1
|
Yavorska M, Tomaciello M, Sciurti A, Cinelli E, Rubino G, Perrella A, Cerase A, Pastina P, Gravina GL, Arcieri S, Mazzei MA, Migliara G, Baccolini V, Marampon F, Minniti G, Di Giacomo AM, Tini P. Predictive value of perilesional edema volume in melanoma brain metastasis response to stereotactic radiosurgery. J Neurooncol 2024; 170:611-618. [PMID: 39259411 PMCID: PMC11615094 DOI: 10.1007/s11060-024-04818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND AIM Stereotactic radiotherapy (SRT) is an established treatment for melanoma brain metastases (MBM). Recent evidence suggests that perilesional edema volume (PEV) might compromise the delivery and efficacy of radiotherapy to treat BM. This study investigated the association between SRT efficacy and PEV extent in MBM. MATERIALS AND METHODS This retrospective study reviewed medical records from January 2020 to September 2023. Patients with up to 5 measurable MBMs, intracranial disease per RANO/iRANO criteria, and on low-dose corticosteroids were included. MRI scans assessed baseline neuroimaging, with PEV analyzed using 3D Slicer. SRT plans were based on MRI-CT fusion, delivering 18-32.5 Gy in 1-5 fractions. Outcomes included intracranial objective response rate (iORR) and survival measures (L-iPFS and OS). Statistical analysis involved decision tree analysis and multivariable logistic regression, adjusting for clinical and treatment variables. RESULTS Seventy-two patients with 101 MBM were analyzed, with a mean age of 68.83 years. The iORR was 61.4%, with Complete Response (CR) in 21.8% and Partial Response (PR) in 39.6% of the treated lesions. PEV correlated with KPS, BRAF status, and treatment response. Decision tree analysis identified a PEV cutoff at 0.5 cc, with lower PEVs predicting better responses (AUC = 0.82 sensitivity: 86.7%, specificity:74.4%,). Patients with PEV ≥ 0.5 cc had lower response rates (iORR 44.7% vs. 63.8%, p < 0.001). Median OS was 9.4 months, with L-iPFS of 27 months. PEV significantly impacted survival outcomes. CONCLUSIONS A more extensive PEV was associated with a less favorable outcome to SRT in MBM.
Collapse
Affiliation(s)
- Mariya Yavorska
- Unit of Radiation Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Miriam Tomaciello
- Radiation Oncology, Policlinico Umberto I, Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Sciurti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Elisa Cinelli
- Unit of Radiation Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Giovanni Rubino
- Unit of Radiation Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Armando Perrella
- Unit of Neuroradiology, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Alfonso Cerase
- Unit of Neuroradiology, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Pierpaolo Pastina
- Unit of Neuroradiology, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvia Arcieri
- Policlinico Umberto I Hospital, Viale del Policlinico, Rome, 00161, Italy
| | - Maria Antonietta Mazzei
- Unit of Diagnostic Imaging, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Giuseppe Migliara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Valentina Baccolini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Francesco Marampon
- Radiation Oncology, Policlinico Umberto I, Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Minniti
- Radiation Oncology, Policlinico Umberto I, Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
- IRCSS Neuromed, Pozzilli, Italy
| | - Anna Maria Di Giacomo
- Center for Immuno-Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Paolo Tini
- Unit of Radiation Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
| |
Collapse
|
2
|
Abdelgawad MH, Eldib AA, Elsayed TM, Ma CC. Investigation of the linear accelerator low dose rate mode for pulsed low-dose-rate radiotherapy delivery. Biomed Phys Eng Express 2024; 10:065012. [PMID: 39191263 DOI: 10.1088/2057-1976/ad73dd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
Purpose. Pulsed volumetric modulated arc therapy (VMAT) was proposed as an advanced treatment that combines the biological benefits of pulsed low dose rate (PLDR) and the dosimetric benefits of the intensity-modulated beams. In our conventional pulsed VMAT technique, a daily fractional dose of 200 cGy is delivered in 10 arcs with 3 min intervals between the arcs. In this study, we are testing the feasibility of pulsed VMAT that omits the need to split into ten arcs and excludes any beam-off gaps.Methods. The study was conducted using computed tomographic images of 24 patients previously treated at our institution with the conventional PLDR technique. Our newly installed Elekta machine has a low dose rate option on the order of 25 MU min-1. PLDR requires an effective dose rate of 6.7 cGy min-1with attention being paid to the maximum dose received within any point within the target not to exceed 13 cGy min-1. The quality of treatment plans was judged based on dose-volume histograms, isodose distribution, dose conformality to the target, and target dose homogeneity. The dose delivery accuracy was assessed by measurements using theMatriXXEvolution2D array system.Results. All cases were normalized to cover 95% of the target volume with 100% of the prescription dose. The average conformity index was 1.03 ± 0.08 while the average homogeneity index was 1.05 ± 0.02. The maximum reported dose rate at any point within the target was 10.44 cGy min-1. The mean dose rate for all pulsed VMAT plans was 6.88 ± 0.1 cGy min-1. All cases passed our gamma analysis with an average passing rate of 99.00% ± 0.48%.Conclusion. The study showed the applicability of planning pulsed VMAT using Eclipse and its successful delivery on our Elekta linac. Pulsed VMAT using the machine's low dose rate mode is more efficient than our previous pulsed VMAT delivery.
Collapse
Affiliation(s)
- Mahmoud H Abdelgawad
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
- Fox Chase Cancer Center, Temple University Health System, 333, Cottman Avenue Philadelphia, PA, 19111, United States of America
| | - Ahmed A Eldib
- Fox Chase Cancer Center, Temple University Health System, 333, Cottman Avenue Philadelphia, PA, 19111, United States of America
| | - Tamer M Elsayed
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Cm Charlie Ma
- Fox Chase Cancer Center, Temple University Health System, 333, Cottman Avenue Philadelphia, PA, 19111, United States of America
| |
Collapse
|
3
|
Biagiotti G, Cazzoli R, Andreozzi P, Aresta G, Francesco M, Mangini C, di Gianvincenzo P, Tobia C, Recchia S, Polito L, Severi M, Vittorio O, Cicchi S, Moya SE, Ronca R, Albini A, Berti D, Orecchia R, Garibaldi C, Minucci S, Richichi B. Biocompatible cellulose nanocrystal-based Trojan horse enables targeted delivery of nano-Au radiosensitizers to triple negative breast cancer cells. NANOSCALE HORIZONS 2024; 9:1211-1218. [PMID: 38775782 DOI: 10.1039/d4nh00042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
A hybrid cellulose-based programmable nanoplatform for applications in precision radiation oncology is described. Here, sugar heads work as tumor targeting moieties and steer the precise delivery of radiosensitizers, i.e. gold nanoparticles (AuNPs) into triple negative breast cancer (TNBC) cells. This "Trojan horse" approach promotes a specific and massive accumulation of radiosensitizers in TNBC cells, thus avoiding the fast turnover of small-sized AuNPs and the need for high doses of AuNPs for treatment. Application of X-rays resulted in a significant increase of the therapeutic effect while delivering the same dose, showing the possibility to use roughly half dose of X-rays to obtain the same radiotoxicity effect. These data suggest that this hybrid nanoplatform acts as a promising tool for applications in enhancing cancer radiotherapy effects with lower doses of X-rays.
Collapse
Affiliation(s)
- Giacomo Biagiotti
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Riccardo Cazzoli
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
- School of biomedical sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Patrizia Andreozzi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Giusi Aresta
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Mattii Francesco
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Chiara Mangini
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Paolo di Gianvincenzo
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain
| | - Chiara Tobia
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, Viale Europa 11, 25123 Brescia, Italy
| | - Sandro Recchia
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Laura Polito
- National Research Council, CNR-SCITEC, Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Mirko Severi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Orazio Vittorio
- School of biomedical sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Stefano Cicchi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Sergio E Moya
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain
| | - Roberto Ronca
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, Viale Europa 11, 25123 Brescia, Italy
| | | | - Debora Berti
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Roberto Orecchia
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
- Scientific Directorate, IEO, IRCCS, 20141 Milan, Italy
| | | | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
4
|
Alvandi M, Shaghaghi Z, Farzipour S, Marzhoseyni Z. Radioprotective Potency of Nanoceria. Curr Radiopharm 2024; 17:138-147. [PMID: 37990425 DOI: 10.2174/0118744710267281231104170435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 11/23/2023]
Abstract
Cancer presents a significant medical challenge that requires effective management. Current cancer treatment options, such as chemotherapy, targeted therapy, radiotherapy, and immunotherapy, have limitations in terms of their efficacy and the potential harm they can cause to normal tissues. In response, researchers have been focusing on developing adjuvants that can enhance tumor responses while minimizing damage to healthy tissues. Among the promising options, nanoceria (NC), a type of nanoparticle composed of cerium oxide, has garnered attention for its potential to improve various cancer treatment regimens. Nanoceria has demonstrated its ability to exhibit toxicity towards cancer cells, inhibit invasion, and sensitize cancer cells to both radiation therapy and chemotherapy. The remarkable aspect is that nanoceria show minimal toxicity to normal tissues while protecting against various forms of reactive oxygen species generation. Its capability to enhance the sensitivity of cancer cells to chemotherapy and radiotherapy has also been observed. This paper thoroughly reviews the current literature on nanoceria's applications within different cancer treatment modalities, with a specific focus on radiotherapy. The emphasis is on nanoceria's unique role in enhancing tumor radiosensitization and safeguarding normal tissues from radiation damage.
Collapse
Affiliation(s)
- Maryam Alvandi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Shaghaghi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Soghra Farzipour
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Paramedicine, Amol School of Paramedical Science, Mazandaran University of Medical Science, Sari, Iran
| | - Zeynab Marzhoseyni
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Varzandeh M, Sabouri L, Mansouri V, Gharibshahian M, Beheshtizadeh N, Hamblin MR, Rezaei N. Application of nano-radiosensitizers in combination cancer therapy. Bioeng Transl Med 2023; 8:e10498. [PMID: 37206240 PMCID: PMC10189501 DOI: 10.1002/btm2.10498] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Radiosensitizers are compounds or nanostructures, which can improve the efficiency of ionizing radiation to kill cells. Radiosensitization increases the susceptibility of cancer cells to radiation-induced killing, while simultaneously reducing the potentially damaging effect on the cellular structure and function of the surrounding healthy tissues. Therefore, radiosensitizers are therapeutic agents used to boost the effectiveness of radiation treatment. The complexity and heterogeneity of cancer, and the multifactorial nature of its pathophysiology has led to many approaches to treatment. The effectiveness of each approach has been proven to some extent, but no definitive treatment to eradicate cancer has been discovered. The current review discusses a broad range of nano-radiosensitizers, summarizing possible combinations of radiosensitizing NPs with several other types of cancer therapy options, focusing on the benefits and drawbacks, challenges, and future prospects.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
| | - Leila Sabouri
- AmitisGen TECH Dev GroupTehranIran
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Vahid Mansouri
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Maliheh Gharibshahian
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Student Research CommitteeSchool of Medicine, Shahroud University of Medical SciencesShahroudIran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
| | - Michael R. Hamblin
- Laser Research Center, Faculty of Health ScienceUniversity of JohannesburgDoornfonteinSouth Africa
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Research Center for ImmunodeficienciesChildren's Medical Center, Tehran University of Medical SciencesTehranIran
- Department of ImmunologySchool of Medicine, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
6
|
Metformin and Breast Cancer: Where Are We Now? Int J Mol Sci 2022; 23:ijms23052705. [PMID: 35269852 PMCID: PMC8910543 DOI: 10.3390/ijms23052705] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most prevalent cancer and the leading cause of cancer-related death among women worldwide. Type 2 diabetes–associated metabolic traits such as hyperglycemia, hyperinsulinemia, inflammation, oxidative stress, and obesity are well-known risk factors for breast cancer. The insulin sensitizer metformin, one of the most prescribed oral antidiabetic drugs, has been suggested to function as an antitumoral agent, based on epidemiological and retrospective clinical data as well as preclinical studies showing an antiproliferative effect in cultured breast cancer cells and animal models. These benefits provided a strong rationale to study the effects of metformin in routine clinical care of breast cancer patients. However, the initial enthusiasm was tempered after disappointing results in randomized controlled trials, particularly in the metastatic setting. Here, we revisit the current state of the art of metformin mechanisms of action, critically review past and current metformin-based clinical trials, and briefly discuss future perspectives on how to incorporate metformin into the oncologist’s armamentarium for the prevention and treatment of breast cancer.
Collapse
|
7
|
MnTnHex-2-PyP 5+, Coupled to Radiation, Suppresses Metastasis of 4T1 and MDA-MB-231 Breast Cancer via AKT/Snail/EMT Pathways. Antioxidants (Basel) 2021; 10:antiox10111769. [PMID: 34829640 PMCID: PMC8615021 DOI: 10.3390/antiox10111769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Tumor migration and invasion induced by the epithelial-to-mesenchymal transition (EMT) are prerequisites for metastasis. Here, we investigated the inhibitory effect of a mimic of superoxide dismutase (SOD), cationic Mn(III) ortho-substituted N-n-hexylpyridylporphyrin (MnTnHex-2-PyP5+, MnHex) on the metastasis of breast cancer in cellular and animal models, focusing on the migration of tumor cells and the factors that modulate this behavior. Wound healing and Transwell migration assays revealed that the migration of mouse mammary carcinoma 4T1 cells was markedly reduced during the concurrent treatment of MnHex and radiation therapy (RT) compared with that of the control and RT alone. Bioluminescence imaging showed that MnHex/RT co-treatment dramatically reduced lung metastasis of 4T1 cells in mice, compared with the sham control and both single treatments. Western blotting and immunofluorescence showed that MnHex treatment of 4T1 cells reversed the RT-induced EMT via inhibiting AKT/GSK-3β/Snail pathway in vitro, thereby decreasing cell migration and invasion. Consistently, histopathological analyses of 4T1 tumors showed that MnHex/RT reduced Snail expression, blocked EMT, and in turn suppressed metastases. Again, in the human metastatic breast cancer MDA-MB-231 cell line, MnHex inhibited metastatic potential in vitro and in vivo and suppressed the RT-induced Snail expression. In addition to our previous studies showing tumor growth inhibition, this study demonstrated that MnHex carries the ability to minimize the metastatic potential of RT-treated cancers, thus overcoming their radioresistance.
Collapse
|
8
|
Yu JI, Park HC, Yoo GS, Paik SW, Choi MS, Kim HS, Sohn I, Nam H. Clinical Significance of Systemic Inflammation Markers in Newly Diagnosed, Previously Untreated Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12051300. [PMID: 32455607 PMCID: PMC7281027 DOI: 10.3390/cancers12051300] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
This study aimed to investigate the clinical significance of systemic inflammation markers (SIMs)-including neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR)-in patients with newly diagnosed, previously untreated hepatocellular carcinoma (HCC). The present study was performed using prospectively collected registry data of newly diagnosed, previously untreated HCC from a single institution. The training set included 6619 patients from 2005 to 2013 and the validation set included 2084 patients from 2014 to 2016. The SIMs as continuous variables significantly affected the overall survival (OS), and the optimal cut-off value of NLR, PLR, and LMR was 3.0, 100.0, and 3.0, respectively. There were significant correlations between SIMs and the albumin-bilirubin grade/Child-Turcotte-Pugh class (indicative of liver function status) and the staging system/portal vein invasion (indicative of the tumor burden). The OS curves were well stratified according to the prognostic model of SIMs and validated using the bootstrap method (1000 times, C-index 0.6367, 95% confidence interval (CI) 0.6274-0.6459) and validation cohort (C-index 0.6810, 95% CI 0.6570-0.7049). SIMs showed significant prognostic ability for OS, independent of liver function and tumor extent, although these factors were significantly correlated with SIMs in patients with newly diagnosed, previously untreated HCC.
Collapse
Affiliation(s)
- Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (J.I.Y.); (G.S.Y.)
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (J.I.Y.); (G.S.Y.)
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Correspondence: ; Tel.: +82-2-3410-2612; Fax: +82-2-3410-2619
| | - Gyu Sang Yoo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (J.I.Y.); (G.S.Y.)
| | - Seung Woon Paik
- Departments of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (S.W.P.); (M.S.C.)
| | - Moon Seok Choi
- Departments of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (S.W.P.); (M.S.C.)
| | - Hye-Seung Kim
- Statistics and Data Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.-S.K.); (I.S.)
| | - Insuk Sohn
- Statistics and Data Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.-S.K.); (I.S.)
| | - Heerim Nam
- Department of Radiation Oncology, Gangbook Samsung Hospital, Sungkyunkwan University School of Medicine, 29, Saemunan-ro, Jongno-gu, Seoul 03181, Korea;
| |
Collapse
|
9
|
Outcomes of Radiotherapy for Mesenchymal and Non-Mesenchymal Subtypes of Gastric Cancer. Cancers (Basel) 2020; 12:cancers12040943. [PMID: 32290335 PMCID: PMC7226608 DOI: 10.3390/cancers12040943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022] Open
Abstract
Background: The purpose of this study was to evaluate the clinical outcomes following postoperative chemotherapy (XP) versus chemoradiotherapy (XP-RT) according to mesenchymal subtype based on RNA sequencing in gastric cancer (GC) in a cohort of the Adjuvant chemoRadioTherapy In Stomach Tumor (ARTIST) trial. Methods: Of the 458 patients enrolled in the ARTIST trial, formalin-fixed, paraffin-embedded (FFPE) specimens were available from 106 (23.1%) patients for RNA analysis. The mesenchymal subtype was classified according to a previously reported 71-gene MSS/EMT signature using the NanoString assay. Results: Of the 106 patients analyzed (50 in XP arm, 56 in XP-RT arm), 36 (34.0%) patients were categorized as mesenchymal subtype by NanoString assay. Recurrence-free survival (RFS, p = 0.009, hazard ratio (HR) = 2.11, 95% confidence interval (CI): 1.21-3.70) and overall survival (OS, p = 0.003, HR = 2.28, 95% CI: 1.31-3.96) were significantly lower in the mesenchymal subtype than in the non-mesenchymal subtype. In terms of post-operative radiotherapy (RT), mesenchymal subtype was not an independent variable to predict RFS or OS regardless to the assigned arm (XP with or without RT) in this patient cohort. However, there was a trend in the adjuvant XP arm, which showed higher OS than the XP-RT arm for the mesenchymal subtype and lower OS than the XP-RT arm for the non-mesenchymal subtype. Conclusions: We could not determine any significant differences between the mesenchymal and non-mesenchymal subtypes with respect to the effects of adjuvant XP with or without RT in gastric cancer following curative surgery.
Collapse
|
10
|
Yu JI, Lee SJ, Lee J, Lim HY, Paik SW, Yoo GS, Choi C, Park HC. Clinical significance of radiotherapy before and/or during nivolumab treatment in hepatocellular carcinoma. Cancer Med 2019; 8:6986-6994. [PMID: 31588679 PMCID: PMC6853810 DOI: 10.1002/cam4.2570] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Background This study aimed to investigate the clinical significance of previous and/or concurrent application of radiotherapy (RT) in the course of nivolumab treatment for advanced hepatocellular carcinoma (HCC). Methods Patients with advanced HCC who received nivolumab treatment between March 2017 and May 2018. were included. Nivolumab treatment was indicated in patients who did not respond to conventional therapy including locoregional therapy and/or sorafenib. RT was performed when necessary for curative/palliative purpose. Results Among the 76 HCC patients who received nivolumab, 54 (71.1%) had received RT for HCC before and/or during the treatment. The period from initial HCC diagnosis to nivolumab treatment was significantly longer (P = .007) and the rate of undergoing transarterial chemoembolization (TACE; P = .006) and sorafenib treatment (P = .007) was significantly higher in patients who received previous/concurrent RT than in those who did not. Nivolumab‐related toxicities were generally tolerable regardless of the history of RT. During the follow‐up, 39 (51.3%) patients died and 54 (71.1%) patients experienced disease progression according to the RECIST v1.1. Patients who had received previous/concurrent RT had a significantly longer progression‐free survival (PFS; P = .008) and overall survival (OS; P = .007) than those who did not receive RT; however, this trend was not observed in patients with a history of radiofrequency ablation or TACE (all P > .05). Conclusion Previous and/or concurrent application of RT in the course of nivolumab treatment was related with longer PFS and OS in advanced HCC patients. Nonetheless, further clinical studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Su Jin Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Division of Hematology-Oncology, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Yeong Lim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Woon Paik
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gyu Sang Yoo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Kim BH, Kim YJ, Kim MH, Na YR, Jung D, Seok SH, Kim J, Kim HJ. Identification of FES as a Novel Radiosensitizing Target in Human Cancers. Clin Cancer Res 2019; 26:265-273. [PMID: 31573955 DOI: 10.1158/1078-0432.ccr-19-0610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/29/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE The identification of novel targets for developing synergistic drug-radiation combinations would pave the way to overcome tumor radioresistance. We conducted cell-based screening of a human kinome siRNA library to identify a radiation-specific kinase that has a synergistic toxic effect with radiation upon inhibition and is not essential for cell survival in the absence of radiation. EXPERIMENTAL DESIGN Unbiased RNAi screening was performed by transfecting A549 cells with a human kinome siRNA library followed by irradiation. Radiosensitizing effects of a target gene and involved mechanisms were examined. RESULTS We identified the nonreceptor protein tyrosine kinase FES (FEline Sarcoma oncogene) as a radiosensitizing target. The expression of FES was increased in response to irradiation. Cell viability and clonogenic survival after irradiation were significantly decreased by FES knockdown in lung and pancreatic cancer cell lines. In contrast, FES depletion alone did not significantly affect cell proliferation without irradiation. An inducible RNAi mouse xenograft model verified in vivo radiosensitizing effects. FES-depleted cells showed increased apoptosis, DNA damage, G2-M phase arrest, and mitotic catastrophe after irradiation. FES depletion promoted radiation-induced reactive oxygen species formation, which resulted in phosphorylation of S6K and MDM2. The radiosensitizing effect of FES knockdown was partially reversed by inhibition of S6K activity. Consistent with the increase in phosphorylated MDM2, an increase in nuclear p53 levels was observed, which appears to contribute increased radiosensitivity of FES-depleted cells. CONCLUSIONS We uncovered that inhibition of FES could be a potential strategy for inducing radiosensitization in cancer. Our results provide the basis for developing novel radiosensitizers.
Collapse
Affiliation(s)
- Byoung Hyuck Kim
- Department of Radiation Oncology, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.,Department of Radiation Oncology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Yong Joon Kim
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Myung-Ho Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Yi Rang Na
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University Medical College, Seoul, Republic of Korea
| | - Daun Jung
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University Medical College, Seoul, Republic of Korea
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University Medical College, Seoul, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea.
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea. .,Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
12
|
von der Grün J, Rödel F, Brandts C, Fokas E, Guckenberger M, Rödel C, Balermpas P. Targeted Therapies and Immune-Checkpoint Inhibition in Head and Neck Squamous Cell Carcinoma: Where Do We Stand Today and Where to Go? Cancers (Basel) 2019; 11:E472. [PMID: 30987257 PMCID: PMC6521064 DOI: 10.3390/cancers11040472] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 01/12/2023] Open
Abstract
With an increased understanding of the tumor biology of squamous cell carcinoma of the head and neck (SCCHN), targeted therapies have found their way into the clinical treatment routines against this entity. Nevertheless, to date platinum-based cytostatic agents remain the first line choice and targeting the epidermal growth factor-receptor (EGFR) with combined cetuximab and radiation therapy remains the only targeted therapy approved in the curative setting. Investigation of immune checkpoint inhibitors (ICI), such as antibodies targeting programmed cell death protein 1 (PD-1) and its ligand PD-L1, resulted in a change of paradigms in oncology and in the first approval of new drugs for treating SCCHN. Nivolumab and pembrolizumab, two anti-PD-1 antibodies, were the first agents shown to improve overall survival for patients with metastatic/recurrent tumors in recent years. Currently, several clinical trials investigate the role of ICI in different therapeutic settings. A robust set of biomarkers will be an inevitable tool for future individualized treatment approaches including radiation dose de-escalation and escalation strategies. This review aims to summarize achieved goals, the current status and future perspectives regarding targeted therapies and ICI in the management of SCCHN.
Collapse
Affiliation(s)
- Jens von der Grün
- Department of Radiation Oncology, Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
| | - Franz Rödel
- Department of Radiation Oncology, Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), partner site: Frankfurt a. M., Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
| | - Christian Brandts
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), partner site: Frankfurt a. M., Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- Department of Medicine, Hematology/Oncology, University Cancer Center Frankfurt (UCT), Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
| | - Emmanouil Fokas
- Department of Radiation Oncology, Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), partner site: Frankfurt a. M., Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
| | - Matthias Guckenberger
- Department of Radiation Oncology, Rämistrasse 100, University Hospital Zurich, 8091 Zürich, Switzerland.
| | - Claus Rödel
- Department of Radiation Oncology, Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), partner site: Frankfurt a. M., Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
| | - Panagiotis Balermpas
- Department of Radiation Oncology, Rämistrasse 100, University Hospital Zurich, 8091 Zürich, Switzerland.
| |
Collapse
|