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Ming Zeng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 People’s Republic of China
| |
Collapse
|
33
|
Ma B, Yuan Y, Gao M, Li C, Ogutu C, Li M, Ma F. Determination of Predominant Organic Acid Components in Malus Species: Correlation with Apple Domestication. Metabolites 2018; 8:E74. [PMID: 30384454 PMCID: PMC6316603 DOI: 10.3390/metabo8040074] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 11/16/2022] Open
Abstract
Significant variation in organic acid components was detected in mature fruits of 101 apple accessions using high-performance liquid chromatography. The Malus species predominantly accumulated malic acid and citric acid, whereas wild fruits exhibited significantly higher levels of organic acid content than that in cultivated fruits. Differential accumulation patterns during fruit developmental stages was detected between malic acid and citric acid, thus suggesting a complex genetic regulation mechanism of organic acid metabolism in apple fruit. A highly positive correlation was detected between fruit total organic acid content with malic acid and citric acid content, thus suggesting that malic acid and citric acid are the principal determinants of apple fruit acidity. In contrast to malic acid, citric acid was predominantly detected in partial wild apples, while extremely low to undetectable concentrations of citric acid were observed in cultivated apple fruits; this is likely due to the genetic effects of parental characters. Our results provide vital information that could be useful for future studies on genetic analysis and improvement of organic acid accumulation in apple fruits.
Collapse
Affiliation(s)
- Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Yangyang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Meng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Collins Ogutu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China.
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
34
|
Ma B, Yuan Y, Gao M, Xing L, Li C, Li M, Ma F. Genome-wide Identification, Classification, Molecular Evolution and Expression Analysis of Malate Dehydrogenases in Apple. Int J Mol Sci 2018; 19:E3312. [PMID: 30356028 PMCID: PMC6274877 DOI: 10.3390/ijms19113312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/23/2022] Open
Abstract
Malate dehydrogenase plays crucial roles in energy homeostasis, plant development and cold and salt tolerance, as it mediates the reversible conversion of malate to oxaloacetate. However, the evolutionary pattern of MDH genes in apple remains elusive. In this study, a total of 20 MDH genes were identified from the "Golden Delicious" apple draft genome. We revealed the physiological and biochemical properties, gene structure, and conserved motifs of MdMDH genes. Chromosomal localization and Ka/Ks ratio analysis of MdMDH genes revealed different selective pressures acted on duplicated MdMDH genes. Exploration of the phylogenetic relationships revealed six clades and similar frequencies between old and recent duplications, and significant differences in the evolutionary rates of the MDH gene family were observed. One MdMDH gene, MDP0000807458, which was highly expressed during apple fruit development and flower bud differentiation, was under positive selection. Thus, we speculated that MDP0000807458 is a likely candidate gene involved in regulation of flower bud differentiation and organic acid metabolism in apple fruits. This study provides a foundation for improved understanding of the molecular evolution of MdMDH genes and further facilitates the functional analysis of MDP0000807458 to unravel its exact role in flower bud differentiation and organic acid metabolism.
Collapse
Affiliation(s)
- Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yangyang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Meng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Libo Xing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
35
|
Ma B, Yuan Y, Gao M, Qi T, Li M, Ma F. Genome-Wide Identification, Molecular Evolution, and Expression Divergence of Aluminum-Activated Malate Transporters in Apples. Int J Mol Sci 2018; 19:E2807. [PMID: 30231490 PMCID: PMC6163302 DOI: 10.3390/ijms19092807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 11/30/2022] Open
Abstract
Aluminum-activated malate transporters (ALMTs) play an important role in aluminum tolerance, stomatal opening, and fruit acidity in plants. However, the evolutionary pattern of the ALMT gene family in apples remains relatively unknown. In this study, a total of 25 MdALMT genes were identified from the apple reference genome of the "Golden Delicious" doubled-haploid tree (GDDH13). The physiological and biochemical properties, gene structure, and conserved motifs of MdALMT genes were examined. Chromosome location and gene-duplication analysis indicated that whole-genome duplication/segmental duplication played an important role in the expansion of the MdALMT gene family. The Ka/Ks ratio of duplicated MdALMT genes showed that members of this family have undergone strong purifying selection. Through exploration of the phylogenetic relationships, seven subgroups were classified, and higher old gene duplication frequency and significantly different evolutionary rates of the ALMT gene families were detected. In addition, the functional divergence of ALMT genes occurred during the evolutionary process of Rosaceae species. Furthermore, the functional divergence of MdALMT genes was confirmed by expression discrepancy and different subcellular localizations. This study provides the foundation to better understand the molecular evolution of MdALMT genes and further facilitate functional analysis to unravel their exact role in apples.
Collapse
Affiliation(s)
- Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A and F University, Yangling 712100, China.
| | - Yangyang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A and F University, Yangling 712100, China.
| | - Meng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A and F University, Yangling 712100, China.
| | - Tonghui Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A and F University, Yangling 712100, China.
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A and F University, Yangling 712100, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A and F University, Yangling 712100, China.
| |
Collapse
|
36
|
Linlin X, Xin Q, Mingyue Z, Shaoling Z. Genome-Wide analysis of aluminum-activated malate transporter family genes in six rosaceae species, and expression analysis and functional characterization on malate accumulation in Chinese white pear. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:451-465. [PMID: 30080635 DOI: 10.1016/j.plantsci.2018.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Aluminum-activated malate transporters (ALMTs) exhibit a variety of physiological roles in plants to regulate fruit quality, but the evolutionary history of the ALMT family in the Rosaceae species remains unknown. In this study, a total of 113 ALMT homologous genes were identified from six Rosaceae species (Pyrus bretschneideri, Malus × domestica, Prunus persica, Fragaria vesca, Prunus mume, and Pyrus communis), and 27 of these sequences came from Chinese white pear, designated PbrALMT. Based on the phylogenetic analysis, we divided these ALMT genes into three main clusters (A-C). Conserved domain analysis indicated that all PbrALMT proteins contained the ALMT domain and the FUSC_2 domain, and fewer proteins included the FUSC domain. The results of subcellular localization experiments showed that parts of PbrALMT proteins containing the FUSC domain were located in the membrane. Collinearity analysis revealed that segmental and dispersed duplications were the primary forces underlying ALMT gene family expansion in the Rosaceae. Calculation of Ka/Ks between the paralogous pairs indicated that all of the genes in the PbrALMT family have evolved under negative selection. Combining the changes of malate content and transcriptome data analysis, five genes belonging to Cluster B were chosen for qRT-PCR, and the results revealed that Pbr020270.1, as a candidate gene, may play important roles in malate accumulation during pear fruit development. Further transgenic assay confirmed the above conclusion. The present study provides a foundation to better understand the molecular evolution of ALMT genes in pear and the functional characterization of these genes in the future.
Collapse
Affiliation(s)
- Xu Linlin
- Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiao Xin
- Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhang Mingyue
- Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhang Shaoling
- Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
37
|
Jia D, Shen F, Wang Y, Wu T, Xu X, Zhang X, Han Z. Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes: MdSAUR37, MdPP2CH and MdALMTII. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:427-443. [PMID: 29750477 DOI: 10.1111/tpj.13957] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 05/21/2023]
Abstract
Many efforts have been made to map quantitative trait loci (QTLs) to facilitate practical marker-assisted selection (MAS) in plants. In the present study, using MapQTL and BSA-seq (bulk segregant analysis using next generation sequencing) with two independent pedigree-based populations, we identified four major genome-wide QTLs responsible for apple fruit acidity. Candidate genes were screened in major QTL regions, and three functional gene markers, including a non-synonymous A/G single-nucleotide polymorphism (SNP) in the coding region of MdPP2CH, a 36-bp insertion in the promoter of MdSAUR37 and a previously reported SNP in MdALMTII, were validated to influence the malate content of apple fruits. In addition, MdPP2CH inactivated three vacuolar H+ -ATPases (MdVHA-A3, MdVHA-B2 and MdVHA-D2) and one aluminium-activated malate transporter (MdALMTII) via dephosphorylation and negatively influenced fruit malate accumulation. The dephosphotase activity of MdPP2CH was suppressed by MdSAUR37, which implied a higher hierarchy of genetic interaction. Therefore, the MdSAUR37/MdPP2CH/MdALMTII chain cascaded hierarchical epistatic genetic effects to precisely determine apple fruit malate content. An A/G SNP (-1010) on the MdMYB44 promoter region from a major QTL (qtl08.1) was closely associated with fruit malate content. The predicted phenotype values (PPVs) were estimated using the tentative genotype values of the gene markers, and the PPVs were significantly correlated with the observed phenotype values. Our findings provide an insight into plant genome-based selection in apples and will aid in conducting research to understand the fundamental physiological basis of quantitative genetics.
Collapse
Affiliation(s)
- Dongjie Jia
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Fei Shen
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ting Wu
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinzhong Zhang
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenhai Han
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
38
|
Peng W, Wu W, Peng J, Li J, Lin Y, Wang Y, Tian J, Sun L, Liang C, Liao H. Characterization of the soybean GmALMT family genes and the function of GmALMT5 in response to phosphate starvation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:216-231. [PMID: 29045000 DOI: 10.1111/jipb.12604] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/16/2017] [Indexed: 05/27/2023]
Abstract
A potential mechanism to enhance utilization of sparingly soluble forms of phosphorus (P) is the root secretion of malate, which is mainly mediated by the ALMT gene family in plants. In this study, a total of 34 GmALMT genes were identified in the soybean genome. Expression patterns diverged considerably among GmALMTs in response to phosphate (Pi) starvation in leaves, roots and flowers, with expression altered by P availability in 26 of the 34 GmALMTs. One root-specific GmALMT whose expression was significantly enhanced by Pi-starvation, GmALMT5, was studied in more detail to determine its possible role in soybean P nutrition. Analysis of GmALMT5 tissue expression patterns, subcellular localization, and malate exudation from transgenic soybean hairy roots overexpressing GmALMT5, demonstrated that GmALMT5 is a plasma membrane protein that mediates malate efflux from roots. Furthermore, both growth and P content of transgenic Arabidopsis overexpressing GmALMT5 were significantly increased when sparingly soluble Ca-P was used as the external P source. Taken together, these results indicate that members of the soybean GmALMT gene family exhibit diverse responses to Pi starvation. One member of this family, GmALMT5, might contribute to soybean P efficiency by enhancing utilization of sparingly soluble P sources under P limited conditions.
Collapse
Affiliation(s)
- Wenting Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - Weiwei Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - Junchu Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - Jiaojiao Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - Yan Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - Yanan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - Jiang Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - Lili Sun
- Root Biology Center, Hai Xia Institute of Science and Technology, Fu Jian Agricultural and Forest University, Fuzhou 350002, China
| | - Cuiyue Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - Hong Liao
- Root Biology Center, Hai Xia Institute of Science and Technology, Fu Jian Agricultural and Forest University, Fuzhou 350002, China
| |
Collapse
|
39
|
|
40
|
Zhen Q, Fang T, Peng Q, Liao L, Zhao L, Owiti A, Han Y. Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation. HORTICULTURE RESEARCH 2018; 5:14. [PMID: 29581882 PMCID: PMC5859117 DOI: 10.1038/s41438-018-0024-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 05/09/2023]
Abstract
Sugar content is an important component of fruit quality. Although sugar transporters are known to be crucial for sugar accumulation, the role of genes encoding SWEET sugar transporters in fruit sugar accumulation remains elusive. Here we report the effect of the SWEET genes on fruit sugar accumulation in apple. A total of 25 MdSWEET genes were identified in the apple genome, and 9 were highly expressed throughout fruit development. Molecular markers of these 9 MdSWEET genes were developed and used for genotyping of 188 apple cultivars. The association of polymorphic MdSWEET genes with soluble sugar content in mature fruit was analyzed. Three genes, MdSWEET2e, MdSWEET9b, and MdSWEET15a, were significantly associated with fruit sugar content, with MdSWEET15a and MdSWEET9b accounting for a relatively large proportion of phenotypic variation in sugar content. Moreover, both MdSWEET9b and MdSWEET15a are located on chromosomal regions harboring QTLs for sugar content. Hence, MdSWEET9b and MdSWEET15a are likely candidates regulating fruit sugar accumulation in apple. Our study not only presents an efficient way of implementing gene functional study but also provides molecular tools for genetic improvement of fruit quality in apple-breeding programs.
Collapse
Affiliation(s)
- Qiaoling Zhen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074 China
- Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049 China
| | - Ting Fang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074 China
- Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049 China
| | - Qian Peng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074 China
- Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049 China
| | - Liao Liao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074 China
| | - Li Zhao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074 China
| | - Albert Owiti
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074 China
- Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049 China
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074 China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| |
Collapse
|
41
|
Ma B, Liao L, Peng Q, Fang T, Zhou H, Korban SS, Han Y. Reduced representation genome sequencing reveals patterns of genetic diversity and selection in apple. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:190-204. [PMID: 28093854 DOI: 10.1111/jipb.12522] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/15/2017] [Indexed: 05/02/2023]
Abstract
Identifying DNA sequence variations is a fundamental step towards deciphering the genetic basis of traits of interest. Here, a total of 20 cultivated and 10 wild apples were genotyped using specific-locus amplified fragment sequencing, and 39,635 single nucleotide polymorphisms with no missing genotypes and evenly distributed along the genome were selected to investigate patterns of genome-wide genetic variations between cultivated and wild apples. Overall, wild apples displayed higher levels of genetic diversity than cultivated apples. Linkage disequilibrium (LD) decays were observed quite rapidly in cultivated and wild apples, with an r2 -value below 0.2 at 440 and 280 bp, respectively. Moreover, bidirectional gene flow and different distribution patterns of LD blocks were detected between domesticated and wild apples. Most LD blocks unique to cultivated apples were located within QTL regions controlling fruit quality, thus suggesting that fruit quality had probably undergone selection during apple domestication. The genome of the earliest cultivated apple in China, Nai, was highly similar to that of Malus sieversii, and contained a small portion of genetic material from other wild apple species. This suggested that introgression could have been an important driving force during initial domestication of apple. These findings will facilitate future breeding and genetic dissection of complex traits in apple.
Collapse
Affiliation(s)
- Baiquan Ma
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China
- Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Liao Liao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qian Peng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China
- Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Ting Fang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China
- Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Hui Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Schuyler S Korban
- Department of Biology, University of Massachusetts Boston, Boston Massachusetts 02184, USA
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
42
|
Sharma T, Dreyer I, Kochian L, Piñeros MA. The ALMT Family of Organic Acid Transporters in Plants and Their Involvement in Detoxification and Nutrient Security. FRONTIERS IN PLANT SCIENCE 2016; 7:1488. [PMID: 27757118 PMCID: PMC5047901 DOI: 10.3389/fpls.2016.01488] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/20/2016] [Indexed: 05/02/2023]
Abstract
About a decade ago, members of a new protein family of anion channels were discovered on the basis of their ability to confer on plants the tolerance toward toxic aluminum ions in the soil. The efflux of Al3+-chelating malate anions through these channels is stimulated by external Al3+ ions. This feature of a few proteins determined the name of the entire protein family as Aluminum-activated Malate Transporters (ALMT). Meanwhile, after several years of research, it is known that the physiological roles of ALMTs go far beyond Al-detoxification. In this review article we summarize the current knowledge on this transporter family and assess their involvement in diverse physiological processes.
Collapse
Affiliation(s)
- Tripti Sharma
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, TalcaChile
| | - Ingo Dreyer
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, TalcaChile
| | - Leon Kochian
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture–Agricultural Research Service, Cornell University, Ithaca, NYUSA
| | - Miguel A. Piñeros
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture–Agricultural Research Service, Cornell University, Ithaca, NYUSA
| |
Collapse
|