1
|
Nam JW, Yeon J, Jeong J, Cho E, Kim HB, Hur Y, Lee KR, Yi H. Overexpression of Acyl-ACP Thioesterases, CpFatB4 and CpFatB5, Induce Distinct Gene Expression Reprogramming in Developing Seeds of Brassica napus. Int J Mol Sci 2019; 20:E3334. [PMID: 31284614 PMCID: PMC6651428 DOI: 10.3390/ijms20133334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/03/2022] Open
Abstract
We examined the substrate preference of Cuphea paucipetala acyl-ACP thioesterases, CpFatB4 and CpFatB5, and gene expression changes associated with the modification of lipid composition in the seed, using Brassica napus transgenic plants overexpressing CpFatB4 or CpFatB5 under the control of a seed-specific promoter. CpFatB4 seeds contained a higher level of total saturated fatty acid (FA) content, with 4.3 times increase in 16:0 palmitic acid, whereas CpFatB5 seeds showed approximately 3% accumulation of 10:0 and 12:0 medium-chain FAs, and a small increase in other saturated FAs, resulting in higher levels of total saturated FAs. RNA-Seq analysis using entire developing pods at 8, 25, and 45 days after flowering (DAF) showed up-regulation of genes for β-ketoacyl-acyl carrier protein synthase I/II, stearoyl-ACP desaturase, oleate desaturase, and linoleate desaturase, which could increase unsaturated FAs and possibly compensate for the increase in 16:0 palmitic acid at 45 DAF in CpFatB4 transgenic plants. In CpFatB5 transgenic plants, many putative chloroplast- or mitochondria-encoded genes were identified as differentially expressed. Our results report comprehensive gene expression changes induced by alterations of seed FA composition and reveal potential targets for further genetic modifications.
Collapse
Affiliation(s)
- Jeong-Won Nam
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Jinouk Yeon
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Jiseong Jeong
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Eunyoung Cho
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Ho Bang Kim
- Life Sciences Research Institute, Biomedic Co., Ltd., Bucheon 14548, Korea
| | - Yoonkang Hur
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea.
| | - Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Agricultural Science, RDA, Jeonju 55365, Korea.
| | - Hankuil Yi
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
2
|
Zhu M, Monroe JG, Suhail Y, Villiers F, Mullen J, Pater D, Hauser F, Jeon BW, Bader JS, Kwak JM, Schroeder JI, McKay JK, Assmann SM. Molecular and systems approaches towards drought-tolerant canola crops. THE NEW PHYTOLOGIST 2016; 210:1169-1189. [PMID: 26879345 DOI: 10.1111/nph.13866] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
1169 I. 1170 II. 1170 III. 1172 IV. 1176 V. 1181 VI. 1182 1183 References 1183 SUMMARY: Modern agriculture is facing multiple challenges including the necessity for a substantial increase in production to meet the needs of a burgeoning human population. Water shortage is a deleterious consequence of both population growth and climate change and is one of the most severe factors limiting global crop productivity. Brassica species, particularly canola varieties, are cultivated worldwide for edible oil, animal feed, and biodiesel, and suffer dramatic yield loss upon drought stress. The recent release of the Brassica napus genome supplies essential genetic information to facilitate identification of drought-related genes and provides new information for agricultural improvement in this species. Here we summarize current knowledge regarding drought responses of canola, including physiological and -omics effects of drought. We further discuss knowledge gained through translational biology based on discoveries in the closely related reference species Arabidopsis thaliana and through genetic strategies such as genome-wide association studies and analysis of natural variation. Knowledge of drought tolerance/resistance responses in canola together with research outcomes arising from new technologies and methodologies will inform novel strategies for improvement of drought tolerance and yield in this and other important crop species.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Biology Department, Pennsylvania State University, University Park, PA, 16802, USA
| | - J Grey Monroe
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, 80523, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Florent Villiers
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20740, USA
| | - Jack Mullen
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dianne Pater
- Division of Biological Sciences, Cell and Developmental Biology Section, Food and Fuel for the 21st Century Center, University of California San Diego, La Jolla, CA, 92093-016, USA
| | - Felix Hauser
- Division of Biological Sciences, Cell and Developmental Biology Section, Food and Fuel for the 21st Century Center, University of California San Diego, La Jolla, CA, 92093-016, USA
| | - Byeong Wook Jeon
- Biology Department, Pennsylvania State University, University Park, PA, 16802, USA
| | - Joel S Bader
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- School of Medicine, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - June M Kwak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20740, USA
- Center for Plant Aging Research, Institute for Basic Science, Department of New Biology, DGIST, Daegu, 42988, Korea
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, Food and Fuel for the 21st Century Center, University of California San Diego, La Jolla, CA, 92093-016, USA
| | - John K McKay
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, 80523, USA
| | - Sarah M Assmann
- Biology Department, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|