1
|
Mirzwa-Mróz E, Zieniuk B, Yin Z, Pawełkowicz M. Genetic Insights and Molecular Breeding Approaches for Downy Mildew Resistance in Cucumber ( Cucumis sativus L.): Current Progress and Future Prospects. Int J Mol Sci 2024; 25:12726. [PMID: 39684436 DOI: 10.3390/ijms252312726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Cucurbit downy mildew, caused by Pseudoperonospora cubensis, is a devastating disease in cucumbers that leads to significant yield losses in many cucurbit-growing regions worldwide. Developing resistant cucumber varieties is a sustainable approach to managing this disease, especially given the limitations of chemical control and the evolving nature of pathogens. This article reviews the genetic basis of downy mildew resistance in cucumbers, emphasizing key resistance (R) genes and quantitative trait loci (QTLs) that have been mapped. Recent advances in molecular breeding tools, including marker-assisted selection (MAS), genomic selection (GS), and CRISPR/Cas9 genome editing, have accelerated the development of resistant cultivars. This review also explores the role of transcriptomics, genomics, and other 'omics' technologies in unraveling the molecular mechanisms behind resistance and offers insights into the future of breeding strategies aimed at long-term disease management. Management strategies for cucurbit downy mildew are discussed, along with the potential impacts of climate change on the occurrence and severity of downy mildew, highlighting how changing environmental conditions may influence disease dynamics. Integrating these advanced genetic approaches with traditional breeding promises to accelerate the development of downy mildew-resistant cucumber varieties, contributing to the sustainability and resilience of cucumber production.
Collapse
Affiliation(s)
- Ewa Mirzwa-Mróz
- Division of Plant Pathology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska Str., 02-776 Warsaw, Poland
| | - Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences SGGW, 159C Nowoursynowska Str., 02-776 Warsaw, Poland
| | - Zhimin Yin
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, Młochów Division, Department of Potato Genetics and Parental Lines, 19 Platanowa Str., 05-831 Młochów, Poland
| | - Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska Str., 02-776 Warsaw, Poland
| |
Collapse
|
2
|
Wang B, Wu W, Wang Z, Chen Z, Wang X. Soil-Mulching Treatment Enhances the Content of Stilbene in Grape Berries: A Transcriptomic and Metabolomic Analysis. Foods 2024; 13:3208. [PMID: 39410242 PMCID: PMC11476259 DOI: 10.3390/foods13193208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Soil mulching is a useful agronomic practice that promotes early fruit maturation and affects fruit quality. However, the regulatory mechanism of fruit metabolites under soil-mulching treatments remains unknown. In this study, variations in the gene sets and metabolites of grape berries after mulching (rice straw + felt + plastic film) using transcriptome and metagenomic sequencing were investigated. The results of the cluster analysis and orthogonal projection to latent structures discriminant analysis of the metabolites showed a difference between the mulching and control groups, as did the principal component analysis results for the transcriptome. In total, 36 differentially expressed metabolites were identified, of which 10 (resveratrol, ampelopsin F, piceid, 3,4'-dihydroxy-5-methoxystilbene, ε-viniferin, trans resveratrol, epsilon-viniferin, 3'-hydroxypterostilbene, 1-methyl-resveratrol, and pterostil-bene) were stilbenes. Their content increased after mulching, indicating that stilbene synthase activity increased after mulching. The weighted gene co-expression network analysis revealed that the turquoise and blue modules were positively and negatively related to stilbene compounds. The network analysis identified two seed genes (VIT_09s0054g00610, VIT_13s0156g00260) and two transcription factors (VIT_13s0156g00260, VIT_02s0025g04590). Overall, soil mulching promoted the accumulation of stilbene compounds in grapes, and the results provided key genetic information for further studies.
Collapse
Affiliation(s)
| | | | | | | | - Xicheng Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50 Zhongling Street, Nanjing 210014, China; (B.W.)
| |
Collapse
|
3
|
Li LS, Yang YY, Chen YX, Yu F, Hao GJ, Yin GM, Dou Y, Zhi JY, Ma L, Wang JF, Feng QN, Zhang Y, Li S. CBP60b clade proteins are prototypical transcription factors mediating immunity. PLANT PHYSIOLOGY 2024; 196:1489-1501. [PMID: 38889048 DOI: 10.1093/plphys/kiae349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
Transcriptional reprogramming is critical for plant immunity. Several calmodulin (CaM)-binding protein 60 (CBP60) family transcription factors (TFs) in Arabidopsis (Arabidopsis thaliana), including CBP60g, systemic acquired resistance deficient 1 (SARD1), CBP60a, and CBP60b, are critical for and show distinct roles in immunity. However, there are additional CBP60 members whose function is unclear. We report here that Arabidopsis CBP60c-f, 4 uncharacterized CBP60 members, play redundant roles with CBP60b in the transcriptional regulation of immunity responses, whose pCBP60b-driven expression compensates the loss of CBP60b. By contrast, neither CBP60g nor SARD1 is interchangeable with CBP60b, suggesting clade-specific functionalization. We further show that the function of CBP60b clade TFs relies on DNA-binding domains (DBDs) and CaM-binding domains, suggesting that they are downstream components of calcium signaling. Importantly, we demonstrate that CBP60s encoded in earliest land plant lineage Physcomitrium patens and Selaginella moellendorffii are functionally homologous to Arabidopsis CBP60b, suggesting that the CBP60b clade contains the prototype TFs of the CBP60 family. Furthermore, tomato and cucumber CBP60b-like genes rescue the defects of Arabidopsis cbp60b and activate the expression of tomato and cucumber SALICYLIC ACID INDUCTION DEFICIIENT2 (SID2) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) genes, suggesting that immune response pathways centered on CBP60b are also evolutionarily conserved. Together, these findings suggest that CBP60b clade TFs are functionally conserved in evolution and positively mediate immunity.
Collapse
Affiliation(s)
- Lu-Shen Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Yan-Yan Yang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yun-Xia Chen
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Fei Yu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Guang-Jiu Hao
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Gui-Min Yin
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Yan Dou
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jing-Yu Zhi
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Lin Ma
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jing-Fan Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qiang-Nang Feng
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
4
|
Lee IH, Choi BY, Kim DS, Han H, Kim YH, Shim D. Temporal Transcriptome Profiling of Pinus densiflora Infected with Pine Wood Nematode Reveals Genetically Programmed Changes upon Pine Wilt Disease. PHYTOPATHOLOGY 2024; 114:982-989. [PMID: 38451552 DOI: 10.1094/phyto-10-23-0397-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Pine, an evergreen conifer, is widely distributed worldwide. It is economically, scientifically, and ecologically important. However, pine wilt disease (PWD) induced by the pine wood nematode (PWN) adversely affects pine trees. Many studies have been conducted on the PWN and its beetle vectors to prevent the spread of PWD. However, studies providing a comprehensive understanding of the pine tree transcriptome in response to PWN infection are lacking. Here, we performed temporal profiling of the pine tree transcriptome using PWD-infected red pine trees, Pinus densiflora, inoculated with the PWN by RNA sequencing. Our analysis revealed that defense-responsive genes involved in cell wall modification, jasmonic acid signaling, and phenylpropanoid-related processes were significantly enriched 2 weeks after PWD infection. Furthermore, some WRKY-type and MYB-type transcription factors were upregulated 2 weeks after PWD infection, suggesting that these transcription factors might be responsible for the genome-wide reprogramming of defense-responsive genes in the early PWD stage. Our comprehensive transcriptome analysis will assist in developing PWD-resistant pine trees and identifying genes to diagnose PWD at the early stage of infection, during which large-scale phenotypic changes are absent in PWD-infected pine trees.
Collapse
Affiliation(s)
- Il Hwan Lee
- Department of Forest Bio-Resources, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Bae Young Choi
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dong Soo Kim
- Forest Biomaterials Research Center, National Institute of Forest Science, Jinju 52817, Republic of Korea
| | - Hyelim Han
- Division of Forest Insect Pests and Diseases, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Yun-Hee Kim
- Department of Biology Education, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
- Center for Genome Engineering, Institute for Basic Sciences, Daejeon 34126, Republic of Korea
| |
Collapse
|
5
|
Shang K, Wang R, Cao W, Wang X, Wang Y, Shi Z, Liu H, Zhou S, Zhu X, Zhu C. Abscisic-acid-responsive StlncRNA13558 induces StPRL expression to increase potato resistance to Phytophthora infestans infection. FRONTIERS IN PLANT SCIENCE 2024; 15:1338062. [PMID: 38504894 PMCID: PMC10948444 DOI: 10.3389/fpls.2024.1338062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
Late blight, caused by Phytophthora infestans, is one of the most serious diseases affecting potatoes (Solanum tuberosum L.). Long non-coding RNAs (lncRNAs) are transcripts with a length of more than 200 nucleotides that have no protein-coding potential. Few studies have been conducted on lncRNAs related to plant immune regulation in plants, and the molecular mechanisms involved in this regulation require further investigation. We identified and screened an lncRNA that specifically responds to P. infestans infection, namely, StlncRNA13558. P. infestans infection activates the abscisic acid (ABA) pathway, and ABA induces StlncRNA13558 to enhance potato resistance to P. infestans. StlncRNA13558 positively regulates the expression of its co-expressed PR-related gene StPRL. StPRL promotes the accumulation of reactive oxygen species and transmits a resistance response by affecting the salicylic acid hormone pathway, thereby enhancing potato resistance to P. infestans. In summary, we identified the potato late blight resistance lncRNA StlncRNA13558 and revealed its upstream and downstream regulatory relationship of StlncRNA13558. These results improve our understanding of plant-pathogen interactions' immune mechanism and elucidate the response mechanism of lncRNA-target genes regulating potato resistance to P. infestans infection.
Collapse
Affiliation(s)
- Kaijie Shang
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
- College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, China
| | - Ruolin Wang
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Weilin Cao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
| | - Xipan Wang
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yubo Wang
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Zhenting Shi
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Hongmei Liu
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Shumei Zhou
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xiaoping Zhu
- College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, China
| | - Changxiang Zhu
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
6
|
Yang D, Li Y, Zhu M, Cui R, Gao J, Shu Y, Lu X, Zhang H, Zhang K. Genome-Wide Identification and Expression Analysis of the Cucumber FKBP Gene Family in Response to Abiotic and Biotic Stresses. Genes (Basel) 2023; 14:2006. [PMID: 38002948 PMCID: PMC10671320 DOI: 10.3390/genes14112006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The FKBP (FK506-binding protein) gene family is an important member of the PPlase protease family and plays a vital role during the processes of plant growth and development. However, no studies of the FKBP gene family have been reported in cucumber. In this study, 19 FKBP genes were identified in cucumber, which were located on chromosomes 1, 3, 4, 6, and 7. Phylogenetic analysis divided the cucumber FKBP genes into three subgroups. The FKBP genes in the same subgroup exhibited similar structures and conserved motifs. The cis-acting elements analysis revealed that the promoters of cucumber FKBP genes contained hormone-, stress-, and development-related cis-acting elements. Synteny analysis of the FKBP genes among cucumber, Arabidopsis, and rice showed that 12 kinds of syntenic relationships were detected between cucumber and Arabidopsis FKBP genes, and 3 kinds of syntenic relationships were observed between cucumber and rice FKBP genes. The tissue-specific expression analysis showed that some FKBP genes were expressed in all tissues, while others were only highly expressed in part of the 10 types of tissues. The expression profile analysis of cucumber FKBP genes under 13 types of stresses showed that the CsaV3_1G007080 gene was differentially expressed under abiotic stresses (high temperature, NaCl, silicon, and photoperiod) and biotic stresses (downy mildew, green mottle mosaic virus, Fusarium wilt, phytophthora capsica, angular leaf spot, and root-knot nematode), which indicated that the CsaV3_1G007080 gene plays an important role in the growth and development of cucumber. The interaction protein analysis showed that most of the proteins in the FKBP gene family interacted with each other. The results of this study will lay the foundation for further research on the molecular biological functions of the cucumber FKBP gene family.
Collapse
Affiliation(s)
- Dekun Yang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Yahui Li
- School of Life Science, Huaibei Normal University, Huaibei 235000, China;
| | - Mengdi Zhu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Rongjing Cui
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Jiong Gao
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Yingjie Shu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Xiaomin Lu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| | - Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei 235000, China;
| | - Kaijing Zhang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (D.Y.); (M.Z.); (R.C.); (J.G.); (Y.S.); (X.L.)
| |
Collapse
|
7
|
Tan J, Wang Y, Dymerski R, Wu Z, Weng Y. Sigma factor binding protein 1 (CsSIB1) is a putative candidate of the major-effect QTL dm5.3 for downy mildew resistance in cucumber (Cucumis sativus). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4197-4215. [PMID: 36094614 DOI: 10.1007/s00122-022-04212-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The dm5.3 major-effect QTL in cucumber encodes a homolog of Arabidopsis sigma factor binding protein 1 (CsSIB1). CsSIB1 positively regulates defense responses against downy mildew in cucumber through the salicylic acid (SA) biosynthesis/signaling pathway. Downy mildew (DM) caused by the oomycete pathogen Pseudoperonospora cubensis is an important disease of cucumber and other cucurbits. Our knowledge on molecular mechanisms of DM resistance is still limited. In this study, we reported identification and functional characterization of the candidate gene for the major-effect QTL, dm5.3 for DM resistance originated from PI 197088. The dm5.3 QTL was Modelized through marker-assisted development of near isogenic lines (NILs). NIL-derived segregating populations were used for fine mapping which narrowed the dm5.3 locus down to a 144 kb region. Based on multiple lines of evidence, we show that CsSIB1 (CsGy5G027140) that encodes the VQ motif-containing sigma factor binding protein 1 as the most likely candidate for dm5.3. Local association analysis identified a haplotype consisting of 7 SNPs inside the coding and promoter region of CsSIB1 that was associated with DM resistance. Expression of CsSIB1 was up-regulated with P. cubensis infection. Transcriptome profiling of NILs in response to P. cubensis inoculation revealed key players and associated gene networks in which increased expression of CsSIB1 antagonistically promoted salicylic acid (SA) but suppressed jasmonic acid (JA) biosynthesis/signaling pathways. Our work provides novel insights into the function of CsSIB1/dm5.3 as a disease resistance (R) gene. The roles of sigma factor binding protein genes in pathogen defense in cucumber were also discussed.
Collapse
Affiliation(s)
- Junyi Tan
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Yuhui Wang
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Ronald Dymerski
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Zhiming Wu
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- Institute of Cash Crops, Hebei Academy of Agriculture & Forestry Sciences, Shijiazhuang, 050051, Hebei, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, Madison, WI, 53706, USA.
| |
Collapse
|
8
|
Nair MM, Kumar SHK, Jyothsna S, Sundaram KT, Manjunatha C, Sivasamy M, Alagu M. Stem and leaf rust-induced miRNAome in bread wheat near-isogenic lines and their comparative analysis. Appl Microbiol Biotechnol 2022; 106:8211-8232. [PMID: 36385566 DOI: 10.1007/s00253-022-12268-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
Wheat rusts remain a major threat to global wheat production and food security. The R-gene-mediated resistance has been employed as an efficient approach to develop rust-resistant varieties. However, evolution of new fungal races and infection strategies put forward the urgency of unravelling novel molecular players, including non-coding RNAs for plant response. This study identified microRNAs associated with Sr36 and Lr45 disease resistance genes in response to stem and leaf rust, respectively. Here, small RNA sequencing was performed on susceptible and resistant wheat near-isogenic lines inoculated with stem and leaf rust pathotypes. microRNA mining in stem rust-inoculated cultivars revealed a total of distinct 26 known and 7 novel miRNAs, and leaf rust libraries culminated with 22 known and 4 novel miRNAs. The comparative analysis between two disease sets provides a better understanding of altered miRNA profiles associated with respective R-genes and infections. Temporal differential expression pattern of miRNAs pinpoints their role during the progress of infection. Differential expression pattern of miRNAs among various treatments as well as time-course expression of miRNAs revealed stem and leaf rust-responsive miRNAs and their possible role in balancing disease resistance/susceptibility. Disclosure of guide strand, passenger strand and a variant of novel-Tae-miR02 from different subgenome origins might serve as a potential link between stem and leaf rust defence mechanisms downstream to respective R-genes. The outcome from the analysis of microRNA dynamics among two rust diseases and further characterization of identified microRNAs can contribute to significant novel insights on wheat-rust interactions and rust management. KEY POINTS: • Identification and comparative analysis of stem and leaf rust-responsive miRNAs. • Chromosomal location and functional prediction of miRNAs. • Time-course expression analysis of pathogen-responsive miRNAs.
Collapse
Affiliation(s)
- Minu M Nair
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - S Hari Krishna Kumar
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - S Jyothsna
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Krishna T Sundaram
- International Rice Research Institute (IRRI), South Asia Hub, Patancheru, 502324, Telangana, India
| | - C Manjunatha
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560024, Karnataka, India
| | - M Sivasamy
- ICAR-Indian Agricultural, Research Institute, Regional Station, Wellington, 643231, Tamil Nadu, India
| | - Manickavelu Alagu
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671316, Kerala, India.
| |
Collapse
|
9
|
Mining the Roles of Cucumber DUF966 Genes in Fruit Development and Stress Response. PLANTS 2022; 11:plants11192497. [PMID: 36235363 PMCID: PMC9572245 DOI: 10.3390/plants11192497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
DUF966 genes are widely found in monocotyledons, dicotyledons, mosses, and other species. Current evidence strongly suggests that they are involved in growth regulation and stress tolerance in crops. However, their functions in cucumbers remain unexplored. Here, cucumber CsDUF966 was systemically identified and characterized using bioinformatics. Eight CsDUF966 genes were identified in the cucumber genome. These were phylogenetically separated into three groups. All CsDUF966 proteins were hydrophilic and localized to the nucleus. Moreover, three acidic and five basic proteins were identified. Evolutionary analysis of DUF966 between cucumber and 33 other Cucurbitaceae species/cultivars revealed that most CsDUF966 genes were conserved, whereas CsDUF966_4.c and CsDUF966_7.c were positively selected among the five cucumber cultivars. Expression profiling analysis showed that CsDUF966 had variable expression patterns, and that miRNA164, miRNA166, and Csa-novel-35 were involved in the post-transcriptional regulation of CsDUF966_4.c and CsDUF966_7.c. The expression of CsDUF966_4.c and CsDUF966_7.c, which were under strong neofunctionalization selection, was strictly regulated in fruit and tissues, including seeds, pericarps, peels, and spines, suggesting that these genes are fruit growth regulators and were strongly selected during the cucumber breeding program. In conclusion, the results reveal the roles of CsDUF966s in regulating cucumber fruit development and lay the foundation for further functional studies.
Collapse
|
10
|
Han D, Ma X, Zhang L, Zhang S, Sun Q, Li P, Shu J, Zhao Y. Serial-Omics and Molecular Function Study Provide Novel Insight into Cucumber Variety Improvement. PLANTS 2022; 11:plants11121609. [PMID: 35736760 PMCID: PMC9228134 DOI: 10.3390/plants11121609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Cucumbers are rich in vitamins and minerals. The cucumber has recently become one of China’s main vegetable crops. More specifically, the adjustment of the Chinese agricultural industry’s structure and rapid economic development have resulted in increases in the planting area allocated to Chinese cucumber varieties and in the number of Chinese cucumber varieties. After complete sequencing of the “Chinese long” genome, the transcriptome, proteome, and metabolome were obtained. Cucumber has a small genome and short growing cycle, and these traits are conducive to the application of molecular breeding techniques for improving fruit quality. Here, we review the developments and applications of molecular markers and genetic maps for cucumber breeding and introduce the functions of gene families from the perspective of genomics, including fruit development and quality, hormone response, resistance to abiotic stress, epitomizing the development of other omics, and relationships among functions.
Collapse
Affiliation(s)
- Danni Han
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271018, China; (L.Z.); (S.Z.); (Q.S.)
| | - Xiaojun Ma
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China;
| | - Lei Zhang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271018, China; (L.Z.); (S.Z.); (Q.S.)
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271018, China; (L.Z.); (S.Z.); (Q.S.)
| | - Qinghua Sun
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271018, China; (L.Z.); (S.Z.); (Q.S.)
| | - Pan Li
- School of Pharmacy, Liaocheng University, Liaocheng 252000, China;
| | - Jing Shu
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China;
- Correspondence: (J.S.); (Y.Z.)
| | - Yanting Zhao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Correspondence: (J.S.); (Y.Z.)
| |
Collapse
|
11
|
He Y, Wei M, Yan Y, Yu C, Cheng S, Sun Y, Zhu X, Wei L, Wang H, Miao L. Research Advances in Genetic Mechanisms of Major Cucumber Diseases Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:862486. [PMID: 35665153 PMCID: PMC9161162 DOI: 10.3389/fpls.2022.862486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 06/15/2023]
Abstract
Cucumber (Cucumis sativus L.) is an important economic vegetable crop worldwide that is susceptible to various common pathogens, including powdery mildew (PM), downy mildew (DM), and Fusarium wilt (FM). In cucumber breeding programs, identifying disease resistance and related molecular markers is generally a top priority. PM, DM, and FW are the major diseases of cucumber in China that cause severe yield losses and the genetic-based cucumber resistance against these diseases has been developed over the last decade. Still, the molecular mechanisms of cucumber disease resistance remain unclear. In this review, we summarize recent findings on the inheritance, molecular markers, and quantitative trait locus mapping of cucumber PM, DM, and FM resistance. In addition, several candidate genes, such as PM, DM, and FM resistance genes, with or without functional verification are reviewed. The data help to reveal the molecular mechanisms of cucumber disease resistance and provide exciting new opportunities for further resistance breeding.
Collapse
Affiliation(s)
- Yujin He
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Mingming Wei
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree, State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Yanyan Yan
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Chao Yu
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Siqi Cheng
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yihan Sun
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xiangtao Zhu
- College of Jiyang, Zhejiang Agriculture and Forestry University, Zhuji, China
| | - Lingling Wei
- Institute of Ecological Civilization, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Huasen Wang
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree, State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Li Miao
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
12
|
Yan W, Cao S, Wu Y, Ye Z, Zhang C, Yao G, Yu J, Yang D, Zhang J. Integrated Analysis of Physiological, mRNA Sequencing, and miRNA Sequencing Data Reveals a Specific Mechanism for the Response to Continuous Cropping Obstacles in Pogostemon cablin Roots. FRONTIERS IN PLANT SCIENCE 2022; 13:853110. [PMID: 35432413 PMCID: PMC9010791 DOI: 10.3389/fpls.2022.853110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 06/02/2023]
Abstract
Pogostemon cablin (patchouli) is a commercially important medicinal and industrial crop grown worldwide for its medicinal and aromatic properties. Patchoulol and pogostone, derived from the essential oil of patchouli, are considered valuable components in the cosmetic and pharmaceutical industries. Due to its high application value in the clinic and industry, the demand for patchouli is constantly growing. Unfortunately, patchouli cultivation has suffered due to severe continuous cropping obstacles, resulting in a significant decline in yield and quality. Moreover, the physiological and transcriptional changes in patchouli in response to continuous cropping obstacles remain unclear. This has greatly restricted the development of the patchouli industry. To explore the mechanism underlying the rapid response of patchouli roots to continuous cropping stress, integrated analysis of the transcriptome and miRNA profiles of patchouli roots under continuous and noncontinuous cropping conditions in different growth periods was conducted using RNA sequencing (RNA-seq) and miRNA-seq and complemented with physiological data. The physiological and biochemical results showed that continuous cropping significantly inhibited root growth, decreased root activity, and increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and the levels of osmoregulators (malondialdehyde, soluble protein, soluble sugar, and proline). Subsequently, we found 4,238, 3,494, and 7,290 upregulated and 4,176, 3,202, and 8,599 downregulated differentially expressed genes (DEGs) in the three growth periods of continuously cropped patchouli, many of which were associated with primary carbon and nitrogen metabolism, defense responses, secondary metabolite biosynthesis, and transcription factors. Based on miRNA-seq, 927 known miRNAs and 130 novel miRNAs were identified, among which 67 differentially expressed miRNAs (DEMIs) belonging to 24 miRNA families were induced or repressed by continuous cropping. By combining transcriptome and miRNA profiling, we obtained 47 miRNA-target gene pairs, consisting of 18 DEMIs and 43 DEGs, that likely play important roles in the continuous cropping response of patchouli. The information provided in this study will contribute to clarifying the intricate mechanism underlying the patchouli response to continuous cropping obstacles. In addition, the candidate miRNAs and genes can provide a new strategy for breeding continuous cropping-tolerant patchouli.
Collapse
|
13
|
Yang F, Wang H, Zhi C, Chen B, Zheng Y, Qiao L, Gao J, Pan Y, Cheng Z. Garlic Volatile Diallyl Disulfide Induced Cucumber Resistance to Downy Mildew. Int J Mol Sci 2021; 22:ijms222212328. [PMID: 34830208 PMCID: PMC8625977 DOI: 10.3390/ijms222212328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/01/2023] Open
Abstract
Allicin compositions in garlic are used widely as fungicides in modern agriculture, in which diallyl disulfide (DADS) is a major compound. Downy mildew, caused by Pseudoperonospora cubensis (P. cubensis), is one of the most destructive diseases and causes severe yield losses in cucumbers. To explore the potential mechanism of DADS-induced cucumber resistance to downy mildew, cucumber seedlings were treated with DADS and then inoculated with P. cubensis at a 10-day interval. Symptom observation showed that DADS significantly induced cucumber resistance to downy mildew. Furthermore, both lignin and H2O2 were significantly increased by DADS treatment to responding P. cubensis infection. Simultaneously, the enzyme activities of peroxidase (POD) in DADS-treated seedlings were significantly promoted. Meanwhile, both the auxin (IAA) and salicylic acid (SA) contents were increased, and their related differentially expressed genes (DEGs) were up-regulated when treated with DADS. Transcriptome profiling showed that many DEGs were involved in the biological processes of defense responses, in which DEGs on the pathways of 'phenylpropanoid biosynthesis', 'phenylalanine metabolism', 'MAPK signaling', and 'plant hormone signal transduction' were significantly up-regulated in DADS-treated cucumbers uninoculated with the pathogen. Based on the results of several physiological indices and transcriptomes, a potential molecular mechanism of DADS-induced cucumber resistance to downy mildew was proposed and discussed. The results of this study might give new insight into the exploration of the induced resistance mechanism of cucumber to downy mildew and provide useful information for the subsequent mining of resistance genes in cucumber.
Collapse
|
14
|
Bello JC, Hausbeck MK, Sakalidis ML. Application of Target Enrichment Sequencing for Population Genetic Analyses of the Obligate Plant Pathogens Pseudoperonospora cubensis and P. humuli in Michigan. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1103-1118. [PMID: 34227836 DOI: 10.1094/mpmi-11-20-0329-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Technological advances in genome sequencing have improved our ability to catalog genomic variation and have led to an expansion of the scope and scale of genetic studies over the past decade. Yet, for agronomically important plant pathogens such as the downy mildews (Peronosporaceae), the scale of genetic studies remains limited. This is, in part, due to the difficulties associated with maintaining obligate pathogens and the logistical constraints involved in the genotyping of these species (e.g., obtaining DNA of sufficient quantity and quality). To gain an evolutionary and ecological perspective of downy mildews, adaptable methods for the genotyping of their populations are required. Here, we describe a targeted enrichment (TE) protocol to genotype isolates from two Pseudoperonospora species (P. cubensis and P. humuli), using less than 50 ng of mixed pathogen and plant DNA for library preparation. We were able to enrich 830 target genes across 128 samples and identified 2,514 high-quality single nucleotide polymorphism (SNP) variants. Using these SNPs, we detected significant genetic differentiation (analysis of molecular variance [AMOVA], P = 0.01) between P. cubensis subpopulations from Cucurbita moschata (clade I) and Cucumis sativus (clade II) in the state of Michigan. No evidence of location-based differentiation was detected within the P. cubensis (clade II) subpopulation in Michigan. However, a significant effect of location on the genetic variation of the P. humuli subpopulation was detected in the state (AMOVA, P = 0.01). Mantel tests found evidence that the genetic distance among P. humuli samples was associated with the physical distance of the hop yards from which the samples were collected (P = 0.005). The differences in the distribution of genetic variation of the Michigan P. humuli and P. cubensis subpopulations suggest differences in the dispersal of these two species. The TE protocol described here provides an additional tool for genotyping obligate biotrophic plant pathogens and the execution of new genetic studies.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Julian C Bello
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
| | - Mary K Hausbeck
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
| | - Monique L Sakalidis
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
- Department of Forestry, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
15
|
Zhang K, Jia L, Yang D, Hu Y, Njogu MK, Wang P, Lu X, Yan C. Genome-Wide Identification, Phylogenetic and Expression Pattern Analysis of GATA Family Genes in Cucumber ( Cucumis sativus L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081626. [PMID: 34451671 PMCID: PMC8401448 DOI: 10.3390/plants10081626] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 05/13/2023]
Abstract
GATA transcription factors are a class of transcriptional regulatory proteins that contain a characteristic type-IV zinc finger DNA-binding domain, which play important roles in plant growth and development. The GATA gene family has been characterized in various plant species. However, GATA family genes have not been identified in cucumber. In this study, 26 GATA family genes were identified in cucumber genome, whose physicochemical characteristics, chromosomal distributions, phylogenetic tree, gene structures conserved motifs, cis-regulatory elements in promoters, homologous gene pairs, downstream target genes were analyzed. Tissue expression profiles of cucumber GATA family genes exhibited that 17 GATA genes showed constitutive expression, and some GATA genes showed tissue-specific expression patterns. RNA-seq analysis of green and virescent leaves revealed that seven GATA genes might be involved in the chloroplast development and chlorophyll biosynthesis. Importantly, expression patterns analysis of GATA genes in response to abiotic and biotic stresses indicated that some GATA genes respond to either abiotic stress or biotic stress, some GATA genes such as Csa2G162660, Csa3G017200, Csa3G165640, Csa4G646060, Csa5G622830 and Csa6G312540 were simultaneously functional in resistance to abiotic and biotic stresses. Overall, this study will provide useful information for further analysis of the biological functions of GATA factors in cucumber.
Collapse
Affiliation(s)
- Kaijing Zhang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (K.Z.); (D.Y.); (Y.H.); (X.L.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China;
| | - Li Jia
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China;
| | - Dekun Yang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (K.Z.); (D.Y.); (Y.H.); (X.L.)
| | - Yuchao Hu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (K.Z.); (D.Y.); (Y.H.); (X.L.)
| | - Martin Kagiki Njogu
- Department of Plant Science, Chuka University, Chuka P.O. Box 109-60400, Kenya;
| | - Panqiao Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China;
| | - Xiaomin Lu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (K.Z.); (D.Y.); (Y.H.); (X.L.)
| | - Congsheng Yan
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China;
- Correspondence:
| |
Collapse
|
16
|
Wang Y, Qi C, Luo Y, Zhang F, Dai Z, Li M, Qu S. Identification and mapping of CpPM10.1, a major gene involved in powdery mildew (race 2 France of Podosphaera xanthii) resistance in zucchini (Cucurbita pepo L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2531-2545. [PMID: 33914112 DOI: 10.1007/s00122-021-03840-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Powdery mildew resistance in zucchini is controlled by one major dominant locus, CpPM10.1. CpPM10.1 was fine mapped. The expression of candidate gene Cp4.1LG10g02780 in resistant individuals was significantly upregulated after inoculation with the powdery mildew. Powdery mildew (PM) is one of the most destructive fungal diseases, reducing the productivity of Cucurbita crops globally. PM influences the photosynthesis, growth and development of infected zucchini and seriously reduces fruit yield and quality. In the present study, the zucchini inbred line 'X10' had highly stable PM resistance, and the inbred line 'Jin234' was highly susceptible to PM in the seedling stage and adult stages. Genetic analysis revealed that PM resistance in 'X10' is controlled by one major dominant locus. Based on the strategy of QTL-seq combined with linkage analysis and developed molecular markers, the major locus was found to be located in a 382.9-kb candidate region on chromosome 10; therefore, the major locus was named CpPM10.1. Using 1,400 F2 individuals derived from a cross between 'X10' and 'JIN234' and F2:3 offspring of the recombinants, the CpPM10.1 locus was defined in a region of approximately 20.9 kb that contained 5 coding genes. Among them, Cp4.1LG10g02780 contained a conserved domain (RPW8), which controls resistance to a broad range of PM pathogens. Cp4.1LG10g02780 also had nonsynonymous SNPs between the resistant 'X10' and susceptible 'Jin234.' Furthermore, the expression of Cp4.1LG10g02780 was strongly positively involved in PM resistance in the key period of inoculation. Further allelic diversity analysis in zucchini germplasm resources indicated that PM resistance was associated with two SNPs in the Cp4.1LG10g02780 RPW8 domain. This study not only provides highly stable PM resistance gene resources for cucurbit crops but also lays the foundation for the functional analysis of PM resistance and resistance breeding in zucchini.
Collapse
Affiliation(s)
- Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Cong Qi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yusong Luo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Feng Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Zuyun Dai
- Anhui Jianghuai Horticulture Seeds Corporation Limited, Hefei, 230031, China
| | - Man Li
- Anhui Jianghuai Horticulture Seeds Corporation Limited, Hefei, 230031, China
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
17
|
Pazarlar S, Sanver U, Cetinkaya N. Exogenous pipecolic acid modulates plant defence responses against Podosphaera xanthii and Pseudomonas syringae pv. lachrymans in cucumber (Cucumis sativus L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:473-484. [PMID: 33547740 DOI: 10.1111/plb.13243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Systemic acquired resistance (SAR) is a long-lasting and broad-based resistance that can be activated following infection with (a)virulent pathogens and treatment with exogenous elicitors. Pipecolic acid (Pip), a Lys-derived non-protein amino acid, naturally occurs in many different plant species, and its N-hydroxylated derivative, N-hydroxypipecolic acid (NHP), acts as a crucial regulator of SAR. In the present study, we conducted a systemic analysis of the defence responses of a series of D,L-Pip-pretreated Cucumis sativus L. against Podosphaera xanthii (P. xanthii) and Pseudomonas syringae pv. lachrymans (Psl). The effects of D,L-Pip on ROS metabolism, defence-related gene expression, SA accumulation and activity of defence-related enzymes were evaluated. We show that exogenously applied D,L-Pip successfully induces SAR in cucumber against P. xanthii and Psl, but not Fusarium oxysporum f. sp. cucumerinum (Foc). Exogenous application of D,L-Pip via the root system is sufficient to activate the accumulation of free and conjugated salicylic acid (SA), and earlier and stronger upregulation of SAR-associated gene transcription upon P. xanthii infection. Furthermore, D,L-Pip treatment and subsequent pathogen inoculation promote hydrogen peroxide and superoxide accumulation, as well as Rboh transcription activation in cucumber plants, suggesting that D,L-Pip-triggered ROS production might be involved in enhanced defence reactions against P. xanthii. We also demonstrate that D,L-Pip pretreatment increases the activity of defence-associated enzymes, including peroxidase, chitinase and β-1,3-glucanase. The results presented in this report provide promising features of Pip as an elicitor in cucumber and call for further studies that may uncover its potential in production areas against different phytopathogens.
Collapse
Affiliation(s)
- S Pazarlar
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - U Sanver
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - N Cetinkaya
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| |
Collapse
|
18
|
Gao X, Guo P, Wang Z, Chen C, Ren Z. Transcriptome profiling reveals response genes for downy mildew resistance in cucumber. PLANTA 2021; 253:112. [PMID: 33914134 DOI: 10.1007/s00425-021-03603-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
We discovered a potential defense pathway of cucumber to downy mildew. The signaling that activates the pathways of ROS and lignin accumulation may play an important role in the defense response. Many resistance genes were identified by transcriptome analysis. Downy mildew (DM), caused by Pseudoperonospora cubensis, is one of the most destructive diseases and causes severe yield losses of cucumber. However, the genes and pathways involved in regulating DM resistance were still poorly understood. In our study, we observed that the highly sensitive inbred line 53 (IL53) exhibited more severe disease symptoms than the highly resistant inbred line 51 (IL51) under P. cubensis infection. Furthermore, lignin, limiting the germination and extension of P. cubensis, and H2O2, as a signaling molecule during the resistant process, were both shown to increase, indicating that the signaling that activates these pathways might be responsible for the resistance divergence between IL51 and IL53. Transcriptome analysis, using the resistant and susceptible pools in F2 populations with IL51 and IL53 as parents, showed that a series of differentially expressed genes was involved in multiple functions of defense response: pathogen-associated molecular pattern recognition, signal transduction, reactive oxygen species and lignin accumulation, and transcription regulators. Combining physiological data with transcriptomes, we predicted a potential molecular mechanism of cucumber resistance to DM. Our research provided a foundation for further studies on the mechanism of cucumber resistance to DM.
Collapse
Affiliation(s)
- Xinbin Gao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, College of Horticultural Science and Engineering, Shandong Agricultural University, Ministry of Agriculture, Tai'an, 271018, Shandong, China
| | - Pei Guo
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, College of Horticultural Science and Engineering, Shandong Agricultural University, Ministry of Agriculture, Tai'an, 271018, Shandong, China
| | - Zhiyuan Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, College of Horticultural Science and Engineering, Shandong Agricultural University, Ministry of Agriculture, Tai'an, 271018, Shandong, China
| | - Chunhua Chen
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, College of Horticultural Science and Engineering, Shandong Agricultural University, Ministry of Agriculture, Tai'an, 271018, Shandong, China.
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, College of Horticultural Science and Engineering, Shandong Agricultural University, Ministry of Agriculture, Tai'an, 271018, Shandong, China.
| |
Collapse
|
19
|
Słomnicka R, Olczak-Woltman H, Sobczak M, Bartoszewski G. Transcriptome Profiling of Cucumber ( Cucumis sativus L.) Early Response to Pseudomonas syringae pv. lachrymans. Int J Mol Sci 2021; 22:ijms22084192. [PMID: 33919557 PMCID: PMC8072787 DOI: 10.3390/ijms22084192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/28/2022] Open
Abstract
Bacterial angular leaf spot disease (ALS) caused by Pseudomonas syringae pv. lachrymans (Psl) is one of the biological factors limiting cucumber open-field production. The goal of this study was to characterize cytological and transcriptomic response of cucumber to this pathogen. Plants of two inbred lines, B10 (susceptible) and Gy14 (resistant), were grown, and leaves were inoculated with highly virulent Psl strain 814/98 under growth chamber conditions. Microscopic and transcriptional evaluations were performed at three time points: before, 1 and 3 days post inoculation (dpi). Investigated lines showed distinct response to Psl. At 1 dpi bacterial colonies were surrounded by necrotized mesophyll cells. At 3 dpi, in the susceptible B10 line bacteria were in contact with degraded cells, whereas cells next to bacteria in the resistant Gy14 line were plasmolyzed, but apparently still alive and functional. Additionally, the level of H2O2 production was higher in resistant Gy14 plants than in B10 at both examined time points. In RNA sequencing more than 18,800 transcripts were detected in each sample. As many as 1648 and 2755 differentially expressed genes (DEGs) at 1 dpi as well as 2992 and 3141 DEGs at 3 dpi were identified in B10 and Gy14, respectively. DEGs were characterized in terms of functional categories. Resistant line Gy14 showed massive transcriptomic response to Psl at 1 dpi compared to susceptible line B10, while a similar number of DEGs was detected for both lines at 3 dpi. This suggests that dynamic transcriptomic response to the invading pathogen may be related with host resistance. This manuscript provides the first transcriptomic data on cucumber infected with the pathovar lachrymans and helps to elucidate resistance mechanism against ALS disease.
Collapse
Affiliation(s)
- Renata Słomnicka
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland; (R.S.); (H.O.-W.)
| | - Helena Olczak-Woltman
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland; (R.S.); (H.O.-W.)
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Grzegorz Bartoszewski
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland; (R.S.); (H.O.-W.)
- Correspondence:
| |
Collapse
|
20
|
Baetsen-Young A, Chen H, Shiu SH, Day B. Contrasting transcriptional responses to Fusarium virguliforme colonization in symptomatic and asymptomatic hosts. THE PLANT CELL 2021; 33:224-247. [PMID: 33681966 PMCID: PMC8136916 DOI: 10.1093/plcell/koaa021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
The broad host range of Fusarium virguliforme represents a unique comparative system to identify and define differentially induced responses between an asymptomatic monocot host, maize (Zea mays), and a symptomatic eudicot host, soybean (Glycine max). Using a temporal, comparative transcriptome-based approach, we observed that early gene expression profiles of root tissue from infected maize suggest that pathogen tolerance coincides with the rapid induction of senescence dampening transcriptional regulators, including ANACs (Arabidopsis thaliana NAM/ATAF/CUC protein) and Ethylene-Responsive Factors. In contrast, the expression of senescence-associated processes in soybean was coincident with the appearance of disease symptom development, suggesting pathogen-induced senescence as a key pathway driving pathogen susceptibility in soybean. Based on the analyses described herein, we posit that root senescence is a primary contributing factor underlying colonization and disease progression in symptomatic versus asymptomatic host-fungal interactions. This process also supports the lifestyle and virulence of F. virguliforme during biotrophy to necrotrophy transitions. Further support for this hypothesis lies in comprehensive co-expression and comparative transcriptome analyses, and in total, supports the emerging concept of necrotrophy-activated senescence. We propose that F. virguliforme conditions an environment within symptomatic hosts, which favors susceptibility through transcriptomic reprogramming, and as described herein, the induction of pathways associated with senescence during the necrotrophic stage of fungal development.
Collapse
Affiliation(s)
- Amy Baetsen-Young
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Huan Chen
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Graduate Program in Genetics and Genome Sciences, Michigan State University, East Lansing, MI 48824, USA
- Graduate Program in Molecular Plant Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Shin-Han Shiu
- Graduate Program in Genetics and Genome Sciences, Michigan State University, East Lansing, MI 48824, USA
- Graduate Program in Molecular Plant Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Graduate Program in Genetics and Genome Sciences, Michigan State University, East Lansing, MI 48824, USA
- Graduate Program in Molecular Plant Sciences, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
21
|
Zheng L, Zhang M, Zhuo Z, Wang Y, Gao X, Li Y, Liu W, Zhang W. Transcriptome profiling analysis reveals distinct resistance response of cucumber leaves infected with powdery mildew. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:327-340. [PMID: 33176053 DOI: 10.1111/plb.13213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Powdery mildew is the main disease affecting cucumber cultivation and causes severe economic loss. So far, research on cucumber resistance to powdery mildew has not yielded feasible solutions. This study selected two inbred cucumber lines, XY09-118 (resistant) and Q10 (susceptible) and investigated their responses to powdery mildew infection (harvested 24 and 48 h after inoculation) using RNA sequencing. More than 20,000 genes were detected in cucumber leaves both with and without powdery mildew infection at the above two time points. Among these, 5478 genes were identified as differently expressed genes (DEGs) between XY09-118 and Q10. Based on the databases GO and KEGG, the functions of DEGs were analysed. Moreover, the complex regulatory network for powdery mildew resistance was assessed, which involves plant hormone signal transduction, phenylpropanoid biosynthesis, plant-pathogen interaction and the MAPK signalling pathway. In particular, genes encoding WRKY, NAC and TCP were highlighted. In addition, genes involved in plant hormone biosynthesis, metabolism and signal transduction, pathogen resistance and abiotic stress response were analysed. Co-expression analysis indicated that the transcription factors correlated with plant hormone signal pathway and metabolism, defence and abiotic response. The expression of several genes was validated by qRT-PCR. The pathogen resistance regulatory network was identified by comparing resistant and susceptible inbred lines infected with powdery mildew. The transcriptome data provide novel insights into cucumber response to powdery mildew infection and the identified pathogen resistance genes will be highly useful for breeding efforts to enhance the resistance of cucumber to powdery mildew.
Collapse
Affiliation(s)
- L Zheng
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Shandong Academy of Agricultural Sciences, Institute of Vegetables and Flowers, Jinan, China
- College of Life and Environment Sciences, Huanshan University, Huangshan, China
| | - M Zhang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Shandong Academy of Agricultural Sciences, Institute of Vegetables and Flowers, Jinan, China
| | - Z Zhuo
- College of Forestry, Hainan University, Haikou, China
| | - Y Wang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Shandong Academy of Agricultural Sciences, Institute of Vegetables and Flowers, Jinan, China
| | - X Gao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Shandong Academy of Agricultural Sciences, Institute of Vegetables and Flowers, Jinan, China
| | - Y Li
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Shandong Academy of Agricultural Sciences, Institute of Vegetables and Flowers, Jinan, China
| | - W Liu
- College of Agricultural Sciences and Technology, Shandong Agriculture and Engineering University, Jinan, China
| | - W Zhang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Shandong Academy of Agricultural Sciences, Institute of Vegetables and Flowers, Jinan, China
| |
Collapse
|
22
|
Zhang K, He S, Sui Y, Gao Q, Jia S, Lu X, Jia L. Genome-Wide Characterization of HSP90 Gene Family in Cucumber and Their Potential Roles in Response to Abiotic and Biotic Stresses. Front Genet 2021; 12:584886. [PMID: 33613633 PMCID: PMC7889589 DOI: 10.3389/fgene.2021.584886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/14/2021] [Indexed: 11/29/2022] Open
Abstract
Heat shock protein 90 (HSP90) possesses critical functions in plant developmental control and defense reactions. The HSP90 gene family has been studied in various plant species. However, the HSP90 gene family in cucumber has not been characterized in detail. In this study, a total of six HSP90 genes were identified from the cucumber genome, which were distributed to five chromosomes. Phylogenetic analysis divided the cucumber HSP90 genes into two groups. The structural characteristics of cucumber HSP90 members in the same group were similar but varied among different groups. Synteny analysis showed that only one cucumber HSP90 gene, Csa1G569290, was conservative, which was not collinear with any HSP90 gene in Arabidopsis and rice. The other five cucumber HSP90 genes were collinear with five Arabidopsis HSP90 genes and six rice HSP90 genes. Only one pair of paralogous genes in the cucumber HSP90 gene family, namely one pair of tandem duplication genes (Csa1G569270/Csa1G569290), was detected. The promoter analysis showed that the promoters of cucumber HSP90 genes contained hormone, stress, and development-related cis-elements. Tissue-specific expression analysis revealed that only one cucumber HSP90 gene Csa3G183950 was highly expressed in tendril but low or not expressed in other tissues, while the other five HSP90 genes were expressed in all tissues. Furthermore, the expression levels of cucumber HSP90 genes were differentially induced by temperature and photoperiod, gibberellin (GA), downy mildew, and powdery mildew stimuli. Two cucumber HSP90 genes, Csa1G569270 and Csa1G569290, were both differentially expressed in response to abiotic and biotic stresses, which means that these two HSP90 genes play important roles in the process of cucumber growth and development. These findings improve our understanding of cucumber HSP90 family genes and provide preliminary information for further studies of cucumber HSP90 gene functions in plant growth and development.
Collapse
Affiliation(s)
- Kaijing Zhang
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Shuaishuai He
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Yihu Sui
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Qinghai Gao
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Shuangshuang Jia
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Xiaomin Lu
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Li Jia
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
23
|
Liu X, Lu H, Liu P, Miao H, Bai Y, Gu X, Zhang S. Identification of Novel Loci and Candidate Genes for Cucumber Downy Mildew Resistance Using GWAS. PLANTS 2020; 9:plants9121659. [PMID: 33260843 PMCID: PMC7768435 DOI: 10.3390/plants9121659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022]
Abstract
Downy mildew (DM) is one of the most serious diseases in cucumber. Multiple quantitative trait loci (QTLs) for DM resistance have been detected in a limited number of cucumber accessions. In this study we applied genome-wide association analysis (GWAS) to detected genetic loci for DM resistance in a core germplasm (CG) of cucumber lines that represent diverse origins and ecotypes. Phenotypic data on responses to DM infection were collected in four field trials across three years, 2014, 2015, and 2016. With the resequencing data of these CG lines, GWAS for DM resistance was performed and detected 18 loci that were distributed on all the seven cucumber chromosomes. Of these 18 loci, only six (dmG1.4, dmG4.1, dmG4.3, dmG5.2, dmG7.1, and dmG7.2) were detected in two experiments, and were considered as loci with a stable effect on DM resistance. Further, 16 out of the 18 loci colocalized with the QTLs that were reported in previous studies and two loci, dmG2.1 and dmG7.1, were novel ones identified only in this study. Based on the annotation of homologous genes in Arabidopsis and pairwise LD correlation analysis, several candidate genes were identified as potential causal genes underlying the stable and novel loci, including Csa1G575030 for dmG1.4, Csa2G060360 for dmG2.1, Csa4G064680 for dmG4.1, Csa5G606470 for dmG5.2, and Csa7G004020 for dmG7.1. This study shows that the CG germplasm is a very valuable resource carrying known and novel QTLs for DM resistance. The potential of using these CG lines for future allele-mining of candidate genes was discussed in the context of breeding cucumber with resistance to DM.
Collapse
Affiliation(s)
- Xiaoping Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (H.L.); (P.L.); (H.M.)
| | - Hongwei Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (H.L.); (P.L.); (H.M.)
| | - Panna Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (H.L.); (P.L.); (H.M.)
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (H.L.); (P.L.); (H.M.)
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Correspondence: (Y.B.); (X.G.); (S.Z.)
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (H.L.); (P.L.); (H.M.)
- Correspondence: (Y.B.); (X.G.); (S.Z.)
| | - Shengping Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (H.L.); (P.L.); (H.M.)
- Correspondence: (Y.B.); (X.G.); (S.Z.)
| |
Collapse
|
24
|
Pazarlar S, Cetinkaya N, Bor M, Kara RS. N-acyl homoserine lactone-mediated modulation of plant growth and defense against Pseudoperonospora cubensis in cucumber. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6638-6654. [PMID: 32822478 DOI: 10.1093/jxb/eraa384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
N-acyl-homoserine lactones (AHLs), a well-described group of quorum sensing molecules, may modulate plant defense responses and plant growth. However, there is limited knowledge regarding the defense responses of non-model crops to AHLs and the mechanism of action responsible for the modulation of defense responses against microbial pathogens. In the present study, long-chain N-3-oxo-tetradecanoyl-l-homoserine lactone (oxo-C14-HSL) was shown to have a distinct potential to prime cucumber for enhanced defense responses against the biotrophic oomycete pathogen Pseudoperonospora cubensis and the hemibiotrophic bacterium Pseudomonas syringae pv. lachrymans. We provide evidence that AHL-mediated enhanced defense against downy mildew disease is based on cell wall reinforcement by lignin and callose deposition, the activation of defense-related enzymes (peroxidase, β-1,3-glucanase, phenylalanine ammonia-lyase), and the accumulation of reactive oxygen species (hydrogen peroxide, superoxide) and phenolic compounds. Quantitative analysis of salicylic acid and jasmonic acid, and transcriptional analysis of several of genes associated with these phytohormones, revealed that defense priming with oxo-C14-HSL is commonly regulated by the salicylic acid signaling pathway. We also show that treatment with short- (N-hexanoyl-l-homoserine lactone) and medium-chain (N-3-oxo-decanoyl-l-homoserine lactone) AHLs promoted primary root elongation and modified root architecture, respectively, resulting in enhanced plant growth.
Collapse
Affiliation(s)
- Sercan Pazarlar
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - Nedim Cetinkaya
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - Melike Bor
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | - Recep Serdar Kara
- Department of Water Resources, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
25
|
Zhang P, Zhu Y, Zhou S. Comparative transcriptomic analyses of powdery mildew resistant and susceptible cultivated cucumber ( Cucumis sativus L.) varieties to identify the genes involved in the resistance to Sphaerotheca fuliginea infection. PeerJ 2020; 8:e8250. [PMID: 32337096 PMCID: PMC7169966 DOI: 10.7717/peerj.8250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/20/2019] [Indexed: 11/20/2022] Open
Abstract
Background Cucumber (Cucumis sativus L.) is a widely cultivated vegetable crop, and its yield and quality are greatly affected by various pathogen infections. Sphaerotheca fuliginea is a pathogen that causes powdery mildew (PM) disease in cucumber. However, the genes involved in the resistance to PM in cucumber are largely unknown. Methods In our study, a cucumber PM resistant cultivated variety “BK2” and a susceptible cultivated variety “H136” were used to screen and identify differential expressed genes (DEGs) under the S. fuliginea infection. Results There were only 97 DEGs between BK2 and H136 under the control condition, suggesting a similarity in the basal gene expression between the resistant and susceptible cultivated varieties. A large number of hormone signaling-related DEGs (9.2% of all DEGs) between resistant and susceptible varieties were identified, suggesting an involvement of hormone signaling pathways in the resistance to PM. In our study, the defense-related DEGs belonging to Class I were only induced in susceptible cultivated variety and the defense-related DEGs belonging to Class II were only induced in resistant cultivated variety. The peroxidase, NBS, glucanase and chitinase genes that were grouped into Class I and II might contribute to production of the resistance to PM in resistant cultivated variety. Furthermore, several members of Pathogen Response-2 family, such as glucanases and chitinases, were identified as DEGs, suggesting that cucumber might enhance the resistance to PM by accelerating the degradation of the pathogen cell walls. Our data allowed us to identify and analyze more potential genes related to PM resistance.
Collapse
Affiliation(s)
- Peng Zhang
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Yuqiang Zhu
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Shengjun Zhou
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| |
Collapse
|
26
|
Kim HC, Kim KH, Song K, Kim JY, Lee BM. Identification and Validation of Candidate Genes Conferring Resistance to Downy Mildew in Maize ( Zea mays L.). Genes (Basel) 2020; 11:E191. [PMID: 32053973 PMCID: PMC7074223 DOI: 10.3390/genes11020191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 11/16/2022] Open
Abstract
Downy mildew (DM) is a major disease of maize that causes significant yield loss in subtropical and tropical regions around the world. A variety of DM strains have been reported, and the resistance to them is polygenically controlled. In this study, we analyzed the quantitative trait loci (QTLs) involved in resistance to Peronosclerospora sorghi (sorghum DM), P. maydis (Java DM), and Sclerophthora macrospora (crazy top DM) using a recombinant inbred line (RIL) from a cross between B73 (susceptible) and Ki11 (resistant), and the candidate genes for P. sorghi, P. maydis, and S. macrospora resistance were discovered. The linkage map was constructed with 234 simple sequence repeat (SSR) and restriction fragment length polymorphism (RFLP) markers, which was identified seven QTLs (chromosomes 2, 3, 6, and 9) for three DM strains. The major QTL, located on chromosome 2, consists of 12.95% of phenotypic variation explained (PVE) and a logarithm of odds (LOD) score of 14.12. Sixty-two candidate genes for P. sorghi, P. maydis, and S. macrospora resistance were obtained between the flanked markers in the QTL regions. The relative expression level of candidate genes was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) using resistant (CML228, Ki3, and Ki11) and susceptible (B73 and CML270) genotypes. For the 62 candidate genes, 15 genes were upregulated in resistant genotypes. Among these, three (GRMZM2G028643, GRMZM2G128315, and GRMZM2G330907) and AC210003.2_FG004 were annotated as leucine-rich repeat (LRR) and peroxidase (POX) genes, respectively. These candidate genes in the QTL regions provide valuable information for further studies related to P. sorghi, P. maydis, and S. macrospora resistance.
Collapse
Affiliation(s)
- Hyo Chul Kim
- Department of Life Science, Dongguk University-Seoul, Seoul 04620, Korea; (H.C.K.); (K.-H.K.); (K.S.)
| | - Kyung-Hee Kim
- Department of Life Science, Dongguk University-Seoul, Seoul 04620, Korea; (H.C.K.); (K.-H.K.); (K.S.)
| | - Kitae Song
- Department of Life Science, Dongguk University-Seoul, Seoul 04620, Korea; (H.C.K.); (K.-H.K.); (K.S.)
| | - Jae Yoon Kim
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan 32439, Korea;
| | - Byung-Moo Lee
- Department of Life Science, Dongguk University-Seoul, Seoul 04620, Korea; (H.C.K.); (K.-H.K.); (K.S.)
| |
Collapse
|
27
|
Zhou X, Cui J, Cui H, Jiang N, Hou X, Liu S, Gao P, Luan Y, Meng J, Luan F. Identification of lncRNAs and their regulatory relationships with target genes and corresponding miRNAs in melon response to powdery mildew fungi. Gene 2020; 735:144403. [PMID: 32004668 DOI: 10.1016/j.gene.2020.144403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 01/24/2023]
Abstract
Melon (Cucumis melo L.), an economically beneficial crop widely cultivated around the world, is vulnerable to powdery mildew (PM). However, the studies on molecular mechanism of melon response to PM fungi is still limited. Long non coding RNAs (lncRNAs) have emerged as new regulators in plants response to biotic stresses. We predicted and identified the intricate regulatory roles of lncRNAs in melon response to PM fungi. A total of 539 lncRNAs were identified from PM-resistant (MR-1) and susceptible melon (Top Mark), in which 254 were significantly altered after PM fungi infection. Multiple target genes of lncRNAs were found to be involved in the hydrolysis of chitin, callose deposition and cell wall thickening, plant-pathogen interaction and plant hormone signal transduction pathway. Additionally, a total of 42 lncRNAs possess the various functions with microRNAs (miRNAs), including lncRNAs that are targeted by miRNAs and function as miRNA precursors or miRNA sponges. These findings provide a comprehensive view of potentially functional lncRNAs, corresponding target genes and related lncRNA-miRNA pairs, which will greatly increase our knowledge of the mechanism underlying susceptibility and resistance to PM in melon.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Haonan Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Ning Jiang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xinxin Hou
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Shi Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Peng Gao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
28
|
Rahman A, Góngora-Castillo E, Bowman MJ, Childs KL, Gent DH, Martin FN, Quesada-Ocampo LM. Genome Sequencing and Transcriptome Analysis of the Hop Downy Mildew Pathogen Pseudoperonospora humuli Reveal Species-Specific Genes for Molecular Detection. PHYTOPATHOLOGY 2019; 109:1354-1366. [PMID: 30939079 DOI: 10.1094/phyto-11-18-0431-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pseudoperonospora humuli is an obligate oomycete pathogen of hop (Humulus lupulus) that causes downy mildew, an important disease in most production regions in the Northern Hemisphere. The pathogen can cause a systemic infection in hop, overwinter in the root system, and infect propagation material. Substantial yield loss may occur owing to P. humuli infection of strobiles (seed cones), shoots, and cone-bearing branches. Fungicide application and cultural practices are the primary methods to manage hop downy mildew. However, effective, sustainable, and cost-effective management of downy mildew can be improved by developing early detection systems to inform on disease risk and timely fungicide application. However, no species-specific diagnostic assays or genomic resources are available for P. humuli. The genome of the P. humuli OR502AA isolate was partially sequenced using Illumina technology and assembled with ABySS. The assembly had a minimum scaffold length of 500 bp and an N50 (median scaffold length of the assembled genome) of 19.2 kbp. A total number of 18,656 genes were identified using MAKER standard gene predictions. Additionally, transcriptome assemblies were generated using RNA-seq and Trinity for seven additional P. humuli isolates. Bioinformatics analyses of next generation sequencing reads of P. humuli and P. cubensis (a closely related sister species) identified 242 candidate species-specific P. humuli genes that could be used as diagnostic molecular markers. These candidate genes were validated using polymerase chain reaction against a diverse collection of isolates from P. humuli, P. cubensis, and other oomycetes. Overall, four diagnostic markers were found to be uniquely present in P. humuli. These candidate markers identified through comparative genomics can be used for pathogen diagnostics in propagation material, such as rhizomes and vegetative cuttings, or adapted for biosurveillance of airborne sporangia, an important source of inoculum in hop downy mildew epidemics.
Collapse
Affiliation(s)
- A Rahman
- 1Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| | - E Góngora-Castillo
- 1Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
- 2Department of Biotechnology, Yucatan Center for Scientific Research, 97205 Mérida, Yucatán, México
| | - M J Bowman
- 3Department of Plant Biology, Michigan State University, East Lansing, MI 48823, U.S.A
| | - K L Childs
- 3Department of Plant Biology, Michigan State University, East Lansing, MI 48823, U.S.A
| | - D H Gent
- 4Forage Seed and Cereal Research Unit, U.S. Department of Agriculture-Agricultural Research Service and Oregon State University, Corvallis 97331, OR, U.S.A
| | - F N Martin
- 5Crop Improvement and Protection Research Station, U.S. Department of Agriculture-Agricultural Research Service, Salinas, CA 93905, U.S.A
| | - L M Quesada-Ocampo
- 1Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| |
Collapse
|
29
|
Zhang P, Zhu Y, Luo X, Zhou S. Comparative proteomic analysis provides insights into the complex responses to Pseudoperonospora cubensis infection of cucumber (Cucumis sativus L.). Sci Rep 2019; 9:9433. [PMID: 31263111 PMCID: PMC6603182 DOI: 10.1038/s41598-019-45111-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/28/2019] [Indexed: 02/04/2023] Open
Abstract
Cucumber (Cucumis sativus L.) is an important crop distributed in many countries. Downy mildew (DM) caused by the obligate oomycete Pseudoperonospora cubensis is especially destructive in cucumber production. So far, few studies on the changes in proteomes during the P. cubensis infection have been performed. In the present study, the proteomes of DM-resistant variety ‘ZJ’ and DM-susceptible variety ‘SDG’ under the P. cubensis infection were investigated. In total, 6400 peptides were identified, 5629 of which were quantified. KEGG analysis showed that a number of metabolic pathways were significantly altered under P. cubensis infection, such as terpenoid backbone biosynthesis, and selenocompound metabolism in ZJ, and starch and sucrose metabolism in SDG. For terpenoid backbone synthesis, 1-deoxy-D-xylulose-5-phosphate synthase, 1-deoxy-D-xylulose 5-phosphate reductoisomerase, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, and geranylgeranyl pyrophosphate synthase were significantly accumulated in ZJ rather than in SDG, suggesting that pathogen-induced terpenoids accumulation might play an important role in the resistance against P. cubensis infection. Furthermore, a number of pathogenesis-related proteins, such as endochitinases, peroxidases, PR proteins and heat shock proteins were identified as DAPs, suggesting that DM resistance was controlled by a complex network. Our data allowed us to identify and screen more potential proteins related to the DM resistance.
Collapse
Affiliation(s)
- Peng Zhang
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Yuqiang Zhu
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Xiujun Luo
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
| | - Shengjun Zhou
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China.
| |
Collapse
|
30
|
Wang X, Yu G, Zhao J, Cui N, Yu Y, Fan H. Functional Identification of Corynespora cassiicola-Responsive miRNAs and Their Targets in Cucumber. FRONTIERS IN PLANT SCIENCE 2019; 10:668. [PMID: 31214213 PMCID: PMC6554439 DOI: 10.3389/fpls.2019.00668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Target leaf spot (TLS), which is caused by Corynespora cassiicola (C. cassiicola), is one of the most important diseases in cucumber (Cucumis sativus L.). Our previous research identified several C. cassiicola-responsive miRNAs in cucumber by high-throughput sequencing, including two known miRNAs and two novel miRNAs. The target genes of these miRNAs were related to secondary metabolism. In this study, we verified the interaction between these miRNAs and target genes by histochemical staining and fluorescence quantitative assays of GUS. We transiently expressed the candidate miRNAs and target genes in cucumber cotyledons to investigate the resistance to C. cassiicola. Transient expression of miR164d, miR396b, Novel-miR1, and Novel-miR7 in cucumber resulted in decreased resistance to C. cassiicola, while transient expression of NAC (inhibited by miR164d), APE (inhibited by miR396b), 4CL (inhibited by Novel-miR1), and PAL (inhibited by Novel-miR7) led to enhanced resistance to C. cassiicola. In addition, overexpression of 4CL and PAL downregulated lignin synthesis, and overexpression of Novel-miR1 and Novel-miR7 also downregulated lignin synthesis, indicating that the regulation of 4CL and PAL by Novel-miR1 and Novel-miR7 could affect lignin content. The tobacco rattle virus (TRV) induced short tandem target mimic (STTM)-miRNA silencing vector was successfully constructed, and target miRNAs were successfully silenced. The identification of disease resistance and lignin content showed that silencing candidate miRNAs could improve cucumber resistance to C. cassiicola.
Collapse
Affiliation(s)
- Xiangyu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Guangchao Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Junyue Zhao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
31
|
Zhu YX, Jia JH, Yang L, Xia YC, Zhang HL, Jia JB, Zhou R, Nie PY, Yin JL, Ma DF, Liu LC. Identification of cucumber circular RNAs responsive to salt stress. BMC PLANT BIOLOGY 2019; 19:164. [PMID: 31029105 PMCID: PMC6486992 DOI: 10.1186/s12870-019-1712-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/11/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are 3'-5' head-to-tail covalently closed non-coding RNA that have been proved to play essential roles in many cellular and developmental processes. However, no information relate to cucumber circRNAs is available currently, especially under salt stress condition. RESULTS In this study, we sequenced circRNAs in cucumber and a total of 2787 were identified, with 1934 in root and 44 in leaf being differentially regulated under salt stress. Characteristics analysis of these circRNAs revealed following features: most of them are exon circRNAs (79.51%) and they prefer to arise from middle exon(s) of parent genes (2035/2516); moreover, most of circularization events (88.3%) use non-canonical-GT/AG splicing signals; last but not least, pairing-driven circularization is not the major way to generate cucumber circRNAs since very few circRNAs (18) contain sufficient flanking complementary sequences. Annotation and enrichment analysis of both parental genes and target mRNAs were launched to uncover the functions of differentially expressed circRNAs induced by salt stress. The results showed that circRNAs may be paly roles in salt stress response by mediating transcription, signal transcription, cell cycle, metabolism adaptation, and ion homeostasis related pathways. Moreover, circRNAs may function to regulate proline metabolisms through regulating associated biosynthesis and degradation genes. CONCLUSIONS The present study identified large number of cucumber circRNAs and function annotation revealed their possible biological roles in response to salt stress. Our findings will lay a solid foundation for further structure and function studies of cucumber circRNAs.
Collapse
Affiliation(s)
- Yong-Xing Zhu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Jian-Hua Jia
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Lei Yang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Yu-Chen Xia
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Hui-Li Zhang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Jin-Bu Jia
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Ran Zhou
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Pei-Yao Nie
- Biomarker Technologies, Beijing, 101300 China
| | - Jun-Liang Yin
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Dong-Fang Ma
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Le-Cheng Liu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| |
Collapse
|
32
|
Liang C, Liu H, Hao J, Li J, Luo L. Expression profiling and regulatory network of cucumber microRNAs and their putative target genes in response to cucumber green mottle mosaic virus infection. Arch Virol 2019; 164:1121-1134. [PMID: 30799510 PMCID: PMC6420491 DOI: 10.1007/s00705-019-04152-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/27/2018] [Indexed: 11/06/2022]
Abstract
Cucumber green mottle mosaic virus (CGMMV) is an important pathogen of cucumber (Cucumis sativus). The molecular mechanisms mediating host-pathogen interactions are likely to be strongly influenced by microRNAs (miRNAs), which are known to regulate gene expression during the disease cycle. This study focused on 14 miRNAs (miR159, miR169, miR172, miR838, miR854, miR5658, csa-miRn1-3p, csa-miRn2-3p, csa-miRn3-3p, csa-miRn4-5p, csa-miRn5-5p, csa-miRn6-3p, csa-miRn7-5p and csa-miRn8-3p) and their target genes. The data collected was used to construct a regulatory network of miRNAs and target genes associated with cucumber-CGMMV interactions, which identified 608 potential target genes associated with all of the miRNAs except csa-miRn7-5p. Five of the miRNAs (miR159, miR838, miR854, miR5658 and csa-miRn6-3p) were found to be mutually linked by target genes, while another eight (miR169, miR172, csa-miRn1-3p, csa-miRn2-3p, csa-miRn3-3p, csa-miRn4-5p, csa-miRn5-5p and csa-miRn8-3p) formed subnetworks that did not display any connectivity with other miRNAs or their target genes. Reverse transcription quantitative real-time PCR (RT-qPCR) was used to analyze the expression levels of the different miRNAs and their putative target genes in leaf, stem and root samples of cucumber over a 42-day period after inoculation with CGMMV. A positive correlation was found between some of the miRNAs and their respective target genes, although for most, the response varied greatly depending on the time point, indicating that additional factors are likely to be involved in the interaction between cucumber miRNAs and their target genes. Several miRNAs, including miR159 and csa-miRn6-3p, were linked to target genes that have been associated with plant responses to disease. A model linking miRNAs, their targets and downstream biological processes is proposed to indicate the roles of these miRNAs in the cucumber-CGMMV pathosystem.
Collapse
Affiliation(s)
- Chaoqiong Liang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193 People’s Republic of China
- Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Huawei Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Jianjun Hao
- School of Food and Agriculture, The University of Maine, Orono, ME 04469 USA
| | - Jianqiang Li
- Department of Plant Pathology, China Agricultural University, Beijing, 100193 People’s Republic of China
- Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Laixin Luo
- Department of Plant Pathology, China Agricultural University, Beijing, 100193 People’s Republic of China
- Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, 100193 People’s Republic of China
| |
Collapse
|
33
|
Transcriptome and miRNA analyses of the response to Corynespora cassiicola in cucumber. Sci Rep 2018; 8:7798. [PMID: 29773833 PMCID: PMC5958113 DOI: 10.1038/s41598-018-26080-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 05/04/2018] [Indexed: 01/11/2023] Open
Abstract
Cucumber (Cucumis sativus L.) target leaf spot (TLS), which is caused by the fungus Corynespora cassiicola (C. cassiicola), seriously endangers the production of cucumber. In this assay, we performed comprehensive sequencing of the transcriptome and microRNAs (miRNAs) of a resistant cucumber (Jinyou 38) during C. cassiicola inoculation using the Illumina NextSeq 500 platform. The possible genes related to the response to C. cassiicola were associated with plant hormones, transcription factors, primary metabolism, Ca2+ signaling pathways, secondary metabolism and defense genes. In total, 150 target genes of these differentially expressed miRNAs were predicted by the bioinformatic analysis. By analyzing the function of the target genes, several candidate miRNAs that may be related to the response to C. cassiicola stress were selected. We also predicted 7 novel miRNAs and predicted their target genes. Moreover, the expression patterns of the candidate genes and miRNAs were tested by quantitative real-time RT-PCR. According to the analysis, genes and miRNAs associated with secondary metabolism, particularly the phenylpropanoid biosynthesis pathway, may play a major role in the resistance to C. cassiicola stress in cucumber. These results offer a foundation for future studies exploring the mechanism and key genes of resistance to cucumber TLS.
Collapse
|
34
|
Mansfeld BN, Colle M, Kang Y, Jones AD, Grumet R. Transcriptomic and metabolomic analyses of cucumber fruit peels reveal a developmental increase in terpenoid glycosides associated with age-related resistance to Phytophthora capsici. HORTICULTURE RESEARCH 2017; 4:17022. [PMID: 28580151 PMCID: PMC5442961 DOI: 10.1038/hortres.2017.22] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 05/04/2023]
Abstract
The oomycete, Phytophthora capsici, infects cucumber (Cucumis sativus L.) fruit. An age-related resistance (ARR) to this pathogen was previously observed in fruit of cultivar 'Vlaspik' and shown to be associated with the peel. Young fruits are highly susceptible, but develop resistance at ~10-12 days post pollination (dpp). Peels from resistant (16 dpp) versus susceptible (8 dpp) age fruit are enriched with genes associated with defense, and methanolic extracts from resistant age peels inhibit pathogen growth. Here we compared developing fruits from 'Vlaspik' with those of 'Gy14', a line that does not exhibit ARR. Transcriptomic analysis of peels of the two lines at 8 and 16 dpp identified 80 genes that were developmentally upregulated in resistant 'Vlaspik' 16 dpp versus 8 dpp, but not in susceptible 'Gy14' at 16 dpp. A large number of these genes are annotated to be associated with defense and/or specialized metabolism, including four putative resistance (R) genes, and numerous genes involved in flavonoid and terpenoid synthesis and decoration. Untargeted metabolomic analysis was performed on extracts from 8 and 16 dpp 'Vlaspik' and 'Gy14' fruit peels using Ultra-Performance Liquid Chromatography and Quadrupole Time-of-Flight Mass Spectrometry. Multivariate analysis of the metabolomes identified 113 ions uniquely abundant in resistant 'Vlaspik' 16 dpp peel extracts. The most abundant compounds in this group had relative mass defects consistent with terpenoid glycosides. Two of the three most abundant ions were annotated as glycosylated nor-terpenoid esters. Together, these analyses reveal potential mechanisms by which ARR to P. capsici may be conferred.
Collapse
Affiliation(s)
- Ben N Mansfeld
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Marivi Colle
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Yunyan Kang
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Rebecca Grumet
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
35
|
Padder BA, Kamfwa K, Awale HE, Kelly JD. Transcriptome Profiling of the Phaseolus vulgaris - Colletotrichum lindemuthianum Pathosystem. PLoS One 2016; 11:e0165823. [PMID: 27829044 PMCID: PMC5102369 DOI: 10.1371/journal.pone.0165823] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/18/2016] [Indexed: 01/08/2023] Open
Abstract
Bean (Phaseolus vulgaris) anthracnose caused by the hemi-biotrophic pathogen Colletotrichum lindemuthianum is a major factor limiting production worldwide. Although sources of resistance have been identified and characterized, the early molecular events in the host-pathogen interface have not been investigated. In the current study, we conducted a comprehensive transcriptome analysis using Illumina sequencing of two near isogenic lines (NILs) differing for the presence of the Co-1 gene on chromosome Pv01 during a time course following infection with race 73 of C. lindemuthianum. From this, we identified 3,250 significantly differentially expressed genes (DEGs) within and between the NILs over the time course of infection. During the biotrophic phase the majority of DEGs were up regulated in the susceptible NIL, whereas more DEGs were up-regulated in the resistant NIL during the necrotrophic phase. Various defense related genes, such as those encoding PR proteins, peroxidases, lipoxygenases were up regulated in the resistant NIL. Conversely, genes encoding sugar transporters were up-regulated in the susceptible NIL during the later stages of infection. Additionally, numerous transcription factors (TFs) and candidate genes within the vicinity of the Co-1 locus were differentially expressed, suggesting a global reprogramming of gene expression in and around the Co-1 locus. Through this analysis, we reduced the previous number of candidate genes reported at the Co-1 locus from eight to three. These results suggest the dynamic nature of P. vulgaris-C. lindemuthianum interaction at the transcriptomic level and reflect the role of both pathogen and effector triggered immunity on changes in plant gene expression.
Collapse
Affiliation(s)
- Bilal A. Padder
- Dept. of Plant, Soil and Microbial Sciences, Michigan State Univ., 1066 Bogue St., East Lansing, MI, 48824, United States of America
| | - Kelvin Kamfwa
- Dept. of Plant, Soil and Microbial Sciences, Michigan State Univ., 1066 Bogue St., East Lansing, MI, 48824, United States of America
| | - Halima E. Awale
- Dept. of Plant, Soil and Microbial Sciences, Michigan State Univ., 1066 Bogue St., East Lansing, MI, 48824, United States of America
| | - James D. Kelly
- Dept. of Plant, Soil and Microbial Sciences, Michigan State Univ., 1066 Bogue St., East Lansing, MI, 48824, United States of America
| |
Collapse
|