1
|
The Epstein-Barr Virus Glycoprotein BDLF2 Is Essential for Efficient Viral Spread in Stratified Epithelium. J Virol 2023; 97:e0152822. [PMID: 36688650 PMCID: PMC9972961 DOI: 10.1128/jvi.01528-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human pathogen that infects the majority of the adult population regardless of socioeconomic status or geographical location. EBV primarily infects B and epithelial cells and is associated with different cancers of these cell types, such as Burkitt lymphoma and nasopharyngeal carcinoma. While the life cycle of EBV in B cells is well understood, EBV infection within epithelium is not, largely due to the inability to model productive replication in epithelium in vitro. Organotypic cultures generated from primary human keratinocytes can model many aspects of EBV infection, including productive replication in the suprabasal layers. The EBV glycoprotein BDLF2 is a positional homologue of the murine gammaherpesvirus-68 protein gp48, which plays a role in intercellular spread of viral infection, though sequence homology is limited. To determine the role that BDLF2 plays in EBV infection, we generated a recombinant EBV in which the BDLF2 gene has been replaced with a puromycin resistance gene. The ΔBDLF2 recombinant virus infected both B cell and HEK293 cell lines and was able to immortalize primary B cells. However, the loss of BDLF2 resulted in substantially fewer infected cells in organotypic cultures compared to wild-type virus. While numerous clusters of infected cells representing a focus of infection are observed in wild-type-infected organotypic cultures, the majority of cells observed in the absence of BDLF2 were isolated cells, suggesting that the EBV glycoprotein BDLF2 plays a major role in intercellular viral spread in stratified epithelium. IMPORTANCE The ubiquitous herpesvirus Epstein-Barr virus (EBV) is associated with cancers of B lymphocytes and epithelial cells and is primarily transmitted in saliva. While several models exist for analyzing the life cycle of EBV in B lymphocytes, models of EBV infection in the epithelium have more recently been established. Using an organotypic culture model of epithelium that we previously determined accurately reflects EBV infection in situ, we have ascertained that the loss of the viral envelope protein BDLF2 had little effect on the EBV life cycle in B cells but severely restricted the number of infected cells in organotypic cultures. Loss of BDLF2 has a substantial impact on the size of infected areas, suggesting that BDLF2 plays a specific role in the spread of infection in stratified epithelium.
Collapse
|
2
|
de Dios-Figueroa GT, Aguilera-Marquez JDR, Camacho-Villegas TA, Lugo-Fabres PH. 3D Cell Culture Models in COVID-19 Times: A Review of 3D Technologies to Understand and Accelerate Therapeutic Drug Discovery. Biomedicines 2021; 9:602. [PMID: 34073231 PMCID: PMC8226796 DOI: 10.3390/biomedicines9060602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decades, emerging viruses have become a worldwide concern. The fast and extensive spread of the disease caused by SARS-CoV-2 (COVID-19) has impacted the economy and human activity worldwide, highlighting the human vulnerability to infectious diseases and the need to develop and optimize technologies to tackle them. The three-dimensional (3D) cell culture models emulate major tissue characteristics such as the in vivo virus-host interactions. These systems may help to generate a quick response to confront new viruses, establish a reliable evaluation of the pathophysiology, and contribute to therapeutic drug evaluation in pandemic situations such as the one that humanity is living through today. This review describes different types of 3D cell culture models, such as spheroids, scaffolds, organoids, and organs-on-a-chip, that are used in virus research, including those used to understand the new severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Guadalupe Tonantzin de Dios-Figueroa
- Department of Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas 800, Colinas de las Normal, Guadalajara, Jalisco 44270, Mexico; (G.T.d.D.-F.); (J.d.R.A.-M.)
| | - Janette del Rocío Aguilera-Marquez
- Department of Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas 800, Colinas de las Normal, Guadalajara, Jalisco 44270, Mexico; (G.T.d.D.-F.); (J.d.R.A.-M.)
| | - Tanya A. Camacho-Villegas
- CONACYT-Department of Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas 800, Colinas de las Normal, Guadalajara, Jalisco 44270, Mexico;
| | - Pavel H. Lugo-Fabres
- CONACYT-Department of Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas 800, Colinas de las Normal, Guadalajara, Jalisco 44270, Mexico;
| |
Collapse
|
3
|
Villa TG, Sánchez-Pérez Á, Sieiro C. Oral lichen planus: a microbiologist point of view. Int Microbiol 2021; 24:275-289. [PMID: 33751292 PMCID: PMC7943413 DOI: 10.1007/s10123-021-00168-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Oral lichen planus (OLP) is a chronic disease of uncertain etiology, although it is generally considered as an immune-mediated disease that affects the mucous membranes and even the skin and nails. Over the years, this disease was attributed to a variety of causes, including different types of microorganisms. This review analyzes the present state of the art of the disease, from a microbiological point of view, while considering whether or not the possibility of a microbial origin for the disease can be supported. From the evidence presented here, OLP should be considered an immunological disease, as it was initially proposed, as opposed to an illness of microbiological origin. The different microorganisms so far described as putative disease-causing agents do not fulfill Koch’s postulates; they are, actually, not the cause, but a result of the disease that provides the right circumstances for microbial colonization. This means that, at this stage, and unless new data becomes available, no microorganism can be envisaged as the causative agent of lichen planus.
Collapse
Affiliation(s)
- Tomás G. Villa
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 15706 Santiago de Compostela, EU Spain
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown, NSW 2006 Australia
| | - Carmen Sieiro
- Department of Functional Biology and Health Sciences, Microbiology Area, Faculty of Biology, University of Vigo, 36310 Vigo, Pontevedra, EU Spain
| |
Collapse
|
4
|
Koban R, Lam T, Schwarz F, Kloke L, Bürge S, Ellerbrok H, Neumann M. Simplified Bioprinting-Based 3D Cell Culture Infection Models for Virus Detection. Viruses 2020; 12:E1298. [PMID: 33198291 PMCID: PMC7698278 DOI: 10.3390/v12111298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Studies of virus-host interactions in vitro may be hindered by biological characteristics of conventional monolayer cell cultures that differ from in vivo infection. Three-dimensional (3D) cell cultures show more in vivo-like characteristics and may represent a promising alternative for characterisation of infections. In this study, we established easy-to-handle cell culture platforms based on bioprinted 3D matrices for virus detection and characterisation. Different cell types were cultivated on these matrices and characterised for tissue-like growth characteristics regarding cell morphology and polarisation. Cells developed an in vivo-like morphology and long-term cultivation was possible on the matrices. Cell cultures were infected with viruses which differed in host range, tissue tropism, cytopathogenicity, and genomic organisation and virus morphology. Infections were characterised on molecular and imaging level. The transparent matrix substance allowed easy optical monitoring of cells and infection even via live-cell microscopy. In conclusion, we established an enhanced, standardised, easy-to-handle bioprinted 3D-cell culture system. The infection models are suitable for sensitive monitoring and characterisation of virus-host interactions and replication of different viruses under physiologically relevant conditions. Individual cell culture models can further be combined to a multicellular array. This generates a potent diagnostic tool for propagation and characterisation of viruses from diagnostic samples.
Collapse
Affiliation(s)
- Robert Koban
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (R.K.); (F.S.); (M.N.)
| | - Tobias Lam
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (T.L.); (L.K.)
| | - Franziska Schwarz
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (R.K.); (F.S.); (M.N.)
| | - Lutz Kloke
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (T.L.); (L.K.)
| | - Silvio Bürge
- Advanced Light and Electron Microscopy, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany;
| | - Heinz Ellerbrok
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (R.K.); (F.S.); (M.N.)
| | - Markus Neumann
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (R.K.); (F.S.); (M.N.)
| |
Collapse
|
5
|
Koban R, Neumann M, Nelson PP, Ellerbrok H. Differential Efficacy of Novel Antiviral Substances in 3D and Monolayer Cell Culture. Viruses 2020; 12:v12111294. [PMID: 33198108 PMCID: PMC7697553 DOI: 10.3390/v12111294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Repurposing of approved drugs that target host functions also important for virus replication promises to overcome the shortage of antiviral therapeutics. Mostly, virus biology including initial screening of antivirals is studied in conventional monolayer cells. The biology of these cells differs considerably from infected tissues. 3D culture models with characteristics of human tissues may reflect more realistically the in vivo events during infection. We screened first, second, and third generation epidermal growth factor receptor (EGFR)-inhibitors with different modes of action and the EGFR-blocking monoclonal antibody cetuximab in a 3D cell culture infection model with primary human keratinocytes and cowpox virus (CPXV) for antiviral activity. Antiviral activity of erlotinib and osimertinib was nearly unaffected by the cultivation method similar to the virus-directed antivirals tecovirimat and cidofovir. In contrast, the host-directed inhibitors afatinib and cetuximab were approx. 100-fold more efficient against CPXV in the 3D infection model, similar to previous results with gefitinib. In summary, inhibition of EGFR-signaling downregulates virus replication comparable to established virus-directed antivirals. However, in contrast to virus-directed inhibitors, in vitro efficacy of host-directed antivirals might be seriously affected by cell cultivation. Results obtained for afatinib and cetuximab suggest that screening of such drugs in standard monolayer culture might underestimate their potential as antivirals.
Collapse
Affiliation(s)
- Robert Koban
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (R.K.); (M.N.); (P.P.N.)
| | - Markus Neumann
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (R.K.); (M.N.); (P.P.N.)
| | - Philipp P. Nelson
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (R.K.); (M.N.); (P.P.N.)
| | - Heinz Ellerbrok
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (R.K.); (M.N.); (P.P.N.)
- Public Health Laboratory Support, Centre for International Health Protection, Nordufer 20, 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-30-18754-2258
| |
Collapse
|
6
|
Anti-Retroviral Protease Inhibitors Regulate Human Papillomavirus 16 Infection of Primary Oral and Cervical Epithelium. Cancers (Basel) 2020; 12:cancers12092664. [PMID: 32961945 PMCID: PMC7563395 DOI: 10.3390/cancers12092664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary In 2016, globally, 36.7 million people were living with Human Immunodeficiency Virus (HIV), of which 53% had access to anti-retroviral therapy (ART) (UNAIDS 2017 Global HIV Statistics). The risk of Human Papillomavirus (HPV) associated oropharyngeal, cervical and anal cancers are higher among patients infected with HIV in the era of ART. Generally, HPV infections are self-limiting, however, persistent HPV infection is a major risk to carcinogenic progression. Long intervals between initial infection and cancer development imply cofactors are involved. Co-factors that increase infectivity, viral load, and persistence increase risk of cancer. We propose that the ART Protease Inhibitors (PI) class of drugs are novel co-factors that regulate HPV infection in HIV-infected patients. We developed a model system of organotypic epithelium to study impact of PI treatment on HPV16 infection. Our model could be used to study mechanisms of HPV infection in context of ART, and for developing drugs that minimize HPV infections. Abstract Epidemiology studies suggest that Human Immunodeficiency Virus (HIV)-infected patients on highly active anti-retroviral therapy (HAART) may be at increased risk of acquiring opportunistic Human Papillomavirus (HPV) infections and developing oral and cervical cancers. Effective HAART usage has improved survival but increased the risk for HPV-associated cancers. In this manuscript, we report that Protease Inhibitors (PI) treatment of three-dimensional tissues derived from primary human gingiva and cervical epithelial cells compromised cell-cell junctions within stratified epithelium and enhanced paracellular permeability of HPV16 to the basal layer for infection, culminating in de novo biosynthesis of progeny HPV16 as determined using 5-Bromo-2′-deoxyuridine (BrdU) labeling of newly synthesized genomes. We propose that HAART/PI represent a novel class of co-factors that modulate HPV infection of the target epithelium. Our in vitro tissue culture model is an important tool to study the mechanistic role of anti-retroviral drugs in promoting HPV infections in HAART-naïve primary epithelium. Changes in subsequent viral load could promote new infections, create HPV reservoirs that increase virus persistence, and increase the risk of oral and cervical cancer development in HIV-positive patients undergoing long-term HAART treatment.
Collapse
|
7
|
|
8
|
Temple RM, Meyers C, Sample CE. Generation and Infection of Organotypic Cultures with Epstein-Barr Virus. Methods Mol Biol 2017; 1532:65-78. [PMID: 27873267 DOI: 10.1007/978-1-4939-6655-4_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
While numerous model systems are available to study EBV latency in B cells and have contributed greatly to our understanding of the role of these cells in the viral life cycle, models to study the EBV life cycle in epithelial cells in vitro are lacking. Epithelial cells are poorly infected in vitro, and EBV-infected cell lines have not been successfully obtained from epithelial tumors. Recently, we have demonstrated that organotypic cultures of oral keratinocytes can be used as a model to study EBV infection in the epithelial tissue. These "raft" cultures generate a stratified tissue resembling the epithelium seen in vivo with a proliferating basal layer and differentiating suprabasal layers. Here, we describe generation of EBV-infected raft cultures established from primary oral mucosal epithelial cells, which exhibit high levels of productive replication induced by differentiation, as well as methods to analyze EBV infection.
Collapse
Affiliation(s)
- Rachel M Temple
- Department of Microbiology and Immunology, H107, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Craig Meyers
- Department of Microbiology and Immunology, H107, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.,The Penn State Hershey Cancer Institute, Hershey, PA, 17033, USA
| | - Clare E Sample
- Department of Microbiology and Immunology, H107, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA. .,The Penn State Hershey Cancer Institute, Hershey, PA, 17033, USA.
| |
Collapse
|
9
|
Three-dimensional cell culture models for investigating human viruses. Virol Sin 2016; 31:363-379. [PMID: 27822716 PMCID: PMC7090760 DOI: 10.1007/s12250-016-3889-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover, these models bridge the gap between traditional two-dimensional (2D) monolayer cultures and animal models. 3D culture systems have significantly advanced basic cell science and tissue engineering, especially in the fields of cell biology and physiology, stem cell research, regenerative medicine, cancer research, drug discovery, and gene and protein expression studies. In addition, 3D models can provide unique insight into bacteriology, virology, parasitology and host-pathogen interactions. This review summarizes and analyzes recent progress in human virological research with 3D cell culture models. We discuss viral growth, replication, proliferation, infection, virus-host interactions and antiviral drugs in 3D culture models.
Collapse
|
10
|
Efficient replication of Epstein-Barr virus in stratified epithelium in vitro. Proc Natl Acad Sci U S A 2014; 111:16544-9. [PMID: 25313069 DOI: 10.1073/pnas.1400818111] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus is a ubiquitous human herpesvirus associated with epithelial and lymphoid tumors. EBV is transmitted between human hosts in saliva and must cross the oral mucosal epithelium before infecting B lymphocytes, where it establishes a life-long infection. The latter process is well understood because it can be studied in vitro, but our knowledge of infection of epithelial cells has been limited by the inability to infect epithelial cells readily in vitro or to generate cell lines from EBV-infected epithelial tumors. Because epithelium exists as a stratified tissue in vivo, organotypic cultures may serve as a better model of EBV in epithelium than monolayer cultures. Here, we demonstrate that EBV is able to infect organotypic cultures of epithelial cells to establish a predominantly productive infection in the suprabasal layers of stratified epithelium, similar to that seen with Kaposi's-associated herpesvirus. These cells did express latency-associated proteins in addition to productive-cycle proteins, but a population of cells that exclusively expressed latency-associated viral proteins could not be detected; however, an inability to infect the basal layer would be unlike other herpesviruses examined in organotypic cultures. Furthermore, infection did not induce cellular proliferation, as it does in B cells, but instead resulted in cytopathic effects more commonly associated with productive viral replication. These data suggest that infection of epithelial cells is an integral part of viral spread, which typically does not result in the immortalization or enhanced growth of infected epithelial cells but rather in efficient production of virus.
Collapse
|
11
|
Rivero A, Pérez-Camacho I. Does lopinavir/ritonavir alter the primary gingival epithelium? Expert Rev Anti Infect Ther 2014; 8:1345-9. [DOI: 10.1586/eri.10.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Mitchell D, Israr M, Alam S, Dinello D, Kishel J, Jia R, Meyers C. HIV nucleoside reverse transcriptase inhibitors efavirenz and tenofovir change the growth and differentiation of primary gingival epithelium. HIV Med 2013; 15:196-202. [PMID: 24580719 DOI: 10.1111/hiv.12100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2013] [Indexed: 11/30/2022]
Abstract
OBJECTIVES An increasing number of HIV-infected patients are combating HIV infection through the use of antiretroviral drugs, including reverse transcriptase inhibitors. Oral complications associated with these drugs are becoming a mounting cause for concern. In our previous studies, both protease inhibitors and reverse transcriptase inhibitors have been shown to change the proliferation and differentiation state of oral tissues. This study examined the effect of a nonnucleoside and a nucleoside reverse transcriptase inhibitor on the growth and differentiation of gingival epithelium. METHODS Organotypic (raft) cultures of gingival keratinocytes were treated with a range of efavirenz and tenofovir concentrations. Raft cultures were immunohistochemically analysed to determine the effect of these drugs on the expression of key differentiation and proliferation markers, including cytokeratins and proliferating cell nuclear antigen (PCNA). RESULTS These drugs dramatically changed the proliferation and differentiation state of gingival tissues when they were present throughout the growth period of the raft tissue as well as when drugs were added to established tissue on day 8. Treatment with the drugs increased the expression of cytokeratin 10 and PCNA and, conversely, decreased expression of cytokeratin 5, involucrin and cytokeratin 6. Gingival tissue exhibited increased proliferation in the suprabasal layers, increased fragility, and an inability to heal itself. CONCLUSIONS Our results suggest that efavirenz and tenofovir treatments, even when applied in low concentrations for short periods of time, deregulated the cell cycle/proliferation and differentiation pathways, resulting in abnormal epithelial repair and proliferation. Our system could be developed as a potential model for studying the effects of HIV and highly active antiretroviral therapy (HAART) in vitro.
Collapse
Affiliation(s)
- D Mitchell
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Mitchell D, Israr M, Alam S, Kishel J, Dinello D, Meyers C. Effect of the HIV nucleoside reverse transcriptase inhibitor zidovudine on the growth and differentiation of primary gingival epithelium. HIV Med 2012; 13:276-90. [PMID: 22276657 DOI: 10.1111/j.1468-1293.2011.00973.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2011] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Oral complications associated with HIV infection and with the antiretroviral drugs used to treat it are of increasing concern in HIV-infected patients. Protease inhibitors have been shown to change the proliferation and differentiation state of oral tissues but the effect of nucleoside reverse transcriptase inhibitors is currently unknown. This study examined the effect of zidovudine on the growth and differentiation of the gingival epithelium. METHODS Gingival keratinocyte organotypic (raft) cultures were established. The raft cultures were treated with a range of zidovudine concentrations. Haematoxylin and eosin staining was performed to examine the effect of zidovudine on gingival epithelium growth and stratification. Raft cultures were immunohistochemically analysed to determine the effect of this drug on the expression of key differentiation and proliferation markers, including cytokeratins and proliferating cell nuclear antigen (PCNA). RESULTS Zidovudine dramatically changed the proliferation and differentiation state of gingival tissues both when it was present throughout the growth period of the tissue and when it was added to established tissue at day 8. Zidovudine treatment increased the expression of cytokeratin 10, PCNA and cyclin A. Conversely, cytokeratin 5, involucrin and cytokeratin 6 expression was decreased. The tissue exhibited characteristics of increased proliferation in the suprabasal layers as well as an increased fragility and an inability to heal itself. CONCLUSIONS Zidovudine treatment, even when applied at low concentrations for short periods of time, deregulated the cell cycle/proliferation and differentiation pathways, resulting in abnormal epithelial repair and proliferation. Our system could potentially be developed as a model for studying the effects of HIV and highly active antiretroviral therapy in vitro.
Collapse
Affiliation(s)
- D Mitchell
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
14
|
Israr M, Mitchell D, Alam S, Dinello D, Kishel JJ, Meyers C. The HIV protease inhibitor lopinavir/ritonavir (Kaletra) alters the growth, differentiation and proliferation of primary gingival epithelium. HIV Med 2010; 12:145-56. [PMID: 20722750 DOI: 10.1111/j.1468-1293.2010.00863.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study was designed to evaluate the effects of the HIV protease inhibitor lopinavir/ritonavir on gingival epithelium growth, integrity and differentiation. METHODS Organotypic (raft) cultures of gingival keratinocytes were established and treated with a range of lopinavir/ritonavir concentrations. To examine the effect of lopinavir/ritonavir on gingival epithelium growth and stratification, haematoxylin and eosin staining was performed. To investigate the effect of this drug on tissue integrity, transmission electron microscopy (TEM) was performed on untreated and drug-treated tissues. Further, immunohistochemical analysis of raft cultures was performed to assess the effect of lopinavir/ritonavir on the expression of key differentiation and proliferation markers including cytokeratins, proliferating cell nuclear antigen (PCNA) and cyclin A. RESULTS Lopinavir/ritonavir treatments drastically inhibited the growth of gingival epithelium when the drug was present throughout the growth period of the tissue. When the drug was added on day 8 of tissue growth, lopinavir/ritonavir treatments compromised tissue integrity over time and altered the proliferation and differentiation of gingival keratinocytes. Expression of cytokeratins 5, 14, 10 and 6, PCNA and cyclin A was induced, and their expression patterns were also altered over time in treated rafts. CONCLUSIONS The findings of our studies suggest that lopinavir/ritonavir treatments compromised tissue integrity over time and deregulated the cell cycle/proliferation and differentiation pathways, resulting in abnormal epithelial repair and proliferation. Our study provides a model of potential utility in studying the effects of antiretroviral drugs in vitro.
Collapse
Affiliation(s)
- M Israr
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
15
|
Downregulation of Cdc2/CDK1 kinase activity induces the synthesis of noninfectious human papillomavirus type 31b virions in organotypic tissues exposed to benzo[a]pyrene. J Virol 2010; 84:4630-45. [PMID: 20181698 DOI: 10.1128/jvi.02431-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epidemiological studies suggest that human papillomavirus (HPV)-infected women who smoke face an increased risk for developing cervical cancer. We have previously reported that exposure of HPV-positive organotypic cultures to benzo[a]pyrene (BaP), a major carcinogen in cigarette smoke, resulted in enhanced viral titers. Since BaP is known to deregulate multiple pathways of cellular proliferation, enhanced virion synthesis could result from carcinogen/host cell interaction. Here, we report that BaP-mediated upregulation of virus synthesis is correlated to an altered balance between cell cycle-specific cyclin-dependent kinase (CDK) activity profile compared with controls. Specifically, BaP treatment increased accumulation of hyperphosphorylated retinoblastoma protein (pRb) which coincided with increased cdc2/CDK1 kinase activity, but which further conflicted with the simultaneous upregulation of CDK inhibitors p16(INK4) and p27(KIP1), which normally mediate pRb hypophosphorylation. In contrast, p21(WAF1) and p53 levels remained unchanged. Under these conditions, CDK6 and CDK2 kinase activities were decreased, whereas CDK4 kinase activity remained unchanged. The addition of purvalanol A, a specific inhibitor of CDK1 kinase, to BaP-treated cultures, resulted in the production of noninfectious HPV type 31b (HPV31b) particles. In contrast, infectivity of control virus was unaffected by purvalanol A treatment. BaP targeting of CDK1 occurred independently of HPV status, since BaP treatment also increased CDK1 activity in tissues derived from primary keratinocytes. Our data indicate that HPV31b virions synthesized in the presence of BaP were dependent on BaP-mediated alteration in CDK1 kinase activity for maintaining their infectivity.
Collapse
|