1
|
Meng L, Shu M, Mei P, Liang Y, Xia L. Size-controllable synthesis of hydroxyapatite nanorods via fluorine modulation: applications in dental adhesives for enhanced enamel remineralization. BMC Oral Health 2025; 25:204. [PMID: 39923038 PMCID: PMC11806586 DOI: 10.1186/s12903-025-05574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND There has been little application of fluorine-substituted hydroxyapatites (FHAs) in dental adhesives. Previous studies primarily focused on the effect of fluoride content on enamel remineralization, neglecting the role of FHA particle size. This study aimed to synthesize uniform FHA nanorods of varying sizes by adjusting the fluorine doping levels, and to investigate the synergistic effects of the fluorine content and nanorod size on enamel remineralization by incorporating the FHA nanorods into adhesives. METHODS FHA nanorods with varying fluorine doping levels and sizes were synthesized based on a hydrothermal method. The characterization analyses of FHA nanorods were demonstrated by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The composite adhesives containing 10 wt% different FHA nanorods were characterized via scanning electron microscopy (SEM). The colloidal stability, light-curing poperties, and degree of conversion (DC %) were assessed. The shear bond strength (SBS) was determined and the failure mode analysis was reported. The release of Ca2+ and F- within 30 days was detected. The remineralization was evaluated via SEM, energy dispersive X-ray spectroscopy (EDS), XRD, and micro-hardness through in vitro and in vivo experiments. Statistical analyses were performed using the Shapiro-Wilk test, Levene test, one-way ANOVA, Tukey HSD method, Welch test, Tamhane test, Fisher's exact test and Kruskal-Wallis test (α = 0.05). RESULTS Uniform FHA nanorods of varying sizes were synthesized by adjusting the fluorine doping level (2 wt%, 6 wt%, and 10 wt%). The lengths of these FHA nanorods were 505.31 ± 104.43 nm, 111.27 ± 22.89 nm, and 66.21 ± 12.68 nm, respectively. The composite adhesives containing FHA nanorods showed good colloidal stability and appropriate light-curing properties. The SBS of composite adhesives decreased due to the incorporation of FHA nanorods, but the values still remained within the clinically required range. Three groups of the composite adhesives could release Ca2+ and F- continuously. The group of 10 wt% F-doped HA nanorods with shorter lengths exhibited more mineral deposition and absorption of Ca²⁺ onto the adhesive and enamel surfaces. CONCLUSIONS The strategy of adding the synthesized FHA nanorods into dental adhesives can be an effective approach to promote enamel remineralization, while maintaining adequate bond strength. The 10 wt% F-doped HA nanorods with shorter lengths exhibited superior remineralization.
Collapse
Affiliation(s)
- Linzhi Meng
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, China
| | - Mengmeng Shu
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, China
| | - Peng Mei
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, China
| | - Yakun Liang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, China
| | - Lunguo Xia
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, China.
| |
Collapse
|
2
|
Zhang Y, Fan M, Zhang Y. Revolutionizing bone defect healing: the power of mesenchymal stem cells as seeds. Front Bioeng Biotechnol 2024; 12:1421674. [PMID: 39497791 PMCID: PMC11532096 DOI: 10.3389/fbioe.2024.1421674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Bone defects can arise from trauma or pathological factors, resulting in compromised bone integrity and the loss or absence of bone tissue. As we are all aware, repairing bone defects is a core problem in bone tissue engineering. While minor bone defects can self-repair if the periosteum remains intact and normal osteogenesis occurs, significant defects or conditions such as congenital osteogenesis imperfecta present substantial challenges to self-healing. As research on mesenchymal stem cell (MSC) advances, new fields of application have emerged; however, their application in orthopedics remains one of the most established and clinically valuable directions. This review aims to provide a comprehensive overview of the research progress regarding MSCs in the treatment of diverse bone defects. MSCs, as multipotent stem cells, offer significant advantages due to their immunomodulatory properties and ability to undergo osteogenic differentiation. The review will encompass the characteristics of MSCs within the osteogenic microenvironment and summarize the research progress of MSCs in different types of bone defects, ranging from their fundamental characteristics and animal studies to clinical applications.
Collapse
Affiliation(s)
- Yueyao Zhang
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Mengke Fan
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Yingze Zhang
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| |
Collapse
|
3
|
Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges. Stem Cell Rev Rep 2024; 20:1692-1731. [PMID: 39028416 DOI: 10.1007/s12015-024-10738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE. Induced pluripotent stem cells and genetically modified stem cells can also be used. Proper manipulation of physical, chemical, and biological stimulation is crucial for their proliferation, maintenance, and differentiation. Stem cells contribute to osteogenesis, osteoinduction, angiogenesis, and mineralization, essential for bone regeneration. This review provides an overview of the latest developments in stem cell-based TE for repairing and regenerating defective bones.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Radiology, Stanford Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | | | - Paige Lauren Buck
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
4
|
Gkomoza P, Kitsou I, Koltsakidis S, Tzetzis D, Karydis-Messinis A, Zafeiropoulos NE, Gerodimou F, Kollia E, Valdramidis V, Tsetsekou A. Effect of Nanoceria Suspension Addition on the Physicochemical and Mechanical Properties of Hybrid Organic-Inorganic Hydroxyapatite Composite Scaffolds. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1102. [PMID: 38998708 PMCID: PMC11242940 DOI: 10.3390/nano14131102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
In the current study, the synthesis of hydroxyapatite-ceria (HAP-CeO2) scaffolds is attempted through a bioinspired chemical approach. The utilized colloidal CeO2 suspension presents antifungal activity against the Aspergillus flavus and Aspergillus fumigatus species at concentrations higher than 86.1 ppm. Three different series of the composite HAP-CeO2 suspensions are produced, which are differentiated based on the precursor suspension to which the CeO2 suspension is added and by whether this addition takes place before or after the formation of the hydroxyapatite phase. Each of the series consists of three suspensions, in which the pure ceria weight reaches 4, 5, and 10% (by mass) of the produced hydroxyapatite, respectively. The characterization showed that the 2S series's specimens present the greater alteration towards their viscoelastic properties. Furthermore, the 2S series's sample with 4% CeO2 presents the best mechanical response. This is due to the growth of needle-like HAP crystals during lyophilization, which-when oriented perpendicular to the direction of stress application-enhance the resistance of the sample to deformation. The 2S series's scaffolds had an average pore size equal to 100 μm and minimum open porosity 89.5% while simultaneously presented the lowest dissolution rate in phosphate buffered saline.
Collapse
Affiliation(s)
- Paraskevi Gkomoza
- Laboratory of Metallurgy, School of Mining & Metallurgical Engineering, National Technical University of Athens, 9 Heroon, Polytechniou Ave., 15772 Zografos, Athens, Greece
| | - Ioanna Kitsou
- Laboratory of Metallurgy, School of Mining & Metallurgical Engineering, National Technical University of Athens, 9 Heroon, Polytechniou Ave., 15772 Zografos, Athens, Greece
| | - Savvas Koltsakidis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 14th km Thessaloniki-N. Moudania, 57001 Thermi, Thessaloniki, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 14th km Thessaloniki-N. Moudania, 57001 Thermi, Thessaloniki, Greece
| | | | | | - Foteini Gerodimou
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Zografos, Athens, Greece
| | - Eleni Kollia
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Zografos, Athens, Greece
| | - Vasilis Valdramidis
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Zografos, Athens, Greece
| | - Athena Tsetsekou
- Laboratory of Metallurgy, School of Mining & Metallurgical Engineering, National Technical University of Athens, 9 Heroon, Polytechniou Ave., 15772 Zografos, Athens, Greece
| |
Collapse
|
5
|
Maraldi T, Russo V. Amniotic Fluid and Placental Membranes as Sources of Stem Cells: Progress and Challenges 2.0. Int J Mol Sci 2023; 24:16020. [PMID: 38003210 PMCID: PMC10671515 DOI: 10.3390/ijms242216020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of the second edition of this Special Issue was to collect both review and original research articles that investigate and elucidate the possible therapeutic role of perinatal stem cells in pathological conditions, such as cardiovascular and metabolic diseases, as well as inflammatory, autoimmune, musculoskeletal, and degenerative diseases [...].
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41125 Modena, Italy
| | - Valentina Russo
- Faculty of Bioscience and Agro-Food and Environmental Technology, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
6
|
Valiulienė G, Zentelytė A, Beržanskytė E, Navakauskienė R. Effect of 3D Spheroid Culturing on NF-κB Signaling Pathway and Neurogenic Potential in Human Amniotic Fluid Stem Cells. Int J Mol Sci 2023; 24:ijms24043584. [PMID: 36834995 PMCID: PMC9963588 DOI: 10.3390/ijms24043584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Human amniotic fluid stem cells (hAFSCs) are known for their advantageous properties when compared to somatic stem cells from other sources. Recently hAFSCs have gained attention for their neurogenic potential and secretory profile. However, hAFSCs in three-dimensional (3D) cultures remain poorly investigated. Therefore, we aimed to evaluate cellular properties, neural differentiation, and gene and protein expression in 3D spheroid cultures of hAFSCs in comparison to traditional two-dimensional (2D) monolayer cultures. For this purpose, hAFSCs were obtained from amniotic fluid of healthy pregnancies and cultivated in vitro, either in 2D, or 3D under untreated or neuro-differentiated conditions. We observed upregulated expression of pluripotency genes OCT4, NANOG, and MSI1 as well as augmentation in gene expression of NF-κB-TNFα pathway genes (NFKB2, RELA and TNFR2), associated miRNAs (miR103a-5p, miR199a-3p and miR223-3p), and NF-κB p65 protein levels in untreated hAFSC 3D cultures. Additionally, MS analysis of the 3D hAFSCs secretome revealed protein upregulation of IGFs signaling the cascade and downregulation of extracellular matrix proteins, whereas neural differentiation of hAFSC spheroids increased the expression of SOX2, miR223-3p, and MSI1. Summarizing, our study provides novel insights into how 3D culture affects neurogenic potential and signaling pathways of hAFSCs, especially NF-κB, although further studies are needed to elucidate the benefits of 3D cultures more thoroughly.
Collapse
|
7
|
Mohammed EEA, Beherei HH, El-Zawahry M, Farrag ARH, Kholoussi N, Helwa I, Mabrouk M, Abdel Aleem AK. Osteogenic enhancement of modular ceramic nanocomposites impregnated with human dental pulp stem cells: an approach for bone repair and regenerative medicine. J Genet Eng Biotechnol 2022; 20:123. [PMID: 35976537 PMCID: PMC9385929 DOI: 10.1186/s43141-022-00387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Background/aim Human dental pulp-derived mesenchymal stem cells (hDP-MSCs) are a promising source of progenitor cells for bone tissue engineering. Nanocomposites made of calcium phosphate especially hydroxyapatite (HA) offer an impressive solution for orthopedic and dental implants. The combination of hDP-MSCs and ceramic nanocomposites has a promising therapeutic potential in regenerative medicine. Despite the calcium phosphate hydroxyapatite (HA)-based nanocomposites offer a good solution for orthopedic and dental implants, the heavy load-bearing clinical applications require higher mechanical strength, which is not of the HA’ properties that have low mechanical strength. Herein, the outcomes of using fabricated ceramic nanocomposites of hydroxyapatite/titania/calcium silicate mixed at different ratios (C1, C2, and C3) and impregnated with hDP-MSCs both in in vitro cultures and rabbit model of induced tibial bone defect were investigated. Our aim is to find out a new approach that would largely enhance the osteogenic differentiation of hDP-MSCs and has a therapeutic potential in bone regeneration. Subjects and methods Human DP-MSCs were isolated from the dental pulp of the third molar and cultured in vitro. Alizarin Red staining was performed at different time points to assess the osteogenic differentiation. Flow cytometer was used to quantify the expression of hDP-MSCs unique surface markers. Rabbits were used as animal models to evaluate the therapeutic potential of osteogenically differentiated hDP-MSCs impregnated with ceramic nanocomposites of hydroxyapatite/tatiana/calcium silicate (C1, C2, and C3). Histopathological examination and scanning electron microscopy (SEM) were performed to evaluate bone healing potential in the rabbit induced tibial defects three weeks post-transplantation. Results The hDP-MSCs showed high proliferative and osteogenic potential in vitro culture. Their osteogenic differentiation was accelerated by the ceramic nanocomposites’ scaffold and revealed bone defect’s healing in transplanted rabbit groups compared to control groups. Histopathological and SEM analysis of the transplanted hDP-MSCs/ceramic nanocomposites showed the formation of new bone filling in the defect area 3 weeks post-implantation. Accelerate osseointegration and enhancement of the bone-bonding ability of the prepared nanocomposites were also confirmed by SEM. Conclusions The results strongly suggested that ceramic nanocomposites of hydroxyapatite/ titania /calcium silicate (C1, C2, and C3) associated with hDP-MSCs have a therapeutic potential in bone healing in a rabbit model. Hence, the combined osteogenic system presented here is recommended for application in bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Eman E A Mohammed
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt. .,Refractoriness, Ceramics and Building Materials Department, Inorganic Chemical Industries and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt.
| | - Hanan H Beherei
- Fixed and Removable Prosthodontics Department, Oral and Dental Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed El-Zawahry
- Pathology Department, Medicine and Clinical Studies Research Institute, National Research Centre, Cairo, Egypt
| | - Abdel Razik H Farrag
- Stem Cell Research Group, Medical Research Center of Excellence, National Research Centre, Cairo, Egypt
| | - Naglaa Kholoussi
- Immunogenetics Department, Human Genetics and Genome Research Institute, National Research Centre, National Research Centre, Cairo, Egypt
| | - Iman Helwa
- Immunogenetics Department, Human Genetics and Genome Research Institute, National Research Centre, National Research Centre, Cairo, Egypt
| | - Mostafa Mabrouk
- Fixed and Removable Prosthodontics Department, Oral and Dental Research Institute, National Research Centre, Cairo, Egypt
| | - Alice K Abdel Aleem
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.,Refractoriness, Ceramics and Building Materials Department, Inorganic Chemical Industries and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
8
|
Nejad AR, Hamidieh AA, Amirkhani MA, Sisakht MM. Update review on five top clinical applications of human amniotic membrane in regenerative medicine. Placenta 2020; 103:104-119. [PMID: 33120046 DOI: 10.1016/j.placenta.2020.10.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
Due to the increasing number of studies performed in the field of regenerative medicine during the last two decades, more analytic studies are still needed to clarify the future prospect of this area of science. The main aim of this research was to review the clinical applications of human Amniotic membrane in the field of regenerative medicine critically. Furthermore, in the light of increasing numbers of available products derived from amniotic membrane, we aimed look in depth to see whether regenerative medicine research strategies have a place in the clinical setting. More specifically, in the present study, we attempted to provide insight on developing the new indication for more research and in the next step, for market leaders companies to expand cost-effectiveness of new derived AM products. 20 companies or distributers have offered some commercial products in this field. Survey on more than 90 clinical trials in last five years showed dermatology (and more specific wound healing), orthopedic, and ophthalmology are heavily biased toward multibillion dollar industry. Moreover, urology and dentistry with fewer numbers of clinical data in comparison with the above-mentioned areas, currently are in the path of translation (especially dentistry). In addition, otolaryngology and oncology with the lowest number showed more potential of research thorough understanding the properties that will help guiding the use of AM-derived products in these two areas in future. More than 50% of clinical studies were done or are developing in USA, which have the biggest share in market products. Subsequently, China, Egypt, India, Iran, and Germany with the ongoing clinical trials in different phases may have more approved products in near future.
Collapse
Affiliation(s)
- Aida Rezaei Nejad
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran; Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amir Amirkhani
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mollapour Sisakht
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran; Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
9
|
Feng YN, Zhang XF. Polysaccharide extracted from Huperzia serrata using response surface methodology and its biological activity. Int J Biol Macromol 2020; 157:267-275. [PMID: 32339584 DOI: 10.1016/j.ijbiomac.2020.04.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/07/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022]
Abstract
In this study, Huperzia serrata polysaccharide (HSP) fraction was isolated using response surface methodology (RSM) and Box-Behnken design (BBD). The extraction time, temperature and ratio of water to raw material were employed effects. And properties of four polysaccharide (60%-HSP, 70%-HSP, 80%-HSP and 90%-HSP) were evaluated. The results indicated that the optimal extraction conditions were the following: 3.07 h, 49.46 °C and a liquid material ratio of 20.73:1. The four HSP presented irregular aggregation of shape. And all HSP exhibited antioxidant and anticancer activities.
Collapse
Affiliation(s)
- Yan-Ni Feng
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Xi-Feng Zhang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China.
| |
Collapse
|