1
|
Arzani S, Farzipour S, Talebpour Amiri F, Hosseinimehr SJ. Gliclazide protects ionizing radiation-induced intestinal injury in mice by inhibiting oxidative stress and caspase-3. BIOTECHNOLOGIA 2024; 105:367-376. [PMID: 39844874 PMCID: PMC11748219 DOI: 10.5114/bta.2024.145257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/26/2024] [Accepted: 09/11/2024] [Indexed: 01/24/2025] Open
Abstract
Gliclazide (GLZ), an oral antihyperglycemic medication, has additional beneficial effects, such as anti-inflammatory and antioxidant properties, besides lowering blood glucose levels. In this study, the radio-protective effect of GLZ was evaluated against ionizing radiation (IR)-induced intestinal injury in mice. Eight groups of mice were randomized as follows: control, GLZ (5, 10, and 25 mg/kg), IR (6 Gy), and IR + GLZ (at 5, 10, and 25 mg/kg). GLZ was administered to the mice for eight consecutive days, after which they were exposed to X-rays at a single dose of 6 Gy. After irradiation, biochemical parameters, immunohistochemical, and histological examinations were conducted on the ileum of the mice. IR exposure increased the levels of malondialdehyde and protein carbonyl, while glutathione levels, as oxidative stress biomarkers, decreased. Apoptosis in ileum tissues was also assessed. Furthermore, histopathological changes were observed in the irradiated mice. GLZ treatment significantly mitigated these changes. The administration of GLZ resulted in a marked decrease in caspase-3 immunoreactivity in the ileum of irradiated mice. This preclinical study exhibited that GLZ has a radioprotective effect against intestinal injury by inhibiting oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Soroush Arzani
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Soghra Farzipour
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Mohammadgholi M, Hosseinimehr SJ. Crosstalk between Oxidative Stress and Inflammation Induced by Ionizing Radiation in Healthy and Cancerous Cells. Curr Med Chem 2024; 31:2751-2769. [PMID: 37026495 DOI: 10.2174/0929867330666230407104208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 04/08/2023]
Abstract
Radiotherapy (RT) is a unique modality in cancer treatment with no replacement in many cases and uses a tumoricidal dose of various ionizing radiation (IR) types to kill cancer cells. It causes oxidative stress through reactive oxygen species (ROS) production or the destruction of antioxidant systems. On the other hand, RT stimulates the immune system both directly and indirectly by releasing danger signals from stress-exposed and dying cells. Oxidative stress and inflammation are two reciprocal and closely related mechanisms, one induced and involved by the other. ROS regulates the intracellular signal transduction pathways, which participate in the activation and expression of pro-inflammatory genes. Reciprocally, inflammatory cells release ROS and immune system mediators during the inflammation process, which drive the induction of oxidative stress. Oxidative stress or inflammation-induced damages can result in cell death (CD) or survival mechanisms that may be destructive for normal cells or beneficial for cancerous cells. The present study has focused on the radioprotection of those agents with binary effects of antioxidant and anti-inflammatory mechanisms IR-induced CD.
Collapse
Affiliation(s)
- Mohsen Mohammadgholi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
Shewaiter MA, Selim AA, Rashed HM, Moustafa YM, Gad S. Niosomal formulation of mefenamic acid for enhanced cancer targeting; preparation, characterization and biodistribution study using radiolabeling technique. J Cancer Res Clin Oncol 2023; 149:18065-18080. [PMID: 37982828 PMCID: PMC10725351 DOI: 10.1007/s00432-023-05482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/18/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND This work aimed to prepare niosomal formulations of an anticancer agent [mefenamic acid (MEF)] to enhance its cancer targeting. 131I was utilized as a radiolabeling isotope to study the radio-kinetics of MEF niosomes. METHODS niosomal formulations were prepared by the ether injection method and assessed for entrapment efficiency (EE%), zeta potential (ZP), polydispersity index (PDI) and particle size (PS). MEF was labeled with 131I by direct electrophilic substitution reaction through optimization of radiolabeling-related parameters. In the radio-kinetic study, the optimal 131I-MEF niosomal formula was administered intravenously (I.V.) to solid tumor-bearing mice and compared to I.V. 131I-MEF solution as a control. RESULTS the average PS and ZP values of the optimal formulation were 247.23 ± 2.32 nm and - 28.3 ± 1.21, respectively. The highest 131I-MEF labeling yield was 98.7 ± 0.8%. The biodistribution study revealed that the highest tumor uptake of 131I-MEF niosomal formula and 131I-MEF solution at 60 min post-injection were 2.73 and 1.94% ID/g, respectively. CONCLUSION MEF-loaded niosomes could be a hopeful candidate in cancer treatment due to their potent tumor uptake. Such high targeting was attributed to passive targeting of the nanosized niosomes and confirmed by radiokinetic evaluation.
Collapse
Affiliation(s)
- Mona A Shewaiter
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Kantara, Egypt
| | - Adli A Selim
- Labeled Compounds Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Hassan M Rashed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Kantara, Egypt.
- Labeled Compounds Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Yasser M Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
4
|
Maghsoudi H, Sheikhnia F, Sitarek P, Hajmalek N, Hassani S, Rashidi V, Khodagholi S, Mir SM, Malekinejad F, Kheradmand F, Ghorbanpour M, Ghasemzadeh N, Kowalczyk T. The Potential Preventive and Therapeutic Roles of NSAIDs in Prostate Cancer. Cancers (Basel) 2023; 15:5435. [PMID: 38001694 PMCID: PMC10670652 DOI: 10.3390/cancers15225435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Prostate cancer (PC) is the second most common type of cancer and the leading cause of death among men worldwide. Preventing the progression of cancer after treatments such as radical prostatectomy, radiation therapy, and hormone therapy is a major concern faced by prostate cancer patients. Inflammation, which can be caused by various factors such as infections, the microbiome, obesity and a high-fat diet, is considered to be the main cause of PC. Inflammatory cells are believed to play a crucial role in tumor progression. Therefore, nonsteroidal anti-inflammatory drugs along with their effects on the treatment of inflammation-related diseases, can prevent cancer and its progression by suppressing various inflammatory pathways. Recent evidence shows that nonsteroidal anti-inflammatory drugs are effective in the prevention and treatment of prostate cancer. In this review, we discuss the different pathways through which these drugs exert their potential preventive and therapeutic effects on prostate cancer.
Collapse
Affiliation(s)
- Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (H.M.); (F.S.); (V.R.); (F.M.)
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
| | - Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (H.M.); (F.S.); (V.R.); (F.M.)
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, 90-151 Lodz, Poland
| | - Nooshin Hajmalek
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol 47176-47754, Iran;
| | - Sepideh Hassani
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
| | - Vahid Rashidi
- Student Research Committee, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (H.M.); (F.S.); (V.R.); (F.M.)
| | - Sadaf Khodagholi
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada;
| | - Seyed Mostafa Mir
- Metabolic Disorders Research Center, Department of Biochemistry and Biophysics, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan 49189-36316, Iran;
| | - Faezeh Malekinejad
- Student Research Committee, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (H.M.); (F.S.); (V.R.); (F.M.)
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
| | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57147-83734, Iran
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57147-83734, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-88349, Iran;
| | - Navid Ghasemzadeh
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia 57147-83734, Iran; (S.H.); (F.K.); (N.G.)
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| |
Collapse
|
5
|
Seyyedi R, Talebpour Amiri F, Farzipour S, Mihandoust E, Hosseinimehr SJ. Mefenamic acid as a promising therapeutic medicine against colon cancer in tumor-bearing mice. Med Oncol 2022; 39:18. [PMID: 34982268 DOI: 10.1007/s12032-021-01618-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
Although radiotherapy is an effective strategy for cancer treatment, tumor resistance to ionizing radiation (IR) and its toxic effects on normal tissues are limiting its use. The aim of this study is to evaluate the anti-cancer effects of mefenamic acid (MEF), as an approved medicine, and its combination with IR against colon tumor cells in mice. Tumor-bearing mice were received MEF at a dose of 25 mg/kg for 6 successive days. The tumor size was measured. In the second experiment, after MEF treatment, tumor-bearing mice locally received an X-ray at dose 6 Gy. Tumor growth and biochemical, histological, and immunohistological assay (caspase-3) were performed. MEF significantly decreased tumor size in mice in comparison to the control group. IR and/or MEF treatment significantly reduced the tumor volume and inhibited tumor growth by 49%, 55%, and 67% by MEF, IR, and MEF + IR groups as compared with the control group. Administration of MEF in combination with radiation had a synergistic effect on enhanced histopathological changes in tumor tissues. MEF treatment in IR exposure mice showed a significant increase in the immunoreactivity of caspase-3 in the colon tumor tissue. MEF has an anti-tumor effect in colon tumor-bearing mice. MEF in combination with IR increased pathological changes and apoptosis in tumor tissues, suggesting that MEF might be clinically useful in the treatment of colon cancer.
Collapse
Affiliation(s)
- Reza Seyyedi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Soghra Farzipour
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Mihandoust
- Department of Radiotherapy, Imam Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
6
|
Wang Z, Wang Y, Vilekar P, Yang SP, Gupta M, Oh MI, Meek A, Doyle L, Villar L, Brennecke A, Liyanage I, Reed M, Barden C, Weaver DF. Small molecule therapeutics for COVID-19: repurposing of inhaled furosemide. PeerJ 2020; 8:e9533. [PMID: 32704455 PMCID: PMC7350920 DOI: 10.7717/peerj.9533] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
The novel coronavirus SARS-CoV-2 has become a global health concern. The morbidity and mortality of the potentially lethal infection caused by this virus arise from the initial viral infection and the subsequent host inflammatory response. The latter may lead to excessive release of pro-inflammatory cytokines, IL-6 and IL-8, as well as TNF-α ultimately culminating in hypercytokinemia (“cytokine storm”). To address this immuno-inflammatory pathogenesis, multiple clinical trials have been proposed to evaluate anti-inflammatory biologic therapies targeting specific cytokines. However, despite the obvious clinical utility of such biologics, their specific applicability to COVID-19 has multiple drawbacks, including they target only one of the multiple cytokines involved in COVID-19’s immunopathy. Therefore, we set out to identify a small molecule with broad-spectrum anti-inflammatory mechanism of action targeting multiple cytokines of innate immunity. In this study, a library of small molecules endogenous to the human body was assembled, subjected to in silico molecular docking simulations and a focused in vitro screen to identify anti-pro-inflammatory activity via interleukin inhibition. This has enabled us to identify the loop diuretic furosemide as a candidate molecule. To pre-clinically evaluate furosemide as a putative COVID-19 therapeutic, we studied its anti-inflammatory activity on RAW264.7, THP-1 and SIM-A9 cell lines stimulated by lipopolysaccharide (LPS). Upon treatment with furosemide, LPS-induced production of pro-inflammatory cytokines was reduced, indicating that furosemide suppresses the M1 polarization, including IL-6 and TNF-α release. In addition, we found that furosemide promotes the production of anti-inflammatory cytokine products (IL-1RA, arginase), indicating M2 polarization. Accordingly, we conclude that furosemide is a reasonably potent inhibitor of IL-6 and TNF-α that is also safe, inexpensive and well-studied. Our pre-clinical data suggest that it may be a candidate for repurposing as an inhaled therapy against COVID-19.
Collapse
Affiliation(s)
- Zhiyu Wang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Yanfei Wang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Prachi Vilekar
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Seung-Pil Yang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mayuri Gupta
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Myong In Oh
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Autumn Meek
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Lisa Doyle
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Laura Villar
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Anja Brennecke
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Imindu Liyanage
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mark Reed
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Christopher Barden
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Kazemi R, Hosseinimehr SJ. Radioprotective Effect of Pioglitazone Against Genotoxicity Induced by Ionizing Radiation in Healthy Human Lymphocytes. Cardiovasc Hematol Agents Med Chem 2020; 19:72-75. [PMID: 32448107 DOI: 10.2174/1871525718666200525005231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Pioglitazone (PG) is used to control high blood sugar in patients with type 2 diabetes mellitus. PG acts as a peroxisome proliferator-activated receptor γ agonist. In addition to the insulin-sensitizing effect, PG possesses anti-inflammatory effect. In this study, the protective effect of PG was evaluated against DNA damage induced by ionizing radiation in healthy human lymphocytes. METHODS The microtubes containing human whole blood were treated with PG at various concentrations (1-50 μM) for three hours. Then, the blood samples were irradiated with X-ray. Lymphocytes were cultured for determining the frequency of micronuclei as a genotoxicity biomarker in binucleated lymphocytes. RESULTS The mean percentage of micronuclei was significantly increased in human lymphocytes when exposed to IR, while it was decreased in lymphocytes pre-treated with PG. The maximum reduction in the frequency of micronuclei in irradiated lymphocytes was observed at 5 μM of PG treatment (48% decrease). CONCLUSION The anti-inflammatory property suggested the mechanism action of PG for protecting human lymphocytes against genotoxicity induced by ionizing radiation.
Collapse
Affiliation(s)
- Roya Kazemi
- Department of Pharmacy, Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Seyed J Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Fluoxetine as an antidepressant medicine improves the effects of ionizing radiation for the treatment of glioma. J Bioenerg Biomembr 2020; 52:165-174. [PMID: 32405794 DOI: 10.1007/s10863-020-09833-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/30/2020] [Indexed: 01/20/2023]
Abstract
Radiotherapy is a cancer treatment protocol which delivers high dose of ionizing radiation (IR) to tumor. Tumor resistance and side effects induced by IR still are the major challenges in radiotherapy. The purpose of this study was to evaluate the synergistic killing effect of fluoxetine (FL) with IR on glioma cancer cell (U-87 MG), as well as radioprotective effect of FL against cellular toxicity induced by IR on non-malignant human fibroblast cell (HFFF2). Firstly, the inhibitory effects of FL on cell proliferations were evaluated in U-87 MG and HFFF2 cells. The clonogenic and MTT assays were used to evaluate the radiosensitivity and radioprotective effects of FL on cancer and non-malignant cells. The frequencies of apoptotic cells were evaluated by flow cytometry on both cancer and normal cells. Results showed that FL exhibited anti-cancer effect on glioma cells, while cellular toxicity was low in HFFF2 cells treated with FL. FL decreased the viable colonies and enhanced apoptotic cells when U-87 cells were treated with FL prior irradiation. For comparison, FL exhibited radioprotective effect through increasing cellular proliferation rate and reducing apoptosis in HFFF2 cells against IR. The results showed that FL enhanced the IR-induced glioma cancer cell death and apoptosis, whereas it exhibited a radioprotective effect on normal fibroblast cells suggesting that FL administration may improve glioma radiotherapy.
Collapse
|
9
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020. [PMID: 32399610 DOI: 10.1007/s00204-020-02752-z)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
10
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020; 94:1511-1549. [PMID: 32399610 PMCID: PMC7261741 DOI: 10.1007/s00204-020-02752-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
11
|
Farzipour S, Amiri FT, Mihandoust E, Shaki F, Noaparast Z, Ghasemi A, Hosseinimehr SJ. Radioprotective effect of diethylcarbamazine on radiation-induced acute lung injury and oxidative stress in mice. J Bioenerg Biomembr 2019; 52:39-46. [PMID: 31853753 DOI: 10.1007/s10863-019-09820-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/12/2019] [Indexed: 11/25/2022]
Abstract
The present study was designed to evaluate the radioprotective effect of diethylcarbamazine (DEC) against oxidative stress and acute lung injury induced by total body radiation (TBI) in mice. For study the optimum dose for radiation protection of DEC, mice were administrated with three dose of DEC (10, 50 and 100 mg/kg), once daily for eight consecutive days. Animals were exposed whole body to 5 Gy X-radiation on the 9 day. The radioprotective potential of DEC in lung tissues was assessed using oxidative stress examinations at 24 h after TBI and histopathological assay also was analyzed one week after TBI. Results from biochemical analyses demonstrated increased malonyldialdehyde (MDA), nitric oxide (NO) and protein carbonyl (PC) levels of lung tissues in only irradiated group. Histopathologic findings also showed an increase in the number of inflammatory cells and the acute lung injury in this group. DEC pretreatment significantly mitigated the oxidative stress biomarkers as well as histological damages in irradiated mice. The favorable radioprotective effect against lungs injury was observed at a dose of 10 mg/kg of DEC in mice as compared with two other doses (50 and 100 mg/kg). The data of this study showed that DEC at a dose of 10 mg/kg with having antioxidant and anti-inflammatory properties can be used as a therapeutic candidate for protecting the lung from radiation-induced damage.
Collapse
Affiliation(s)
- Soghra Farzipour
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical, Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Ehsan Mihandoust
- Department of Radiotherapy, Imam Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Noaparast
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical, Sciences, Sari, Iran
| | - Arash Ghasemi
- Department of Radiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical, Sciences, Sari, Iran.
| |
Collapse
|
12
|
Torabizadeh SA, Rezaeifar M, Jomehzadeh A, Nabizadeh Haghighi F, Ansari M. Radioprotective Potential of Sulindac Sulfide to Prevent DNA Damage Due to Ionizing Radiation. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4127-4134. [PMID: 31827319 PMCID: PMC6902880 DOI: 10.2147/dddt.s218022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 11/15/2019] [Indexed: 11/23/2022]
Abstract
Introduction: The ionizing radiation exposure of the normal cell causes damage to DNA, which leads to cell dysfunction or even cell death. However, it is necessary to identify new radio protectives in order to protect normal cells. Sulindac sulfide (SS) is a metabolite of sulindac (a non-steroidal anti-inflammatory drug) known as a cyclooxygenase inhibitor. Free radicals and reactive oxygen species are generated in the IR-exposed cells. Also, the induced inflammation process causes damage in DNA. Purpose In this research, the radioprotective effect of SS was investigated against genotoxicity and lipid peroxidation induced by ionizing radiation in the human blood lymphocytes. Methods In this study, the human blood samples were pretreated with SS at different concentrations (10, 25, 50, 100 and 250 μM) and then were exposed to IR at a dose of 1.5 Gy. The micronucleus (MN) assay was used to indicate the radioprotective effects of SS on exposed cells. Total antioxidant activity of the SS was measured by using FRAP and DPPH assay. Also, the malondialdehyde (MDA) levels and the activity of superoxide dismutase (SOD) on the exposed cells were evaluated. Results It was found that SS decreased the percentage of MN induced by IR in exposed cells. Maximum reduction in the frequency of MN was observed at 250 μM of SS (87%) that provides the highest degree of protection against IR. On the other hand, pretreatment at 250 μM of SS inhibited IR-induced oxidative stress, which led to a decrease in the MN frequencies and MDA levels, while SOD activity showed an increase in the exposed cells. Conclusion It could be concluded that SS as a good radioprotective agent protects the human normal cells against the oxidative stress and genetic damage induced by IR.
Collapse
Affiliation(s)
- Seyedeh Atekeh Torabizadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Rezaeifar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Jomehzadeh
- Department of Medical Physics, Faculty of Medicine, Medical Physics Department, Radiotherapy & Oncology Unit, Shafa Kerman Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Nabizadeh Haghighi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ansari
- Drug and Food Control Department, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Bykov VN, Grebenyuk AN, Ushakov IB. The Use of Radioprotective Agents to Prevent Effects Associated with Aging. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019120021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Pouri M, Shaghaghi Z, Ghasemi A, Hosseinimehr SJ. Radioprotective Effect of Gliclazide as an Anti-Hyperglycemic Agent Against Genotoxicity Induced by Ionizing Radiation on Human Lymphocytes. Cardiovasc Hematol Agents Med Chem 2019; 17:40-46. [PMID: 31124426 PMCID: PMC6865074 DOI: 10.2174/1871525717666190524092918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 11/22/2022]
Abstract
Objectives: Gliclazide (GL) is widely used to reduce hyperglycemia in diabetic patients. The aim of this study was to investigate the protective effect of GL against chromosome damage induced by ionizing radiation in human blood lymphocytes. Methods: In this experimental study, peripheral blood samples were collected from human volunteers and treated with GL at various concentrations (5, 25, 50 or 100 μM) for three hours. Then samples were irradiated to X-ray (1.5 Gy). Blood samples were cultured with mitogenic stimulation. The frequencies of micronuclei in cytokinesis-blocked binucleated lymphocytes were determined in the different samples. The antioxidant activities of GL were assayed by two different methods as 1,1-diphenyl-2-picryl hydrazyl radical (DPPH) free radical scavenging and reducing antioxidant power assays. Results: GL significantly reduced the percentage of micronuclei in lymphocytes which were irradiated. The maximum radioprotection in the reduction of percentage of micronuclei in lymphocytes was observed at 100 μM of GL with 52% efficacy. GL exhibited excellent free radical scavenging activity and reducing power at concentration dependent activities. The IC50 values of GL were lower than ascorbic acid. Higher potencies were observed in the antioxidant activities for GL than ascorbic acid in both methods. Conclusion: This data exhibits that GL is a powerful radioprotective agent that could protect healthy cells against the chromosome damage induced by ionizing radiation through antioxidant activity. The radioprotective effect is new indication of GL for patients' protection against side effect induced by ionizing radiation.
Collapse
Affiliation(s)
- Maysa Pouri
- Department of Radiopharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Shaghaghi
- Department of Radiopharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Nuclear Medicine and Molecular Imaging, Clinical Development Research Unit of Farshchian Heart Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arash Ghasemi
- Department of Radiology and Radiation Oncology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
15
|
Asghari M, Shaghaghi Z, Farzipour S, Ghasemi A, Hosseinimehr SJ. Radioprotective effect of olanzapine as an anti-psychotic drug against genotoxicity and apoptosis induced by ionizing radiation on human lymphocytes. Mol Biol Rep 2019; 46:5909-5917. [PMID: 31407246 DOI: 10.1007/s11033-019-05024-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022]
Abstract
Olanzapine (OLA), is prescribed as an anti-psychotic medicine in schizophrenia patients. In this study, the protective effect of OLA against genotoxicity and apoptosis induced by ionizing radiation in human healthy lymphocytes was evaluated. At first, the antioxidant activities of OLA were assayed by two different methods as free radical scavenging with DPPH (2,2-diphenyl-1-picryl-hydrazyl) and ferric reducing power methods. In in vitro experiment, human blood samples were treated with OLA at various concentrations (0.25-20 μM) for 3 h and then were exposed to X-ray at a dose of 150 cGy. The genotoxicity was assessed in binucleated human lymphocytes with micronuclei assay. The apoptotic lymphocytes were assessed by flow cytometry in OLA treated and/or irradiated lymphocytes. OLA exhibited free radical scavenging and reducing power activities more than ascorbic acid. The results showed that the lymphocytes treated with OLA and later exposed to IR presented lower frequencies of micronuclei and apoptosis compared to the control sample which was irradiated and not treated to OLA. The maximum radioprotection was observed at 20 μM of OLA with 83% of efficacy. The present study suggested the protective role for OLA in protection radiation-induced genetic damage and apoptosis induced by ionizing irradiation in human normal cells.
Collapse
Affiliation(s)
- Mohammad Asghari
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Shaghaghi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Nuclear Medicine and Molecular Imaging, Clinical Development Research Unit of Farshchian Heart Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Soghra Farzipour
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arash Ghasemi
- Department of Radiology and Radiation Oncology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
16
|
Hosseinimehr SJ, Safavi Z, Kangarani Farahani S, Noaparst Z, Ghasemi A, Asgarian-Omran H. The synergistic effect of mefenamic acid with ionizing radiation in colon cancer. J Bioenerg Biomembr 2019; 51:249-257. [DOI: 10.1007/s10863-019-09792-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/24/2019] [Indexed: 12/16/2022]
|
17
|
Kim K, Kim MJ, Kim KH, Ahn SA, Kim JH, Cho JY, Yeo SG. C1QBP is upregulated in colon cancer and binds to apolipoprotein A-I. Exp Ther Med 2017; 13:2493-2500. [PMID: 28565870 PMCID: PMC5443300 DOI: 10.3892/etm.2017.4249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/28/2016] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the expression of complement component 1, q subcomponent-binding protein (C1QBP) in colon cancer cells, and identify proteins that interact with C1QBP. Total proteins were extracted from both the tumor and normal tissues of 22 patients with colon cancer and analyzed using liquid chromatography-mass spectrometry (LC-MS) to identify proteins that were differentially-expressed in tumor tissues. C1QBP overexpression was induced in 293T cells using a pFLAG-CMV2 expression vector. Overexpressed FLAG-tagged C1QBP protein was then immunoprecipitated using anti-FLAG antibodies and C1QBP-interacting proteins were screened using LC-MS analysis of the immunoprecipitates. The C1QBP-interacting proteins were confirmed using reverse-immunoprecipitation and the differential expression of C1QBP in tissues and cell lines was confirmed using western blot analysis. LC-MS analysis revealed that C1QBP exhibited a typical tumor expression pattern. Two immune-reactive signals (33 and 14 kDa) were detected in normal and tumor tissues from 19 patients. Furthermore, 14 kDa C1QBP protein was upregulated in the tumors of 15 patients. In total, 39 proteins were identified as candidate C1QBP-interacting proteins, and an interaction between C1QBP and apolipoprotein A-I was confirmed. The present study indicates that C1QBP is involved in colon cancer carcinogenesis, and that the mechanisms underlying the established anti-tumor properties of apolipoprotein A-I may include interacting with and inhibiting the activity of C1QBP.
Collapse
Affiliation(s)
- Kun Kim
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
- Laboratory of Cell Biology, Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Min-Jeong Kim
- Department of Radiology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Gyeonggi 14068, Republic of Korea
| | - Kyung-Hee Kim
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Sun-A Ahn
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Jong Heon Kim
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Seung-Gu Yeo
- Department of Radiation Oncology, Soonchunhyang University College of Medicine, Soonchunhyang University Hospital, Cheonan, South Chungcheong 31151, Republic of Korea
| |
Collapse
|
18
|
Hosseinimehr SJ, Fathi M, Ghasemi A, Shiadeh SNR, Pourfallah TA. Celecoxib mitigates genotoxicity induced by ionizing radiation in human blood lymphocytes. Res Pharm Sci 2017; 12:82-87. [PMID: 28255318 PMCID: PMC5333484 DOI: 10.4103/1735-5362.199051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ionizing radiation causes DNA damage and chromosome abbreviations on normal cells. The radioprotective effect of celecoxib (CLX) was investigated against genotoxicity induced by ionizing radiation in cultured human blood lymphocytes. Peripheral blood samples were collected from human volunteers and were incubated at different concentrations at 1, 5, 10 and 50 μM of CLX for two hours. At each dose point, the whole blood was exposed in vitro to 150 cGy of X-ray, and then the lymphocytes were cultured with mitogenic stimulation to determine the micronucleus frequency in cytokinesis blocked binucleated lymphocytes. Incubation of the whole blood with CLX exhibited a significant decrease in the incidence of micronuclei in lymphocytes induced by ionizing radiation, as compared with similarly irradiated lymphocytes without CLX treatment. The maximum reduction on the frequency of micronuclei was observed at 50 μM of CLX (65% decrease). This data may have an important possible application for the protection of human lymphocytes from the genetic damage induced by ionizing irradiation in human exposed to radiation.
Collapse
Affiliation(s)
- Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, I.R. Iran
| | - Mahdieh Fathi
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, I.R. Iran
| | - Arash Ghasemi
- Department of Radiology and Radiation Oncology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, I.R. Iran
| | - Seyedeh Nesa Rezaeian Shiadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, I.R. Iran
| | - Tayyeb Allahverdi Pourfallah
- Department of Biochemistry and Biophysics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, I.R. Iran
| |
Collapse
|