1
|
Propp MA, Paz D, Makhkamov S, Payton ME, Choudhury Q, Nutter M, Ryznar R. A Prospective Cohort Study on the Effects of Repeated Acute Stress on Cortisol Awakening Response and Immune Function in Military Medical Students. Biomedicines 2024; 12:2519. [PMID: 39595087 PMCID: PMC11592205 DOI: 10.3390/biomedicines12112519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The cortisol awakening response (CAR) is a pivotal component of the body's stress response, yet its dynamics under repeated acute stress and its interplay with immune biomarkers remain inadequately understood. Methods: This study examined 80 second-year military medical students undergoing a 5-day intensive surgical simulation designed to elicit stress responses. Salivary samples were collected daily upon waking and 30 min thereafter to measure cortisol and a panel of cytokines using bead-based multiplex ELISA. Results: Analysis revealed a significant blunting of the CAR on the third day of training (p = 0.00006), followed by a recovery on the fourth day (p = 0.0005). Concurrently, specific cytokines such as CXCL1 (r = 0.2, p = 0.0005), IL-6 (r = 0.13, p = 0.02), IL-10 (r = 0.14, p = 0.02), and VEGF-A (r = 0.17, p = 0.003) displayed patterns correlating with the CAR, with increased strength of associations observed when assessing cytokine levels against the CAR of the preceding day (CXCL1 r = 0.41, p = 0.0002. IL-6 r = 0.38, p = 0.0006. IL-10 r = 0.3, p = 0.008. VEGF-A r = 0.41, p = 0.0002). Conclusions: These results suggest a temporal relationship between stress-induced cortisol dynamics and immune regulation. The CAR pattern demonstrated in this study may represent induction of and recovery from psychological burnout. Moreover, the observed cytokine associations provide insight into the mechanisms by which stress can influence immune function. The results may have broader implications for managing stress in high-performance environments, such as military and medical professions, and for identifying individuals at risk of stress-related immune suppression.
Collapse
Affiliation(s)
- Madison A. Propp
- College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA
| | - Dean Paz
- College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA
- Department of Emergency Medicine, University of Texas at Austin Dell, 1500 Red River St, Austin, TX 78701, USA
| | - Sukhrob Makhkamov
- College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA
| | - Mark E. Payton
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA; (M.E.P.); (Q.C.); (R.R.)
| | - Qamrul Choudhury
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA; (M.E.P.); (Q.C.); (R.R.)
| | - Melodie Nutter
- Arizona College of Nursing, 8363 West Sunset Road, Las Vegas, NV 89113, USA;
| | - Rebecca Ryznar
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA; (M.E.P.); (Q.C.); (R.R.)
| |
Collapse
|
2
|
Alotaibi BS, El-Masry TA, Selim H, El-Bouseary MM, El-Sheekh MM, Makhlof MEM, El-Nagar MMF. New insights into the anticancer effects of Polycladia crinita aqueous extract and its selenium nanoformulation against the solid Ehrlich carcinoma model in mice via VEGF, notch 1, NF-кB, cyclin D1, and caspase 3 signaling pathway. Front Pharmacol 2024; 15:1345516. [PMID: 38469406 PMCID: PMC10926956 DOI: 10.3389/fphar.2024.1345516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Background: Phaeophyceae species are enticing interest among researchers working in the nanotechnology discipline, because of their diverse biological activities such as anti-inflammatory, antioxidant, anti-microbial, and anti-tumor. In the present study, the anti-cancer properties of Polycladia crinita extract and green synthesized Polycladia crinita selenium nanoparticles (PCSeNPs) against breast cancer cell line (MDA-MB-231) and solid Ehrlich carcinoma (SEC) were investigated. Methods: Gas chromatography-mass spectroscopy examinations of Polycladia crinita were determined and various analytical procedures, such as SEM, TEM, EDX, and XRD, were employed to characterize the biosynthesized PCSeNPs. In vitro, the anticancer activity of free Polycladia crinita and PCSeNPs was evaluated using the viability assay against MDA-MB-231, and also cell cycle analysis by flow cytometry was determined. Furthermore, to study the possible mechanisms behind the in vivo anti-tumor action, mice bearing SEC were randomly allocated into six equal groups (n = 6). Group 1: Tumor control group, group 2: free SeNPs, group 3: 25 mg/kg Polycladia crinita, group 4: 50 mg/kg Polycladia crinita, group 5: 25 mg/kg PCSeNPs, group 6: 50 mg/kg PCSeNPs. Results: Gas chromatography-mass spectroscopy examinations of Polycladia crinita extract exposed the presence of many bioactive compounds, such as 4-Octadecenoic acid-methyl ester, Tetradecanoic acid, and n-Hexadecenoic acid. These compounds together with other compounds found, might work in concert to encourage the development of anti-tumor activities. Polycladia crinita extract and PCSeNPs were shown to inhibit cancer cell viability and early cell cycle arrest. Concentrations of 50 mg/kg of PCSeNPs showed suppression of COX-2, NF-кB, VEGF, ki-67, Notch 1, and Bcl-2 protein levels. Otherwise, showed amplification of the caspase 3, BAX, and P53 protein levels. Moreover, gene expression of caspase 3, caspase 9, Notch 1, cyclin D1, NF-кB, IL-6, and VEGF was significantly more effective with PCSeNPs than similar doses of free extract. Conclusion: The PCSeNPs mediated their promising anti-cancerous action by enhancing apoptosis and mitigating inflammation, which manifested in promoting the total survival rate and the tumor volume decrease.
Collapse
Affiliation(s)
- Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hend Selim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Maisra M. El-Bouseary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Mofida E. M. Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Kandilarov I, Gardjeva P, Georgieva-Kotetarova M, Zlatanova H, Vilmosh N, Kostadinova I, Katsarova M, Atliev K, Dimitrova S. Effect of Plant Extracts Combinations on TNF-α, IL-6 and IL-10 Levels in Serum of Rats Exposed to Acute and Chronic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3049. [PMID: 37687297 PMCID: PMC10490550 DOI: 10.3390/plants12173049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Oxydative stress, anxiety and depression are associated with changes in cytokine levels. Natural products, including individual and combined plant extracts, have the potential to be used in the treatment of neuropsychiatric disorders. The goal of this study is to investigate the effects of two combined plant extracts, rich in flavonoids, on the levels of the cytokines TNF-α, IL-6, and IL-10 in rats subjected to models of acute cold stress and chronic unpredictable stress. The study utilized common medicinal plants such as Valeriana officinalis, Melissa officinalis, Crataegus monogyna, Hypericum perforatum, and Serratula coronata, which were combined in two unique combinations-Antistress I and Antistress II. The compositions of the used extracts were determined by HPLC methods. Pro- and anti-inflammatory cytokines in rats' serum were measured with Enzyme-linked immunosorbent assay. The results from the acute stress model revealed that the individual extract of Crataegus monogyna decreased levels of TNF-α, while Serratula coronata, Hypericum perforatum, and Valeriana officinalis effectively reduced IL-6 levels. Both combinations, Antistress I and Antistress II, were effective in reducing TNF-α and IL-6 levels, with Antistress II also increasing IL-10 levels. In the chronic stress model, Hypericum perforatum extract decreased the levels of the pro-inflammatory cytokines TNF-α and IL-6, whereas extracts of Serratula coronata and Valeriana officinalis only reduced TNF-α levels. The two combined extracts, Antistress I and Antistress II, decreased TNF-α and IL-6 levels, while Antistress I also reduced the levels of the anti-inflammatory cytokine IL-10. The combinations of plant extracts used in our experiment have not been previously studied or documented in the available literature. However, based on our own experimental results, we can draw the conclusion that the combinations exhibit a more pronounced effect in reducing cytokine levels compared to the individual plant extracts.
Collapse
Affiliation(s)
- Ilin Kandilarov
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria; (I.K.); (M.G.-K.); (H.Z.); (N.V.); (I.K.)
| | - Petya Gardjeva
- Department of Medical Microbiology and Immunology „Prof. Dr. Elissay Yanev”, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria;
| | - Maria Georgieva-Kotetarova
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria; (I.K.); (M.G.-K.); (H.Z.); (N.V.); (I.K.)
| | - Hristina Zlatanova
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria; (I.K.); (M.G.-K.); (H.Z.); (N.V.); (I.K.)
| | - Natalia Vilmosh
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria; (I.K.); (M.G.-K.); (H.Z.); (N.V.); (I.K.)
| | - Ivanka Kostadinova
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria; (I.K.); (M.G.-K.); (H.Z.); (N.V.); (I.K.)
| | - Mariana Katsarova
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria;
| | - Kiril Atliev
- Department of Urology and General Medicine, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria;
| | - Stela Dimitrova
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria;
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria
| |
Collapse
|
4
|
Kim J, Lim J, Yoo ID, Park S, Moon JS. TXNIP contributes to induction of pro-inflammatory phenotype and caspase-3 activation in astrocytes during Alzheimer's diseases. Redox Biol 2023; 63:102735. [PMID: 37172394 DOI: 10.1016/j.redox.2023.102735] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Neuroinflammation and oxidative stress have been implicated in the pathogenesis of Alzheimer's disease (AD). Neuroinflammation and oxidative stress are associated with neuronal death in AD. Astrocytes are linked to neuroinflammation during AD. Astrocytes are important contributors to AD progression. Although the role of thioredoxin-interacting protein (TXNIP) has been identified in inflammation and oxidative stress, the mechanism by which TXNIP regulates inflammation and oxidative stress in astrocytes during AD remains unclear. In the present study, we found that TXNIP gene levels were elevated in cerebral cortex of patients with AD. The protein levels of TXNIP were elevated in GFAP-positive astrocytes of cerebral cortex from patients with AD and APP/PS1 double-transgenic mouse model of AD. Our results showed that TXNIP increased expression of genes related to pro-inflammatory reactive astrocytes and pro-inflammatory cytokines and chemokines in human astrocytes. Moreover, TXNIP increased production of pro-inflammatory cytokines and chemokines in human astrocytes. TXNIP induced activation of NK-kB signaling and over-production of mitochondrial reactive oxygen species (mtROS) in human astrocytes. TXNIP also induced mitochondrial oxidative stress by reduction of mitochondrial respiration and ATP production in human astrocytes. Furthermore, elevated TXNIP levels are correlated with caspase-3 activation of GFAP-positive astrocytes in patients with AD and mouse AD. TXNIP induced mitochondria-dependent apoptosis via caspase-9 and caspase-3 activation in human astrocytes. These results suggest that TXNIP contributes to induction of pro-inflammatory phenotype and caspase-3 activation in astrocytes during AD.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea
| | - Jaejoon Lim
- Bundang CHA Medical Center, Department of Neurosurgery, CHA University, Yatap-dong 59, Seong-nam, 13496, South Korea
| | - Ik Dong Yoo
- Department of Nuclear Medicine, Soonchunhyang University Hospital Cheonan, Cheonan, 31151, Chungcheongnam-do, South Korea
| | - Samel Park
- Department of Internal Medicine, Soonchunhyang University Hospital Cheonan, Cheonan, 31151, Chungcheongnam-do, South Korea.
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea.
| |
Collapse
|
5
|
Elfving B, Liebenberg N, du Jardin K, Sanchez C, Wegener G, Müller HK. Single dose S-ketamine rescues transcriptional dysregulation of Mtor and Nrp2 in the prefrontal cortex of FSL rats 1 hour but not 14 days post dosing. Eur Neuropsychopharmacol 2022; 65:56-67. [PMID: 36375239 DOI: 10.1016/j.euroneuro.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/20/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022]
Abstract
There is a pressing need to identify biological indicators of major depression to help guide proper diagnosis and optimize treatment. Animal models mimicking aspects of depression constitute essential tools for early-stage exploration of relevant pathways. In this study, we used the Flinders Sensitive and Resistant Line (FSL/FRL) to explore central and peripheral transcriptional changes in vascular endothelial growth factor (VEGF) pathway genes and their temporal regulation after a single dose of S-ketamine (15 mg/kg). We found that S-ketamine induced both rapid (1 hour) and sustained (2 and 14 days) antidepressant-like effects in the FSL rats. Analysis of mRNA expression revealed significant strain effects of Vegf, Vegf164, Vegfr-1, Nrp1, Nrp2, Rictor, and Raptor in the prefrontal cortex (PFC) and of Vegf164, GbetaL, and Tsc1 in the hippocampus (HIP), which indicates suppression of VEGF signaling in the FSL rats compared to FRL rats. This notion was further substantiated by reduced expression of Vegf and Mtor in plasma from FSL rats. In the brain, S-ketamine induced transcriptional changes in the acute phase, not the sustained phase. There were significant treatment effects of S-ketamine on Vegfr-2 in both PFC and HIP and on Vegf and Vegfr-1 in HIP. Moreover, we found that S-ketamine specifically restored reduced levels of Nrp2 and Mtor in the PFC of the FSL rats. In conclusion, this study substantiates the use of the FRL/FSL rats to explore the depressive-like behavior at the transcriptional level of the VEGF pathway genes and study their regulation in response to various treatment paradigms.
Collapse
Affiliation(s)
- Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark.
| | - Nico Liebenberg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Kristian du Jardin
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Connie Sanchez
- External Sourcing and Scientific Excellence, Lun Research USA, Inc., Paramus, NJ, United States of America
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
6
|
Peng Z, Peng S, Lin K, Zhao B, Wei L, Tuo Q, Liao D, Yuan T, Shi Z. Chronic stress-induced depression requires the recruitment of peripheral Th17 cells into the brain. J Neuroinflammation 2022; 19:186. [PMID: 35836182 PMCID: PMC9281140 DOI: 10.1186/s12974-022-02543-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/01/2022] [Indexed: 12/27/2022] Open
Abstract
Background Depression is a recurrent and devastating mental disease that is highly prevalent worldwide. Prolonged exposure to stressful events or a stressful environment is detrimental to mental health. In recent years, an inflammatory hypothesis has been implicated in the pathogenesis of stress-induced depression. However, less attention has been given to the initial phases, when a series of stress reactions and immune responses are initiated. Peripheral CD4+ T cells have been reported as the major contributors to the occurrence of mental disorders. Chronic stress exposure-evoked release of cytokines can promote the differentiation of peripheral CD4+ cells into various phenotypes. Among them, Th17 cells have attracted much attention due to their high pathogenic potential in central nervous system (CNS) diseases. Thus, we intended to determine the crucial role of CD4+ Th17 cells in the development of specific subtypes of depression and unravel the underpinnings of their pathogenetic effect. Methods In the present research, a daily 6-h restraint stress paradigm was employed in rats for 28 successive days to mimic the repeated mild and predictable, but inevitable environmental stress in our daily lives. Then, depressive-like symptoms, brain–blood barrier (BBB) permeability, neuroinflammation, and the differentiation and functional changes of CD4+ cells were investigated. Results We noticed that restrained rats showed significant depressive-like symptoms, concomitant BBB disruption and neuroinflammation in the dorsal striatum (DS). We further observed a time-dependent increase in thymus- and spleen-derived naïve CD4+ T cells, as well as the aggregation of inflammatory Th17 cells in the DS during the period of chronic restraint stress (CRS) exposure. Moreover, increased Th17-derived cytokines in the brain can further impair the BBB integrity, thus allowing more immune cells and cytokines to gain easy access to the CNS. Our findings suggested that, through a complex cascade of events, peripheral immune responses were propagated to the CNS, and gradually exacerbated depressive-like symptoms. Furthermore, inhibiting the differentiation and function of CD4+ T cells with SR1001 in the early stages of CRS exposure ameliorated CRS-induced depressive-like behaviour and the inflammatory response. Conclusions Our data demonstrated that inflammatory Th17 cells were pivotal in accelerating the onset and exacerbation of depressive symptoms in CRS-exposed rats. This subtype of CD4+ T cells may be a promising therapeutic target for the early treatment of stress-induced depression. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02543-6.
Collapse
Affiliation(s)
- Zhuang Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China.,School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Bin Zhao
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Lai Wei
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qinhui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China. .,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China. .,Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Mental Disorders, Changsha, Hunan, China.
| |
Collapse
|
7
|
Kim Y, Kim H, Kang HW. Enhancement of gold nanorods-assisted photothermal treatment on cancer with laser power in stepwise modulation. Lasers Surg Med 2022; 54:841-850. [PMID: 35419820 DOI: 10.1002/lsm.23549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Photothermal therapy (PTT) is a minimally invasive or noninvasive method by destructing cancer cells through selective thermal decomposition. However, a long period of laser irradiation to achieve coagulative necrosis often causes unfavorable thermal damage to the surrounding healthy tissue. The current study aims to evaluate the feasibility of temporal power modulation to improve the treatment efficacy of gold nanorods-assisted PTT against tumor tissue. MATERIALS AND METHODS A total of 25 µg/ml of PEGylated gold nanorods (PEG-GNR) was used as an absorbing agent during 1064 nm laser irradiation for PTT. Temperature monitoring was conducted on the aqueous solution of PEG-GNR for dosimetry comparison. For in vivo tests, CT-26 tumor-bearing murine models with PEG-GNR injected were treated with three irradiation conditions: 3 W/cm2 for 90 s, 1.5 W/cm2 for 180 s, and 3 W/cm2 for 60 s followed by 1.5 W/cm2 for 60 s (modulated). Ten days after the treatments, histology analysis was performed to assess the extent of coagulation necrosis in the treated tissues. RESULTS The temporal power modulation maintained the tissue temperature of around 50°C for a longer period during the irradiation. Histology analysis confirmed that the modulated group entailed a larger coagulative necrosis area with less thermal damage to the peripheral tissue, compared to the other irradiation conditions. CONCLUSION Therefore, the power-modulated PTT could improve treatment efficacy with reduced injury by maintaining the constant tissue temperature. Further studies will examine the feasibility of the proposed technique in large animal models in terms of acute and chronic tissue responses and treatment margin for clinical translations.
Collapse
Affiliation(s)
- Yeongeun Kim
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan, Korea.,Marine-Integrated Biomedical Technology Center, Pukyong National University, Busan, Korea
| | - Hyejin Kim
- Marine-Integrated Biomedical Technology Center, Pukyong National University, Busan, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Korea
| | - Hyun Wook Kang
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan, Korea.,Marine-Integrated Biomedical Technology Center, Pukyong National University, Busan, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Korea
| |
Collapse
|
8
|
Valiuliene G, Valiulis V, Dapsys K, Vitkeviciene A, Gerulskis G, Navakauskiene R, Germanavicius A. Brain stimulation effects on serum BDNF, VEGF, and TNFα in treatment-resistant psychiatric disorders. Eur J Neurosci 2021; 53:3791-3802. [PMID: 33861484 DOI: 10.1111/ejn.15232] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
Resistance to pharmacological treatment poses a notable challenge for psychiatry. Such cases are usually treated with brain stimulation techniques, including repetitive transcranial magnetic stimulation (rTMS) and electroconvulsive therapy (ECT). Empirical evidence links treatment resistance to insufficient brain plasticity and chronic inflammation. Therefore, this study encompasses analysis of neurotrophic and inflammatory factors in psychiatric patients undergoing rTMS and ECT in order to refine the selection of patients and predict clinical outcomes. This study enrolled 25 drug-resistant depressive patients undergoing rTMS and 31 drug-resistant schizophrenia patients undergoing ECT. Clinical efficacy of brain stimulation therapies was gauged using MADRS and HAM-D scales in the depression group and PANSS scale in the schizophrenia group. Blood-derived BDNF, VEGF, and TNFα were analysed during the treatment course. For reference, 19 healthy control subjects were also enrolled. After statistical analysis, no significant differences were detected in BDNF, VEGF, and TNFα concentrations among healthy, depressive, and schizophrenic subject groups before the treatment. However, depressive patient treatment with rTMS has increased BDNF concentration, while schizophrenic patient treatment with ECT has lowered the concentration of TNFα. Our findings suggest that a lower initial TNFα concentration could be a marker for treatment success in depressed patients undergoing rTMS, whereas in schizophrenic patient group treated with ECT, a higher concentration of VEGF correlates to milder symptoms post-treatment, especially in the negative scale.
Collapse
Affiliation(s)
- Giedre Valiuliene
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Vladas Valiulis
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.,Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania
| | - Kastytis Dapsys
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.,Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania.,Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Aida Vitkeviciene
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Giedrius Gerulskis
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.,Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania
| | - Ruta Navakauskiene
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Arunas Germanavicius
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.,Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania.,Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
9
|
Zhang L, Liu J, Ge Y, Liu M. Ginkgo biloba Extract Reduces Hippocampus Inflammatory Responses, Improves Cardiac Functions And Depressive Behaviors In A Heart Failure Mouse Model. Neuropsychiatr Dis Treat 2019; 15:3041-3050. [PMID: 31754303 PMCID: PMC6825506 DOI: 10.2147/ndt.s229296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Depression has been shown to share an extremely high comorbidity with heart failure (HF). Ginkgo biloba extract (GBE) is a widely used traditional Chinese medicine in cardiac disease. However, its potential therapeutic effect on depressive symptoms following HF largely remains unknown. In this article, we aimed to investigate its effects in reducing depressive behaviors of a HF mouse model. Moreover, we also discussed whether its effects are associated with changes in neural inflammation and 5-hydroxytryptamine (5-HT) signaling. METHODS Mice were randomly divided into three groups: sham, HF+saline and HF+GBE (150 mg/kg/d) (n=10 per group). Systolic heart failure was induced by ligating the left anterior descending coronary artery. Cardiac functions together with depressive-like behaviors were measured after 4 weeks' treatment. Levels of brain natriuretic peptide (BNP), 5-HT, 5-HT receptor 2A (5-HT2AR), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), vascular endothelial growth factor (VEGF), hypoxia inducible factor-1 (HIF-1), (cleaved) caspase-3, Bax and Bcl-2 were analyzed by Western blot, Elisa and immunohistochemistry at the end of the experiments. RESULTS GBE benefited antidepressant-like behaviors and improved cardiac functions in mice with heart failure. Levels of TNF-α, IL-1β and 5-HT were reduced in the hippocampus after the administration of GBE. Further experiments revealed that GBE also blocked the release of serotonin in the peripheral blood and triggered HIF-1 induced anti-apoptotic pathways. CONCLUSION GBE has potential therapeutic effects in relieving depressive status of patients with HF.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing 100029, People's Republic of China
| | - Jianyang Liu
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing 100029, People's Republic of China
| | - Yingbin Ge
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Meiyan Liu
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing 100029, People's Republic of China
| |
Collapse
|
10
|
Ryan KM, McLoughlin DM. Vascular endothelial growth factor plasma levels in depression and following electroconvulsive therapy. Eur Arch Psychiatry Clin Neurosci 2018; 268:839-848. [PMID: 29968119 DOI: 10.1007/s00406-018-0919-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Both animal and human studies have implicated the neurotrophic and angiogenic mediator vascular endothelial growth factor (VEGF) in depression, with meta-analyses, indicating that protein levels are raised in patients with depression. In line with this, we have previously shown that VEGFA mRNA levels are higher in whole blood from patients with depression compared to controls, in particular in patients with psychotic unipolar depression, and that treatment with electroconvulsive therapy (ECT) alters VEGFA mRNA levels. The aim of the present study was, therefore, to extend this previous work by assessing plasma VEGF protein levels in patients with depression compared to healthy controls, and in patients following treatment with ECT. We found that there was no difference between controls and patients with depression with regard to plasma VEGF (p = 0.59), and that VEGF levels were unaltered by ECT (p = 0.09) after correction for potential covariates. We found no correlation between VEGF protein and mRNA levels. Within the subgroup of patients receiving treatment with bitemporal ECT (n = 34), we identified a moderate negative correlation (ρ = - 0.54, p = 0.001) between the change in VEGF and the change in depression severity following treatment; however, no other association between VEGF and mood, responder/remitter status, polarity of depression, or presence of psychosis were found. Overall, our results indicate that the measurement of VEGF protein is not a useful marker for depression or response to treatment, and suggest that the measurement of VEGFA mRNA may prove more useful.
Collapse
Affiliation(s)
- Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland. .,Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, Dublin 8, Ireland.
| |
Collapse
|
11
|
Zhang F, Luo J, Zhu X. Ketamine ameliorates depressive-like behaviors by tPA-mediated conversion of proBDNF to mBDNF in the hippocampus of stressed rats. Psychiatry Res 2018; 269:646-651. [PMID: 30216916 DOI: 10.1016/j.psychres.2018.08.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/26/2018] [Accepted: 08/17/2018] [Indexed: 12/29/2022]
Abstract
Some studies have indicated that ketamine has a rapid antidepressant effects, but the underlying molecular mechanism is still unclear. Researchers have found that mature brain-derived neurotrophic factor (mBDNF) and its precursor proBDNF are related to depression; they elicit opposite effects on cellular functions. It is clear that tissue plasminogen activator (tPA) is a key regulatory element in the conversion of proBDNF to mBDNF. The chronic unpredicted mild stress (CUMS) procedure is a classical and reliable method to establish the model of depression. This study found that sucrose preference and locomotor activity were both reduced in CUMS-treated rats while were increased in those who were injected with ketamine. The hippocampal proBDNF/mBDNF ratio was downregulated after ketamine treatment in those rats, together with an increased level of tPA in the hippocampus. However, tPA activity was unaltered after ketamine intraperitoneal injection. Intrahippocampal injection of active plasminogen activator inhibitor-1 (inhibitor of tPA) before ketamine treatment reversed the antidepressant effects and upregulated the proBDNF/mBDNF ratio. The results of this study suggest that the antidepressant action induced by ketamine may be related to tPA-mediated conversion of proBDNF to mBDNF in the hippocampus.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Anesthesiology, The People's Hospital of Jianyang City, Chengdu 610000, China
| | - Jie Luo
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xianlin Zhu
- Department of Anesthesiology, The Central Hospital of Enshi Autonomous Prefecture, Enshi 445000, China.
| |
Collapse
|
12
|
Han X, Wu H, Yin P, Chen Z, Cao X, Duan Y, Xu J, Lao L, Xu S. Electroacupuncture restores hippocampal synaptic plasticity via modulation of 5-HT receptors in a rat model of depression. Brain Res Bull 2018. [DOI: 10.1016/j.brainresbull.2018.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
The impact of ALDH2 activation by Alda-1 on the expression of VEGF in the hippocampus of a rat model of post-MI depression. Neurosci Lett 2018; 674:156-161. [DOI: 10.1016/j.neulet.2018.03.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/17/2023]
|
14
|
Propofol alleviates electroconvulsive shock-induced memory impairment by modulating proBDNF/mBDNF ratio in depressive rats. Brain Res 2016; 1642:43-50. [DOI: 10.1016/j.brainres.2016.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 12/15/2022]
|