1
|
Han Y, Sun T, Tang Y, Yang M, Gao W, Wang L, Sui C. Root rot in medicinal plants: a review of extensive research progress. FRONTIERS IN PLANT SCIENCE 2025; 15:1504370. [PMID: 39963361 PMCID: PMC11830675 DOI: 10.3389/fpls.2024.1504370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/16/2024] [Indexed: 02/20/2025]
Abstract
Root rot is a general term for soil-borne diseases that cause the necrosis and decay of underground plant parts. It has a wide host range and occurs in various types of plants, including crops, horticultural crops and medicinal plants. Due to the fact that medicinal plants generally have a long growth cycle and are primarily the root and rhizome herbs. This results in root rot causing more serious damage in medicinal plant cultivation than in other plants. Infected medicinal plants have shrivel or yellowed leaves, rotting rhizomes, and even death of the entire plant, resulting in a sharp decline in yield or even total crop failure, but also seriously reduce the commercial specifications and effective ingredient content of medicinal plants. The pathogens of root rot are complex and diverse, and Fusarium fungi have been reported as the most widespread pathogen. With the expansion of medicinal plant cultivation, root rot has occurred frequently in many medicinal plants such as Araliaceae, Fabaceae, Ranunculaceae, and Solanaceae and other medicinal plants. This article reviews recent research progress on root rot in medicinal plants, covering various aspects such as disease characteristics, occurrence, pathogen species, damage to medicinal plants, disease mechanisms, control measures, and genetic factors. The aim is to provide reference for better control of root rot of medicinal plants.
Collapse
Affiliation(s)
- Yu Han
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, China
- School of Pharmacy, Heilongjiang Jiamusi University, Jiamusi, China
| | - Tianqi Sun
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, China
| | - Yuman Tang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, China
| | - Min Yang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, China
| | - Weiwei Gao
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, China
| | - Lihong Wang
- School of Pharmacy, Heilongjiang Jiamusi University, Jiamusi, China
| | - Chun Sui
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, China
| |
Collapse
|
2
|
Lin F, Chhapekar SS, Vieira CC, Da Silva MP, Rojas A, Lee D, Liu N, Pardo EM, Lee YC, Dong Z, Pinheiro JB, Ploper LD, Rupe J, Chen P, Wang D, Nguyen HT. Breeding for disease resistance in soybean: a global perspective. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3773-3872. [PMID: 35790543 PMCID: PMC9729162 DOI: 10.1007/s00122-022-04101-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/11/2022] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.
Collapse
Affiliation(s)
- Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Sushil Satish Chhapekar
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Caio Canella Vieira
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Marcos Paulo Da Silva
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Alejandro Rojas
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Dongho Lee
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Nianxi Liu
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Esteban Mariano Pardo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - Yi-Chen Lee
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Zhimin Dong
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Jose Baldin Pinheiro
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ/USP), PO Box 9, Piracicaba, SP 13418-900 Brazil
| | - Leonardo Daniel Ploper
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - John Rupe
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Pengyin Chen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| |
Collapse
|
3
|
Turco S, Grottoli A, Drais MI, De Spirito C, Faino L, Reverberi M, Cristofori V, Mazzaglia A. Draft Genome Sequence of a New Fusarium Isolate Belonging to Fusarium tricinctum Species Complex Collected From Hazelnut in Central Italy. FRONTIERS IN PLANT SCIENCE 2021; 12:788584. [PMID: 34975974 PMCID: PMC8718101 DOI: 10.3389/fpls.2021.788584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/12/2021] [Indexed: 05/14/2023]
Abstract
In summer 2019, during a survey on the health status of a hazelnut orchard located in the Tuscia area (the province of Viterbo, Latium, Italy), nuts showing symptoms, such as brown-grayish spots at the bottom of the nuts progressing upward to the apex, and necrotic patches on the bracts and, sometimes, on the petioles, were found and collected for further studies. This syndrome is associated with the nut gray necrosis (NGN), whose main causal agent is Fusarium lateritium. Aiming to increase knowledge about this fungal pathogen, the whole-genome sequencing of a strain isolated from symptomatic hazelnut was performed using long Nanopore reads technology in combination with the higher precision of the Illumina reads, generating a high-quality genome assembly. The following phylogenetic and comparative genomics analysis suggested that this isolate is caused by the F. tricinctum species complex rather than F. lateritium one, as initially hypothesized. Thus, this study demonstrates that different Fusarium species can infect Corylus avellana producing the same symptomatology. In addition, it sheds light onto the genetic features of the pathogen in subject, clarifying facets about its biology, epidemiology, infection mechanisms, and host spectrum, with the future objective to develop specific and efficient control strategies.
Collapse
Affiliation(s)
- Silvia Turco
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Viterbo, Italy
| | - Alessandro Grottoli
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Difesa e Certificazione (CREA-DC), Rome, Italy
| | - Mounira Inas Drais
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Viterbo, Italy
| | - Carlo De Spirito
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Viterbo, Italy
| | - Luigi Faino
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Massimo Reverberi
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Valerio Cristofori
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Viterbo, Italy
| | - Angelo Mazzaglia
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Viterbo, Italy
| |
Collapse
|
4
|
Hudson O, Fulton JC, Dong AK, Dufault NS, Ali ME. Fusarium oxysporum f. sp. niveum Molecular Diagnostics Past, Present and Future. Int J Mol Sci 2021; 22:ijms22189735. [PMID: 34575897 PMCID: PMC8468614 DOI: 10.3390/ijms22189735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
Watermelon is an important commercial crop in the Southeastern United States and around the world. However, production is significantly limited by biotic factors including fusarium wilt caused by the hemibiotrophic fungus Fusarium oxysporum forma specialis niveum (Fon). Unfortunately, this disease has increased significantly in its presence over the last several decades as races have emerged which can overcome the available commercial resistance. Management strategies include rotation, improved crop resistance, and chemical control, but early and accurate diagnostics are required for appropriate management. Accurate diagnostics require molecular and genomic strategies due to the near identical genomic sequences of the various races. Bioassays exist for evaluating both the pathogenicity and virulence of an isolate but are limited by the time and resources required. Molecular strategies are still imperfect but greatly reduce the time to complete the diagnosis. This article presents the current state of the research surrounding races, both how races have been detected and diagnosed in the past and future prospects for improving the system of differentiation. Additionally, the available Fon genomes were analyzed using a strategy previously described in separate formae speciales avirulence gene association studies in Fusarium oxysporum races.
Collapse
Affiliation(s)
- Owen Hudson
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (O.H.); (A.K.D.)
| | - James C. Fulton
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA;
- Correspondence: (M.E.A.); (J.C.F.)
| | - Alexi K. Dong
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (O.H.); (A.K.D.)
| | - Nicholas S. Dufault
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA;
| | - Md Emran Ali
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (O.H.); (A.K.D.)
- Correspondence: (M.E.A.); (J.C.F.)
| |
Collapse
|
5
|
Abstract
Root rot diseases remain a major global threat to the productivity of agricultural crops. They are usually caused by more than one type of pathogen and are thus often referred to as a root rot complex. Fungal and oomycete species are the predominant participants in the complex, while bacteria and viruses are also known to cause root rot. Incorporating genetic resistance in cultivated crops is considered the most efficient and sustainable solution to counter root rot, however, resistance is often quantitative in nature. Several genetics studies in various crops have identified the quantitative trait loci associated with resistance. With access to whole genome sequences, the identity of the genes within the reported loci is becoming available. Several of the identified genes have been implicated in pathogen responses. However, it is becoming apparent that at the molecular level, each pathogen engages a unique set of proteins to either infest the host successfully or be defeated or contained in attempting so. In this review, a comprehensive summary of the genes and the potential mechanisms underlying resistance or susceptibility against the most investigated root rots of important agricultural crops is presented.
Collapse
|
6
|
Song Q, Yan L, Quigley C, Fickus E, Wei H, Chen L, Dong F, Araya S, Liu J, Hyten D, Pantalone V, Nelson RL. Soybean BARCSoySNP6K: An assay for soybean genetics and breeding research. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:800-811. [PMID: 32772442 PMCID: PMC7702105 DOI: 10.1111/tpj.14960] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/30/2020] [Indexed: 05/10/2023]
Abstract
The limited number of recombinant events in recombinant inbred lines suggests that for a biparental population with a limited number of recombinant inbred lines, it is unnecessary to genotype the lines with many markers. For genomic prediction and selection, previous studies have demonstrated that only 1000-2000 genome-wide common markers across all lines/accessions are needed to reach maximum efficiency of genomic prediction in populations. Evaluation of too many markers will not only increase the cost but also generate redundant information. We developed a soybean (Glycine max) assay, BARCSoySNP6K, containing 6000 markers, which were carefully chosen from the SoySNP50K assay based on their position in the soybean genome and haplotype block, polymorphism among accessions and genotyping quality. The assay includes 5000 single nucleotide polymorphisms (SNPs) from euchromatic and 1000 from heterochromatic regions. The percentage of SNPs with minor allele frequency >0.10 was 95% and 91% in the euchromatic and heterochromatic regions, respectively. Analysis of progeny from two large families genotyped with SoySNP50K versus BARCSoySNP6K showed that the position of the common markers and number of unique bins along linkage maps were consistent based on the SNPs genotyped with the two assays; however, the rate of redundant markers was dramatically reduced with the BARCSoySNP6K. The BARCSoySNP6K assay is proven as an excellent tool for detecting quantitative trait loci, genomic selection and assessing genetic relationships. The assay is commercialized by Illumina Inc. and being used by soybean breeders and geneticists and the list of SNPs in the assay is an ideal resource for SNP genotyping by targeted amplicon sequencing.
Collapse
Affiliation(s)
- Qijian Song
- Soybean Genomics and Improvement Lab.USDA‐ARSBeltsvilleMDUSA
| | - Long Yan
- Shijiazhuang Branch Center of National Center for Soybean Improvement/the Key Laboratory of Crop Genetics and BreedingInstitute of Cereal and Oil CropsHebei Academy of Agricultural and Forestry SciencesShijiazhuangChina
| | - Charles Quigley
- Soybean Genomics and Improvement Lab.USDA‐ARSBeltsvilleMDUSA
| | - Edward Fickus
- Soybean Genomics and Improvement Lab.USDA‐ARSBeltsvilleMDUSA
| | - He Wei
- Institute of Industrial CropsHenan Academy of Agricultural SciencesZhengzhouHenan ProvinceChina
| | - Linfeng Chen
- Soybean Genomics and Improvement Lab.USDA‐ARSBeltsvilleMDUSA
| | - Faming Dong
- Soybean Genomics and Improvement Lab.USDA‐ARSBeltsvilleMDUSA
| | - Susan Araya
- Soybean Genomics and Improvement Lab.USDA‐ARSBeltsvilleMDUSA
| | - Jinlong Liu
- Soybean Genomics and Improvement Lab.USDA‐ARSBeltsvilleMDUSA
| | - David Hyten
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | | | - Randall L. Nelson
- Soybean/Maize Germplasm, Pathology and Genetics Research Unit and Department of Crop SciencesUSDA‐ARSUniversity of IllinoisUrbanaILUSA
| |
Collapse
|