1
|
Tam NT, Nhan DK. Identification of Insertion/Deletion Markers for Photoperiod Sensitivity in Rice ( Oryza sativa L.). BIOLOGY 2024; 13:358. [PMID: 38785840 PMCID: PMC11117668 DOI: 10.3390/biology13050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The current study aims to identify candidate insertion/deletion (INDEL) markers associated with photoperiod sensitivity (PS) in rice landraces from the Vietnamese Mekong Delta. The whole-genome sequencing of 20 accessions was conducted to analyze INDEL variations between two photoperiod-sensitivity groups. A total of 2240 INDELs were identified between the two photoperiod-sensitivity groups. The selection criteria included INDELs with insertions or deletions of at least 20 base pairs within the improved rice group. Six INDELs were discovered on chromosomes 01 (5 INDELs) and 6 (1 INDEL), and two genes were identified: LOC_Os01g23780 and LOC_Os01g36500. The gene LOC_Os01g23780, which may be involved in rice flowering, was identified in a 20 bp deletion on chromosome 01 from the improved rice accession group. A marker was devised for this gene, indicating a polymorphism rate of 20%. Remarkably, 20% of the materials comprised improved rice accessions. This INDEL marker could explain 100% of the observed distinctions. Further analysis of the mapping population demonstrated that an INDEL marker associated with the MADS-box gene on chromosome 01 was linked to photoperiod sensitivity. The F1 population displayed two bands across all hybrid individuals. The marker demonstrates efficacy in distinguishing improved rice accessions within the indica accessions. This study underscores the potential applicability of the INDEL marker in breeding strategies.
Collapse
Affiliation(s)
- Nguyen Thanh Tam
- Mekong Delta Development Research Institute, Can Tho University, Campus 2, 3-2 Street, Can Tho 94115, Vietnam
| | - Dang Kieu Nhan
- Mekong Delta Development Research Institute, Can Tho University, Campus 2, 3-2 Street, Can Tho 94115, Vietnam
| |
Collapse
|
2
|
Nguyen TT, Dwiyanti MS, Sakaguchi S, Koide Y, Le DV, Watanabe T, Kishima Y. Identification of a Saltol-Independent Salinity Tolerance Polymorphism in Rice Mekong Delta Landraces and Characterization of a Promising Line, Doc Phung. RICE (NEW YORK, N.Y.) 2022; 15:65. [PMID: 36529786 PMCID: PMC9760585 DOI: 10.1186/s12284-022-00613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The Mekong Delta River in Vietnam is facing salinity intrusion caused by climate change and sea-level rise that is severely affecting rice cultivation. Here, we evaluated salinity responses of 97 rice accessions (79 landraces and 18 improved accessions) from the Mekong Delta population by adding 100 mM NaCl to the nutrient solution for up to 20 days. We observed a wide distribution in salinity tolerance/sensitivity, with two major peaks across the 97 accessions when using the standard evaluation system (SES) developed by the International Rice Research Institute. SES scores revealed strong negative correlations (ranging from - 0.68 to - 0.83) with other phenotypic indices, such as shoot elongation length, root elongation length, shoot dry weight, and root dry weight. Mineral concentrations of Na+ in roots, stems, and leaves and Ca2+ in roots and stems were positively correlated with SES scores, suggesting that tolerant accessions lower their cation exchange capacity in the root cell wall. The salinity tolerance of Mekong Delta accessions was independent from the previously described salinity tolerance-related locus Saltol, which encodes an HKT1-type transporter in the salinity-tolerant cultivars Nona Bokra and Pokkali. Indeed, genome-wide association studies using SES scores and shoot dry weight ratios of the 79 accessions as traits identified a single common peak located on chromosome 1. This SNP did not form a linkage group with other nearby SNPs and mapped to the 3' untranslated region of gene LOC_Os01g32830, over 6.5 Mb away from the Saltol locus. LOC_Os01g32830 encodes chloroplast glycolate/glycerate translocator 1 (OsPLGG1), which is responsible for photorespiration and growth. SES and shoot dry weight ratios differed significantly between the two possible haplotypes at the causal SNP. Through these analyses, we characterize Doc Phung, one of the most salinity-tolerant varieties in the Mekong Delta population and a promising new genetic resource.
Collapse
Affiliation(s)
- Tam Thanh Nguyen
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
- Mekong Delta Development Research Institute, Can Tho University, Campus 2 3-2 Street, Can Tho, Vietnam.
| | | | - Shuntaro Sakaguchi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yohei Koide
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Dung Viet Le
- College of Agriculture, Can Tho University, Campus 2 3-2 Street, Can Tho, Vietnam
| | - Toshihiro Watanabe
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| | - Yuji Kishima
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
3
|
Portella RO, Cordeiro EMG, Marques APS, Ming LC, Zucchi MI, Lima MP, Martins ER, Hantao LW, Sawaya ACHF, Semir J, Pinheiro JB, Marques MOM. Evidence of altitudinal gradient modifying genomic and chemical diversity in populations of Lychnophora pinaster Mart. PHYTOCHEMISTRY 2021; 192:112898. [PMID: 34492545 DOI: 10.1016/j.phytochem.2021.112898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/27/2021] [Accepted: 08/03/2021] [Indexed: 05/28/2023]
Abstract
Lychnophora pinaster Mart. (Asteraceae) is endemic to the Brazilian Cerrado. It is distributed along the altitudinal gradient of the mountainous ranges of the state of Minas Gerais. This study aimed to evaluate the influence of altitude on the genetic diversity of L. pinaster populations and the effects of altitude and climatic factors on essential oil chemical composition. Essential oils from L. pinaster populations from the north (North 01, North 02, and North 03, 700-859 m) and the Metropolitan region of Belo Horizonte (MhBH 01 and MrBH 02, 1366-1498 m) were analyzed. SNP markers from L. pinaster in these regions and Campos das Vertentes (CV 01, CV 02, and CV 03, 1055-1292 m) were also analyzed. The main compounds in essential oils were 14-hydroxy-α-humulene (North 01 and North 03), cedr-8(15)-en-9-α-ol (North 02), 14-acetoxy-α-humulene (MrBH 01), and 4-oxo-15-nor-eudesman-11-ene (MrBH 02). Hierarchical cluster and heatmap analyses showed that the North and MrBH populations included five different groups, indicating the chemical composition of essential oils is distinct in each population. Furthermore, principal component analysis showed that higher altitudes (1366 m and 1498 m) in the MrBH influence the chemical composition of essential oils, and climatic factors determine the chemical composition in North region. The genetic diversity showed that most alleles are in Hardy-Weinberg equilibrium and imply high genetic variation and genetic polymorphisms between populations. Furthermore, the results of Mantel tests (R = 0.3861517; p = 0.04709529; R = 0.9423121; p = 0.02739726) also showed that higher altitude (>1360 m) shapes the genetic diversity at the MrBH. The genetic structure showed that higher altitudes (>1360 m) contribute to the structure of the MrBH populations, but not to North and CV populations. Therefore, the altitudinal ranges of Minas Gerais mountainous ranges determine the higher genetic and chemical diversity of L. pinaster populations.
Collapse
Affiliation(s)
- Roberto O Portella
- Universidade de Taubaté, Av. Tiradentes, 500, Bom Conselho, CEP: 12030-180, Taubaté, SP, Brazil; Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho," Rua Prof. Dr. Antônio Celso Wagner Zanin, 250 - Distrito de Rubião Junior, CEP: 18618-689, Botucatu, SP, Brazil
| | - Erick M G Cordeiro
- Agência Paulista de Tecnologia dos Agronegócios, Polo Regional de Desenvolvimento Tecnológico do Centro Sul, Caixa Postal 28, CEP: 13400-970, Piracicaba, SP, Brazil
| | - Ana Paula S Marques
- Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho," Rua Prof. Dr. Antônio Celso Wagner Zanin, 250 - Distrito de Rubião Junior, CEP: 18618-689, Botucatu, SP, Brazil
| | - Lin C Ming
- Departamento de Horticultura, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista "Júlio de Mesquita Filho," Rua José Barbosa de Barros, 1780, CEP: 18610-307, Botucatu, SP, Brazil
| | - Maria I Zucchi
- Agência Paulista de Tecnologia dos Agronegócios, Polo Regional de Desenvolvimento Tecnológico do Centro Sul, Caixa Postal 28, CEP: 13400-970, Piracicaba, SP, Brazil
| | - Maria P Lima
- Coordenação de Inovação Tecnológica, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, Aleixo, CEP: 69011-970, Manaus, AM, Brazil
| | - Ernane R Martins
- Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais, Av. Universitária, 1000, Universitário, CEP: 39404-547, Montes Claros, MG, Brazil
| | - Leandro W Hantao
- Instituto de Química, Universidade Estadual de Campinas, Rua Monteiro Lobato, 270, CEP: 13083-862, Campinas, SP, Brazil
| | - Alexandra C H F Sawaya
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Rua Cândido Portinari, 200, Cidade Universitária, CEP: 13083-871, Campinas, SP, Brazil
| | - João Semir
- Departamento de Botânica, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, Barão Geraldo, CEP: 13083-862, Campinas, SP, Brazil
| | - José B Pinheiro
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, CEP: 13418-900, Piracicaba, SP, Brazil
| | - Marcia O M Marques
- Centro de Pesquisa de Recursos Genéticos Vegetais, Instituto Agronômico, Avenida Barão de Itapura, 1481, Botafogo, CEP: 13020-902, Campinas, SP, Brazil.
| |
Collapse
|
4
|
Maung TZ, Chu SH, Park YJ. Functional Haplotypes and Evolutionary Insight into the Granule-Bound Starch Synthase II ( GBSSII) Gene in Korean Rice Accessions (KRICE_CORE). Foods 2021; 10:2359. [PMID: 34681408 PMCID: PMC8535093 DOI: 10.3390/foods10102359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022] Open
Abstract
Granule-bound starch synthase 2 (GBSSII), a paralogous isoform of GBSSI, carries out amylose biosynthesis in rice. Unlike GBSSI, it mainly functions in transient organs, such as leaves. Despite many reports on the starch gene family, little is known about the genetics and genomics of GBSSII. Haplotype analysis was conducted to unveil genetic variations (SNPs and InDels) of GBSSII (OS07G0412100) and it was also performed to gain evolutionary insight through genetic diversity, population genetic structure, and phylogenetic analyses using the KRICE_CORE set (475 rice accessions). Thirty nonsynonymous SNPs (nsSNPs) were detected across the diverse GBSSII coding regions, representing 38 haplotypes, including 13 cultivated, 21 wild, and 4 mixed (a combination of cultivated and wild) varieties. The cultivated haplotypes (C_1-C_13) contained more nsSNPs across the GBSSII genomic region than the wild varieties. Nucleotide diversity analysis highlighted the higher diversity values of the cultivated varieties (weedy = 0.0102, landrace = 0.0093, and bred = 0.0066) than the wild group (0.0045). The cultivated varieties exhibited no reduction in diversity during domestication. Diversity reduction in the japonica and the wild groups was evidenced by the negative Tajima's D values under purifying selection, suggesting the domestication signatures of GBSSII; however, balancing selection was indicated by positive Tajima's D values in indica. Principal component analysis and population genetics analyses estimated the ambiguous evolutionary relationships among the cultivated and wild rice groups, indicating highly diverse structural features of the rice accessions within the GBSSII genomic region. FST analysis differentiated most of the classified populations in a range of greater FST values. Our findings provide evolutionary insights into GBSSII and, consequently, a molecular breeding program can be implemented for select desired traits using these diverse nonsynonymous (functional) alleles.
Collapse
Affiliation(s)
- Thant Zin Maung
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan 32439, Korea;
| | - Sang-Ho Chu
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan 32439, Korea;
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan 32439, Korea;
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan 32439, Korea;
| |
Collapse
|