1
|
Li M, Chen X, Huang W, Wu K, Bai Y, Guo D, Guo C, Shu Y. Comprehensive Identification of the β-Amylase (BAM) Gene Family in Response to Cold Stress in White Clover. PLANTS (BASEL, SWITZERLAND) 2024; 13:154. [PMID: 38256708 PMCID: PMC10820397 DOI: 10.3390/plants13020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
White clover (Trifolium repens L.) is an allopolyploid plant and an excellent perennial legume forage. However, white clover is subjected to various stresses during its growth, with cold stress being one of the major limiting factors affecting its growth and development. Beta-amylase (BAM) is an important starch-hydrolyzing enzyme that plays a significant role in starch degradation and responses to environmental stress. In this study, 21 members of the BAM gene family were identified in the white clover genome. A phylogenetic analysis using BAMs from Arabidopsis divided TrBAMs into four groups based on sequence similarity. Through analysis of conserved motifs, gene duplication, synteny analysis, and cis-acting elements, a deeper understanding of the structure and evolution of TrBAMs in white clover was gained. Additionally, a gene regulatory network (GRN) containing TrBAMs was constructed; gene ontology (GO) annotation analysis revealed close interactions between TrBAMs and AMY (α-amylase) and DPE (4-alpha-glucanotransferase). To determine the function of TrBAMs under various tissues and stresses, RNA-seq datasets were analyzed, showing that most TrBAMs were significantly upregulated in response to biotic and abiotic stresses and the highest expression in leaves. These results were validated through qRT-PCR experiments, indicating their involvement in multiple gene regulatory pathways responding to cold stress. This study provides new insights into the structure, evolution, and function of the white clover BAM gene family, laying the foundation for further exploration of the functional mechanisms through which TrBAMs respond to cold stress.
Collapse
Affiliation(s)
- Manman Li
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.L.); (D.G.); (C.G.)
| | - Xiuhua Chen
- International Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China;
| | - Wangqi Huang
- National Engineering Research Center for Ornamental Horticulture, Yunnan Flower Breeding Key Laboratory, Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China;
| | - Kaiyue Wu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.L.); (D.G.); (C.G.)
| | - Yan Bai
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.L.); (D.G.); (C.G.)
| | - Donglin Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.L.); (D.G.); (C.G.)
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.L.); (D.G.); (C.G.)
| | - Yongjun Shu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.L.); (D.G.); (C.G.)
| |
Collapse
|
2
|
Wang H, Wu Y, He Y, Li G, Ma L, Li S, Huang J, Yang G. High-quality chromosome-level de novo assembly of the Trifolium repens. BMC Genomics 2023; 24:326. [PMID: 37312068 DOI: 10.1186/s12864-023-09437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND White clover (Trifolium repens L.), an excellent perennial legume forage, is an allotetraploid native to southeastern Europe and southern Asia. It has high nutritional, ecological, genetic breeding, and medicinal values and exhibits excellent resistance to cold, drought, trample, and weed infestation. Thus, white clover is widely planted in Europe, America, and China; however, the lack of reference genome limits its breeding and cultivation. This study generated a white clover de novo genome assembly at the chromosomal level and annotated its components. RESULTS The PacBio third-generation Hi-Fi assembly and sequencing methods generated a 1096 Mb genome size of T. repens, with contigs of N50 = 14 Mb, scaffolds of N50 = 65 Mb, and BUSCO value of 98.5%. The newly assembled genome has better continuity and integrity than the previously reported white clover reference genome; thus provides important resources for the molecular breeding and evolution of white clover and other forage. Additionally, we annotated 90,128 high-confidence gene models from the genome. White clover was closely related to Trifolium pratense and Trifolium medium but distantly related to Glycine max, Vigna radiata, Medicago truncatula, and Cicer arietinum. The expansion, contraction, and GO functional enrichment analysis of the gene families showed that T. repens gene families were associated with biological processes, molecular function, cellular components, and environmental resistance, which explained its excellent agronomic traits. CONCLUSIONS This study reports a high-quality de novo assembly of white clover genome obtained at the chromosomal level using PacBio Hi-Fi sequencing, a third-generation sequencing. The generated high-quality genome assembly of white clover provides a key basis for accelerating the research and molecular breeding of this important forage crop. The genome is also valuable for future studies on legume forage biology, evolution, and genome-wide mapping of quantitative trait loci associated with the relevant agronomic traits.
Collapse
Affiliation(s)
- Hongjie Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | - Yongqiang Wu
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | - Yong He
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | - Guoyu Li
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lichao Ma
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | - Shuo Li
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China
| | | | - Guofeng Yang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China.
- Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, Qingdao, 266109, China.
| |
Collapse
|
3
|
Dinkins RD, Hancock JA, Bickhart DM, Sullivan ML, Zhu H. Expression and Variation of the Genes Involved in Rhizobium Nodulation in Red Clover. PLANTS (BASEL, SWITZERLAND) 2022; 11:2888. [PMID: 36365339 PMCID: PMC9655500 DOI: 10.3390/plants11212888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Red clover (Trifolium pratense L.) is an important forage crop and serves as a major contributor of nitrogen input in pasture settings because of its ability to fix atmospheric nitrogen. During the legume-rhizobial symbiosis, the host plant undergoes a large number of gene expression changes, leading to development of root nodules that house the rhizobium bacteria as they are converted into nitrogen-fixing bacteroids. Many of the genes involved in symbiosis are conserved across legume species, while others are species-specific with little or no homology across species and likely regulate the specific plant genotype/symbiont strain interactions. Red clover has not been widely used for studying symbiotic nitrogen fixation, primarily due to its outcrossing nature, making genetic analysis rather complicated. With the addition of recent annotated genomic resources and use of RNA-seq tools, we annotated and characterized a number of genes that are expressed only in nodule forming roots. These genes include those encoding nodule-specific cysteine rich peptides (NCRs) and nodule-specific Polycystin-1, Lipoxygenase, Alpha toxic (PLAT) domain proteins (NPDs). Our results show that red clover encodes one of the highest number of NCRs and ATS3-like/NPDs, which are postulated to increase nitrogen fixation efficiency, in the Inverted-Repeat Lacking Clade (IRLC) of legumes. Knowledge of the variation and expression of these genes in red clover will provide more insights into the function of these genes in regulating legume-rhizobial symbiosis and aid in breeding of red clover genotypes with increased nitrogen fixation efficiency.
Collapse
Affiliation(s)
- Randy D. Dinkins
- Forage-Animal Production Research Unit, USDA-ARS, Lexington, KY 40506, USA
| | - Julie A. Hancock
- College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40508, USA
| | | | | | - Hongyan Zhu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
4
|
Dinkins RD, Hancock J, Coe BL, May JB, Goodman JP, Bass WT, Liu J, Fan Y, Zheng Q, Zhu H. Isoflavone levels, nodulation and gene expression profiles of a CRISPR/Cas9 deletion mutant in the isoflavone synthase gene of red clover. PLANT CELL REPORTS 2021; 40:517-528. [PMID: 33389047 DOI: 10.1007/s00299-020-02647-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Isoflavones are not involved in rhizobial signaling in red clover, but likely play a role in defense in the rhizosphere. Red clover (Trifolium pratense) is a high-quality forage legume, well suited for grazing and hay production in the temperate regions of the world. Like many legumes, red clover produces a number of phenylpropanoid compounds including anthocyanidins, flavan-3-ols, flavanols, flavanones, flavones, and isoflavones. The study of isoflavone biosynthesis and accumulation in legumes has come into the forefront of biomedical and agricultural research due to potential for medicinal, antimicrobial, and environmental implications. CRISPR/Cas9 was used to knock out the function of a key enzyme in the biosynthesis of isoflavones, isoflavone synthase (IFS1). A hemizygous plant carrying a 9-bp deletion in the IFS1 gene was recovered and was intercrossed to obtain homozygous mutant plants. Levels of the isoflavones formononetin, biochanin A and genistein were significantly reduced in the mutant plants. Wild-type and mutant plants were inoculated with rhizobia to test the effect of the mutation on nodulation, but no significant differences were observed, suggesting that these isoflavones do not play important roles in nodulation. Gene expression profiling revealed an increase in expression of the upstream genes producing the precursors for IFS1, namely, phenylalanine ammonium lyase and chalcone synthase, but there were no significant differences in IFS1 gene expression or in the downstream genes in the production of specific isoflavones. Higher expression in genes involved in ethylene response was observed in the mutant plants. This response is normally associated with biotic stress, suggesting that the plants may have been responding to cues in the surrounding rhizosphere due to lower levels of isoflavones.
Collapse
Affiliation(s)
- Randy D Dinkins
- USDA-ARS, Forage-Animal Production Research Unit, Lexington, KY, USA.
| | - Julie Hancock
- College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Brenda L Coe
- USDA-ARS, Forage-Animal Production Research Unit, Lexington, KY, USA
| | - John B May
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Jack P Goodman
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - William T Bass
- USDA-ARS, Forage-Animal Production Research Unit, Lexington, KY, USA
| | - Jinge Liu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Yinglun Fan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
- College of Agriculture, Liaocheng University, Liaocheng, China
| | - Qiaolin Zheng
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
- Department of Plant Pathology, University of Florida, IFAS, Fort Pierce, FL, USA
| | - Hongyan Zhu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
5
|
Li W, Riday H, Riehle C, Edwards A, Dinkins R. Identification of Single Nucleotide Polymorphism in Red Clover ( Trifolium pratense L.) Using Targeted Genomic Amplicon Sequencing and RNA-seq. FRONTIERS IN PLANT SCIENCE 2019; 10:1257. [PMID: 31708937 PMCID: PMC6820467 DOI: 10.3389/fpls.2019.01257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/10/2019] [Indexed: 06/02/2023]
Abstract
Red clover (Trifolium pratense L.) is a diploid, naturally cross-pollinated, cool-season species. As a perennial forage legume, red clover is mostly cultivated in temperate regions worldwide. Being a non-model crop species, genomic resources for red clover have been underdeveloped. Thus far, genomic analysis used in red clover has mainly relied on simple sequence repeat (SSR) markers. However, SSR markers are sparse in the genome and it is often difficult to unambiguously map them using short reads generated by next generation sequencing technology. Single nucleotide polymorphisms (SNPs) have been successfully applied in genomics assisted breeding in several agriculturally important species. Due to increasing importance of legumes in forage production, there is a clear need to develop SNP based markers for red clover that can be applied in breeding applications. In this study, we first developed an analytical pipeline that can confidently identify SNPs in a set of 72 different red clover genotypes using sequences generated by targeted amplicon sequencing. Then, with the same filtering stringency used in this pipeline, we used sequences from publicly available RNA-seq data to identify confident SNPs in different red clover varieties. Using this strategy, we have identified a total of 69,975 SNPs across red clover varieties. Among these, 28% (19,116) of them are missense mutations. Using Medicago truncatula as the reference, we annotated the regions affected by these missense mutations. We identified 2,909 protein coding regions with missense mutations. Pathway analysis of these coding regions indicated several biological processes impacted by these mutations. Specifically, three domains (homeobox domain, pentatricopeptide repeat containing plant-like, and regulator of Vps4 activity) were identified with five or more missense SNPs. These domain might also be a functional contributor in the molecular mechanisms of self-incompatibility in red clover. Future in-depth sequence diversity analysis of these three genes may yield valuable insights into the molecular mechanism involved in self-incompatibility in red clover.
Collapse
Affiliation(s)
- Wenli Li
- US Dairy Forage Research Center, USDA-ARS, Madison, WI, United States
| | - Heathcliffe Riday
- US Dairy Forage Research Center, USDA-ARS, Madison, WI, United States
| | - Christina Riehle
- Department of Genetics, University of Wisconsin–Madison, Madison, WI, United States
| | - Andrea Edwards
- Department of Biology, University of Wisconsin–Madison, Madison, WI, United States
| | - Randy Dinkins
- USDA-ARS Forage-Animal Production Research Unit, N220 Ag. Science Center, N. University of Kentucky, Lexington KY, United States
| |
Collapse
|
6
|
Comprehensive Stress-Based De Novo Transcriptome Assembly and Annotation of Guar ( Cyamopsis tetragonoloba (L.) Taub.): An Important Industrial and Forage Crop. Int J Genomics 2019; 2019:7295859. [PMID: 31687376 PMCID: PMC6800914 DOI: 10.1155/2019/7295859] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 11/17/2022] Open
Abstract
The forage crop Guar (Cyamopsis tetragonoloba (L.) Taub.) has the ability to endure heat, drought, and mild salinity. A complete image on its genic architecture will promote our understanding about gene expression networks and different tolerance mechanisms at the molecular level. Therefore, whole mRNA sequence approach on the Guar plant was conducted to provide a snapshot of the mRNA information in the cell under salinity, heat, and drought stresses to be integrated with previous transcriptomic studies. RNA-Seq technology was employed to perform a 2 × 100 paired-end sequencing using an Illumina HiSeq 2500 platform for the transcriptome of leaves of C. tetragonoloba under normal, heat, drought, and salinity conditions. Trinity was used to achieve a de novo assembly followed by gene annotation, functional classification, metabolic pathway analysis, and identification of SSR markers. A total of 218.2 million paired-end raw reads (~44 Gbp) were generated. Of those, 193.5M paired-end reads of high quality were used to reconstruct a total of 161,058 transcripts (~266 Mbp) with N50 of 2552 bp and 61,508 putative genes. There were 6463 proteins having >90% full-length coverage against the Swiss-Prot database and 94% complete orthologs against Embryophyta. Approximately, 62.87% of transcripts were blasted, 50.46% mapped, and 43.50% annotated. A total of 4715 InterProScan families, 3441 domains, 74 repeats, and 490 sites were detected. Biological processes, molecular functions, and cellular components comprised 64.12%, 25.42%, and 10.4%, respectively. The transcriptome was associated with 985 enzymes and 156 KEGG pathways. A total of 27,066 SSRs were gained with an average frequency of one SSR/9.825 kb in the assembled transcripts. This resulting data will be helpful for the advanced analysis of Guar to multi-stress tolerance.
Collapse
|
7
|
Chao Y, Yuan J, Li S, Jia S, Han L, Xu L. Analysis of transcripts and splice isoforms in red clover (Trifolium pratense L.) by single-molecule long-read sequencing. BMC PLANT BIOLOGY 2018; 18:300. [PMID: 30477428 PMCID: PMC6258457 DOI: 10.1186/s12870-018-1534-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 11/19/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Red clover (Trifolium pratense L.) is an important cool-season legume plant, which is the most widely planted forage legume after alfalfa. Although a draft genome sequence was published already, the sequences and completed structure of mRNA transcripts remain unclear, which limit further explore on red clover. RESULTS In this study, the red clover transcriptome was sequenced using single-molecule long-read sequencing to identify full-length splice isoforms, and 29,730 novel isoforms from known genes and 2194 novel isoforms from novel genes were identified. A total of 5492 alternative splicing events was identified and the majority of alter spliced events in red clover was corrected as intron retention. In addition, of the 15,229 genes detected by SMRT, 8719 including 186,517 transcripts have at least one poly(A) site. Furthermore, we identified 4333 long non-coding RNAs and 3762 fusion transcripts. CONCLUSIONS We analyzed full-length transcriptome of red clover with PacBio SMRT. Those new findings provided important information for improving red clover draft genome annotation and fully characterization of red clover transcriptome.
Collapse
Affiliation(s)
- Yuehui Chao
- Turfgrass Research Institute, Beijing Forestry University, Beijing, 100083 China
| | - Jianbo Yuan
- Turfgrass Research Institute, Beijing Forestry University, Beijing, 100083 China
| | - Sifeng Li
- Turfgrass Research Institute, Beijing Forestry University, Beijing, 100083 China
| | - Siqiao Jia
- Turfgrass Research Institute, Beijing Forestry University, Beijing, 100083 China
| | - Liebao Han
- Turfgrass Research Institute, Beijing Forestry University, Beijing, 100083 China
| | - Lixin Xu
- Turfgrass Research Institute, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
8
|
Chao Y, Xie L, Yuan J, Guo T, Li Y, Liu F, Han L. Transcriptome analysis of leaf senescence in red clover ( Trifolium pratense L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:753-765. [PMID: 30150852 PMCID: PMC6103954 DOI: 10.1007/s12298-018-0562-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 03/24/2018] [Accepted: 05/22/2018] [Indexed: 05/28/2023]
Abstract
Red clover (Trifolium pratense L.) is an important cool-season legume plant, which is used as forage. Leaf senescence is a critical developmental process that negatively affects plant quality and yield. The regulatory mechanism of leaf senescence has been studied, and genes involved in leaf senescence have been cloned and characterized in many plants. However, those works mainly focused on model plants. Information about regulatory pathways and the genes involved in leaf senescence in red clover is very sparse. In this study, to better understand leaf senescence in red clover, transcriptome analysis of mature and senescent leaves was investigated using RNA-Seq. A total of about 35,067 genes were identified, and 481 genes were differentially expressed in mature and senescent leaves. Some identified differentially expressed genes showed similar expression patterns as those involved in leaf senescence in other species, such as Arabidopsis, Medicago truncatula and rice. Differentially expressed genes were confirmed by quantitative real-time PCR (qRT-PCR). Genes involved in signal transduction, transportation and metabolism of plant hormones, transcription factors and plant senescence were upregulated, while the downregulated genes were primarily involved in nutrient cycling, lipid/carbohydrate metabolism, hormone response and other processes. There were 64 differentially expressed transcription factor genes identified by RNA-Seq, including ERF, WRKY, bHLH, MYB and NAC. A total of 90 genes involved in biosynthesis, metabolism and transduction of plant hormones, including abscisic acid, jasmonic acid, cyokinin, brassinosteroid, salicylic acid and ethylene, were identified. Furthermore, 207 genes with direct roles in leaf senescence were demonstrated, such as senescence-associated genes. These genes were associated with senescence in other plants. Transcriptome analysis of mature and senescent leaves in red clover provides a large number of differentially expressed genes. Further analysis and identification of senescence-associated genes can provide new insight into the regulatory mechanisms of leaf development and senescence in legume plant and red clover.
Collapse
Affiliation(s)
- Yuehui Chao
- Turfgrass Research Institute, College of Forestry, Beijing Forestry University, Beijing, 100083 China
| | - Lijuan Xie
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen, 518055 China
| | - Jianbo Yuan
- Turfgrass Research Institute, College of Forestry, Beijing Forestry University, Beijing, 100083 China
| | - Tao Guo
- Turfgrass Research Institute, College of Forestry, Beijing Forestry University, Beijing, 100083 China
| | - Yinruizhi Li
- Turfgrass Research Institute, College of Forestry, Beijing Forestry University, Beijing, 100083 China
| | - Fengqi Liu
- Institute of Grassland Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 China
| | - Liebao Han
- Turfgrass Research Institute, College of Forestry, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
9
|
Genome-wide atlas of alternative polyadenylation in the forage legume red clover. Sci Rep 2018; 8:11379. [PMID: 30054540 PMCID: PMC6063945 DOI: 10.1038/s41598-018-29699-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
Studies on prevalence and significance of alternative polyadenylation (APA) in plants have been so far limited mostly to the model plants. Here, a genome-wide analysis of APA was carried out in different tissue types in the non-model forage legume red clover (Trifolium pratense L). A profile of poly(A) sites in different tissue types was generated using so-called 'poly(A)-tag sequencing' (PATseq) approach. Our analysis revealed tissue-wise dynamics of usage of poly(A) sites located at different genomic locations. We also identified poly(A) sites and underlying genes displaying APA in different tissues. Functional categories enriched in groups of genes manifesting APA between tissue types were determined. Analysis of spatial expression of genes encoding different poly(A) factors showed significant differential expression of genes encoding orthologs of FIP1(V) and PCFS4, suggesting that these two factors may play a role in regulating spatial APA in red clover. Our analysis also revealed a high degree of conservation in diverse plant species of APA events in mRNAs encoding two key polyadenylation factors, CPSF30 and FIP1(V). Together with our previously reported study of spatial gene expression in red clover, this study will provide a comprehensive account of transcriptome dynamics in this non-model forage legume.
Collapse
|
10
|
Rawal HC, Kumar S, Mithra S V A, Solanke AU, Nigam D, Saxena S, Tyagi A, V S, Yadav NR, Kalia P, Singh NP, Singh NK, Sharma TR, Gaikwad K. High Quality Unigenes and Microsatellite Markers from Tissue Specific Transcriptome and Development of a Database in Clusterbean (Cyamopsis tetragonoloba, L. Taub). Genes (Basel) 2017; 8:genes8110313. [PMID: 29120386 PMCID: PMC5704226 DOI: 10.3390/genes8110313] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/23/2017] [Accepted: 11/06/2017] [Indexed: 12/23/2022] Open
Abstract
Clusterbean (Cyamopsis tetragonoloba L. Taub), is an important industrial, vegetable and forage crop. This crop owes its commercial importance to the presence of guar gum (galactomannans) in its endosperm which is used as a lubricant in a range of industries. Despite its relevance to agriculture and industry, genomic resources available in this crop are limited. Therefore, the present study was undertaken to generate RNA-Seq based transcriptome from leaf, shoot, and flower tissues. A total of 145 million high quality Illumina reads were assembled using Trinity into 127,706 transcripts and 48,007 non-redundant high quality (HQ) unigenes. We annotated 79% unigenes against Plant Genes from the National Center for Biotechnology Information (NCBI), Swiss-Prot, Pfam, gene ontology (GO) and KEGG databases. Among the annotated unigenes, 30,020 were assigned with 116,964 GO terms, 9984 with EC and 6111 with 137 KEGG pathways. At different fragments per kilobase of transcript per millions fragments sequenced (FPKM) levels, genes were found expressed higher in flower tissue followed by shoot and leaf. Additionally, we identified 8687 potential simple sequence repeats (SSRs) with an average frequency of one SSR per 8.75 kb. A total of 28 amplified SSRs in 21 clusterbean genotypes resulted in polymorphism in 13 markers with average polymorphic information content (PIC) of 0.21. We also constructed a database named ‘ClustergeneDB’ for easy retrieval of unigenes and the microsatellite markers. The tissue specific genes identified and the molecular marker resources developed in this study is expected to aid in genetic improvement of clusterbean for its end use.
Collapse
Affiliation(s)
- Hukam C Rawal
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Shrawan Kumar
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Amitha Mithra S V
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Amolkumar U Solanke
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Deepti Nigam
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Swati Saxena
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Anshika Tyagi
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Sureshkumar V
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Neelam R Yadav
- Department of Biotechnology and Molecular Biology, CCS Haryana Agricultural University, Hisar 125004, India.
| | - Pritam Kalia
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | | | | | - Tilak Raj Sharma
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Kishor Gaikwad
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| |
Collapse
|
11
|
De Novo Assembly and Characterization of Bud, Leaf and Flowers Transcriptome from Juglans Regia L. for the Identification and Characterization of New EST-SSRs. FORESTS 2016. [DOI: 10.3390/f7100247] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|