1
|
Zou Y, Ruan M, Feng X, Liu F, Liu W, Chen S, Chu Z. Neuroprotective effect of riboflavin kinase on cerebral ischemia injury in rats. Mol Med 2025; 31:125. [PMID: 40175896 PMCID: PMC11966939 DOI: 10.1186/s10020-025-01170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/15/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Riboflavin kinase (RFK, also called flavokinase) is a catalytic enzyme that converts riboflavin to its active form in vivo. Dysfunction of the RFK gene has been associated with susceptibility to ischemic stroke. However, the protective role and mechanisms of RFK in ischemic stroke have not been elucidated. METHODS Lentivirus-mediated RFK knock-up (RFK( +)) and knock-down (RFK(-)) were used to investigate the protective effect and mechanism of RFK in the rat middle cerebral artery occlusion (MCAO) model in vivo and in the oxygen and glucose deprivation (OGD) model of neurons in vitro; and the dependence of the protective effect of RFK on flavins was also investigated. RESULTS We demonstrated that RFK was an endogenous protein against ischemia brain injury both in vivo and in vitro experiments. RFK inhibited cerebral infarction, cerebral edema and neuronal apoptosis after cerebral ischemia. Its mechanisms include inhibition of the protein expression of Caspase 12 and Caspase 3 induced by cerebral ischemia, and thus inhibiting endoplasmic reticulum stress (ERS) and neuronal apoptosis; the protective effect of RFK depends on the presence of the flavoprotein Ero1; exogenous riboflavin supplementation protected cortical neurons from ischemic injury and prolonged the lifespan in stroke-prone spontaneously hypertensive rats with low RFK gene function, but this protective effect is limited and cannot completely reverse the decreasing trend of neuronal tolerance to ischemic injury caused by RFK gene dysfunction; the protective effect of RFK against ischemic injury is independent of the presence of flavins and their concentrations. CONCLUSIONS The present study demonstrates that RFK is an important regulatory molecule against ischemia brain injury and its mechanism involves inhibition of ERS. The protective effect of RFK is independent of the presence of flavins and their concentrations. RFK deserves further investigation as a promising target gene for the detection of stroke susceptibility. Flavins may be used as a preventive or adjunctive treatments for ischemic brain injury.
Collapse
Affiliation(s)
- Yingxin Zou
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Minghua Ruan
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Xu Feng
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Fei Liu
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Weihong Liu
- Naval Medical Center, Naval Medical University, Shanghai, China.
| | - Song Chen
- Naval Medical Center, Naval Medical University, Shanghai, China.
| | - Zhiyong Chu
- Naval Medical Center, Naval Medical University, Shanghai, China.
| |
Collapse
|
2
|
Zhou MY, Liu BQ, Gao X, Zhang SJ, Jiang Y, Yang T, Sun JB, Zhang X, Liao Y. Sagittaria sagittifolia polysaccharide extract regulates Nrf2 to improve endoplasmic reticulum stress-mediated apoptosis in rat cataracts and HLEB3 cells. Int J Biol Macromol 2025; 300:140270. [PMID: 39863224 DOI: 10.1016/j.ijbiomac.2025.140270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Age-related cataract (ARC) remains the leading cause of blindness worldwide. Sagittaria sagittifolia polysaccharide (SSP) extract, a key component of Sagittaria sagittifolia L., exhibits anti-oxidant and anti-apoptotic effects with potential applications in ARC. This study aimed to explore the therapeutic potential of SSP in ARC and the underlying mechanisms. In sodium selenite-induced cataracts in rats and hydrogen peroxide (H2O2)-induced human lens epithelial B3 (HLEB3) cells, SSP significantly improved lens opacity and pathological changes and alleviated apoptosis and endoplasmic reticulum stress (ERS)-related injury indicators (by inhibiting the intracellular Ca2+ and protein expression of Bcl-2-associated X, cleaved caspase-3, binding immunoglobulin heavy chain protein, protein kinase RNA-like kinase, inositol-requiring enzyme 1α, activating transcription factor 6, C/EBP homology protein, c-Jun N terminal kinase, caspase-12, and calpain-2). In addition, SSP increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1, sarco/endoplasmic reticulum-type calcium transport ATPase 2, and B-cell lymphoma-2. After applying Nrf2 knockdown technology by transferring short interfering RNA in HLEB3 cells, SSP demonstrated its protective role by activating Nrf2 and inhibiting ERS-mediated apoptosis. These findings indicate that SSP may protect against ARC by regulating Nrf2/ERS-mediated apoptosis, providing potential evidence for its use in preventing or delaying ARC.
Collapse
Affiliation(s)
- Man-Yu Zhou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Bing-Qing Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Xin Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Shu-Jing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Yang Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Tao Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Jian-Bin Sun
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Xi Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China
| | - Yan Liao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China.
| |
Collapse
|
3
|
Li J, Liu J, Tang Y, Zhang H, Zhang Y, Zha X, Zhao X. Role of C/EBP Homologous Protein (CHOP) and Nupr1 Interaction in Endoplasmic Reticulum Stress-Induced Apoptosis of Lens Epithelial Cells. Mol Biotechnol 2025; 67:1628-1640. [PMID: 38771421 PMCID: PMC11928426 DOI: 10.1007/s12033-024-01148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/05/2024] [Indexed: 05/22/2024]
Abstract
Our study mainly analyzed the mechanism of C/EBP homologous protein (CHOP) and its interacting protein Nupr1 on endoplasmic reticulum stress (ERS) induced lens epithelial cells (LEC) apoptosis. Cell proliferation was detected by CCK-8. Apoptosis was detected by flow cytometry and TUNEL. Nupr1 expression was detected by RT-qPCR. The expressions of CHOP, Nupr1, apoptosis-related protein, and ERS-related protein were detected by Western blot. DCFH-DA probe was used to detect cell ROS. The SOD, GSH-PX, and MDA contents were detected by the kit. Co-IP was used to detect the interaction between CHOP and Nupr1. The morphology of the lens was detected by HE staining. The result shows that Tunicamycin (TU) can induce endoplasmic reticulum stress and apoptosis in LEC in a concentration-dependent manner. TU induction leads to the occurrence of CHOP nuclear translocation. Overexpression of CHOP can further enhance the inhibitory effect of TU on LEC proliferation and the promotion of apoptosis, while knockdown of CHOP has the opposite effect. CHOP and Nupr1 are interacting proteins, and knockdown of Nupr1 or addition of Nupr1 inhibitor ZZW-115 can reverse the effects of TU and overexpression of CHOP, respectively. It has been observed in animal experiments that treatment with oe-CHOP can further aggravate the pathological lesions of the rat lens, while ZZW-115 can reverse the effect of oe-CHOP to a certain extent and improve the lesions of the rat lens. Overall, CHOP interacts with Nupr1 to regulate apoptosis caused by ERS and mediate cataract progression in rats, and this study provides a new potential therapeutic target for the treatment of cataract.
Collapse
Affiliation(s)
- Jinghua Li
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Junyi Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Yongying Tang
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Hong Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Yuanping Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Xu Zha
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China.
| | - Xueying Zhao
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China.
| |
Collapse
|
4
|
Zhang X, Liu B, Lal K, Liu H, Tran M, Zhou M, Ezugwu C, Gao X, Dang T, Au ML, Brown E, Wu H, Liao Y. Antioxidant System and Endoplasmic Reticulum Stress in Cataracts. Cell Mol Neurobiol 2023; 43:4041-4058. [PMID: 37874455 PMCID: PMC10842247 DOI: 10.1007/s10571-023-01427-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
The primary underlying contributor for cataract, a leading cause of vision impairment and blindness worldwide, is oxidative stress. Oxidative stress triggers protein damage, cell apoptosis, and subsequent cataract formation. The nuclear factor-erythroid 2-related factor 2 (Nrf2) serves as a principal redox transcriptional factor in the lens, offering a line of defense against oxidative stress. In response to oxidative challenges, Nrf2 dissociates from its inhibitor, Kelch-like ECH-associated protein 1 (Keap1), moves to the nucleus, and binds to the antioxidant response element (ARE) to activate the Nrf2-dependent antioxidant system. In parallel, oxidative stress also induces endoplasmic reticulum stress (ERS). Reactive oxygen species (ROS), generated during oxidative stress, can directly damage proteins, causing them to misfold. Initially, the unfolded protein response (UPR) activates to mitigate excessive misfolded proteins. Yet, under persistent or severe stress, the failure to rectify protein misfolding leads to an accumulation of these aberrant proteins, pushing the UPR towards an apoptotic pathway, further contributing to cataractogenesis. Importantly, there is a dynamic interaction between the Nrf2 antioxidant system and the ERS/UPR mechanism in the lens. This interplay, where ERS/UPR can modulate Nrf2 expression and vice versa, holds potential therapeutic implications for cataract prevention and treatment. This review explores the intricate crosstalk between these systems, aiming to illuminate strategies for future advancements in cataract prevention and intervention. The Nrf2-dependent antioxidant system communicates and cross-talks with the ERS/UPR pathway. Both mechanisms are proposed to play pivotal roles in the onset of cataract formation.
Collapse
Affiliation(s)
- Xi Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bingqing Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kevin Lal
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Haihua Liu
- Peking University First Hospital, Beijing, China
| | - Myhoa Tran
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Manyu Zhou
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chimdindu Ezugwu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Xin Gao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Terry Dang
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - My-Lien Au
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Erica Brown
- School of Medicine, Texas Christian University and University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Hongli Wu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA.
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Yan Liao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
5
|
Bejarano E, Weinberg J, Clark M, Taylor A, Rowan S, Whitcomb EA. Redox Regulation in Age-Related Cataracts: Roles for Glutathione, Vitamin C, and the NRF2 Signaling Pathway. Nutrients 2023; 15:3375. [PMID: 37571310 PMCID: PMC10421530 DOI: 10.3390/nu15153375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Age is the biggest risk factor for cataracts, and aberrant oxidative modifications are correlated with age-related cataracts, suggesting that proper redox regulation is important for lens clarity. The lens has very high levels of antioxidants, including ascorbate and glutathione that aid in keeping the lens clear, at least in young animals and humans. We summarize current functional and genetic data supporting the hypothesis that impaired regulation of oxidative stress leads to redox dysregulation and cataract. We will focus on the essential endogenous antioxidant glutathione and the exogenous antioxidant vitamin C/ascorbate. Additionally, gene expression in response to oxidative stress is regulated in part by the transcription factor NRF2 (nuclear factor erythroid 2-related factor 2 [NFE2L2]), thus we will summarize our data regarding cataracts in Nrf2-/- mice. In this work, we discuss the function and integration of these capacities with the objective of maintaining lens clarity.
Collapse
Affiliation(s)
- Eloy Bejarano
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
- School of Health Sciences and Veterinary, Universidad CEU Cardenal Herrera, CEU Universities, 46113 Valencia, Spain
| | - Jasper Weinberg
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
| | - Madison Clark
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
| | - Allen Taylor
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
- Department of Ophthalmology, School of Medicine, Tufts University, Boston, MA 02111, USA
- Department of Developmental, Chemical and Molecular Biology, Tufts University, Boston, MA 02111, USA
| | - Sheldon Rowan
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
- Department of Ophthalmology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Elizabeth A. Whitcomb
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
| |
Collapse
|
6
|
Huang Y, Ping X, Cui Y, Yang H, Bao J, Yin Q, Ailifeire H, Shentu X. Glycolysis Aids in Human Lens Epithelial Cells' Adaptation to Hypoxia. Antioxidants (Basel) 2023; 12:1304. [PMID: 37372033 PMCID: PMC10295312 DOI: 10.3390/antiox12061304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Hypoxic environments are known to trigger pathological damage in multiple cellular subtypes. Interestingly, the lens is a naturally hypoxic tissue, with glycolysis serving as its main source of energy. Hypoxia is essential for maintaining the long-term transparency of the lens in addition to avoiding nuclear cataracts. Herein, we explore the complex mechanisms by which lens epithelial cells adapt to hypoxic conditions while maintaining their normal growth and metabolic activity. Our data show that the glycolysis pathway is significantly upregulated during human lens epithelial (HLE) cells exposure to hypoxia. The inhibition of glycolysis under hypoxic conditions incited endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) production in HLE cells, leading to cellular apoptosis. After ATP was replenished, the damage to the cells was not completely recovered, and ER stress, ROS production, and cell apoptosis still occurred. These results suggest that glycolysis not only performs energy metabolism in the process of HLE cells adapting to hypoxia, but also helps them continuously resist cell apoptosis caused by ER stress and ROS production. Furthermore, our proteomic atlas provides possible rescue mechanisms for cellular damage caused by hypoxia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xingchao Shentu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, China
| |
Collapse
|
7
|
Richardson RB. The role of oxygen and the Goldilocks range in the development of cataracts induced by space radiation in US astronauts. Exp Eye Res 2022; 223:109192. [DOI: 10.1016/j.exer.2022.109192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/26/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022]
|
8
|
Jin W, Zhao J, Yang E, Wang Y, Wang Q, Wu Y, Tong F, Tan Y, Zhou J, Kang C. Neuronal STAT3/HIF-1α/PTRF axis-mediated bioenergetic disturbance exacerbates cerebral ischemia-reperfusion injury via PLA2G4A. Theranostics 2022; 12:3196-3216. [PMID: 35547748 PMCID: PMC9065197 DOI: 10.7150/thno.71029] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 11/05/2022] Open
Abstract
Ischemic stroke is an acute and severe neurological disease with high mortality and disability rates worldwide. Polymerase I and transcript release factor (PTRF) plays a pivotal role in regulating cellular senescence, glucose intolerance, lipid metabolism, and mitochondrial bioenergetics, but its mechanism, characteristics, and functions in neuronal cells following the cerebral ischemia-reperfusion (I/R) injury remain to be determined. Methods: Transcription factor motif analysis, chromatin immunoprecipitation (ChIP), luciferase and co-Immunoprecipitation (co-IP) assays were performed to investigate the mechanisms of PTRF in neuronal cells after I/R injury. Lentiviral-sgRNA against PTRF gene was introduced to HT22 cells, and adeno-associated virus (AAV) encoding a human synapsin (hSyn) promoter-driven construct was transduced a short hairpin RNA (shRNA) against PTRF mRNA in primary neuronal cells and the cortex of the cerebral I/R mice for investigating the role of PTRF in neuronal damage and PLA2G4A change induced by the cerebral I/R injury. Results: Here, we reported that neuronal PTRF was remarkably increased in the cerebral penumbra after I/R injury, and HIF-1α and STAT3 regulated the I/R-dependent expression of PTRF via binding to its promoter in neuronal cells. Moreover, overexpression of neuronal PTRF enhanced the activity and stability of PLA2G4A by decreasing its proteasome-mediated degradation pathway. Subsequently, PTRF promoted reprogramming of lipid metabolism and altered mitochondrial bioenergetics, which could lead to oxidative damage, involving autophagy, lipid peroxidation, and ferroptosis via PLA2G4A in neuronal cells. Furthermore, inhibition of neuronal PTRF/PLA2G4A-axis markedly reduced the neurological deficits, cerebral infarct volumes, and mortality rates in the mice following cerebral I/R injury. Conclusion: Our results thus identify that the STAT3/HIF-1α/PTRF-axis in neurons, aggravating cerebral I/R injury by regulating the activity and stability of PLA2G4A, might be a novel therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Weili Jin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Jixing Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Eryan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Yunfei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Ye Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Fei Tong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Yanli Tan
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Junhu Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| |
Collapse
|
9
|
Liu PK, Chang YC, Wang NK, Ryu J, Tsai RK, Hsu SL, Hung JY, Hsu CY, Tai MH, Tsai MJ. The association between cataract and sleep apnea: a nationwide population-based cohort study. J Clin Sleep Med 2022; 18:769-777. [PMID: 34633283 PMCID: PMC8883097 DOI: 10.5664/jcsm.9714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES The association between sleep apnea (SA) and cataract was confirmed in a comprehensive large-scale study. This study aimed to investigate whether SA was associated with increased risk of cataract. METHODS The 18-year nationwide retrospective population-based cohort study used data retrieved from the Taiwan National Health Insurance Database. We selected adult patients with a diagnosis of SA, based on diagnostic codes (suspected SA cohort) or on presence of diagnosis after polysomnography (SA cohort), and matched each of them to 5 randomly selected, and age- and sex-matched control participants. The incidence rate of cataract was compared between patients with SA and the controls. The effect of SA on incident cataract was assessed using multivariable Poisson regression and Cox regression analyses. RESULTS A total of 6,438 patients in the suspected SA cohort were matched with 32,190 controls (control A cohort), including 3,616 patients in the SA cohort matched with 18,080 controls (control B cohort). After adjusting for age, sex, residency, income level, and comorbidities, the incidence rates of cataract were significantly higher in the SA cohorts than in the corresponding control cohorts. SA was an independent risk factor for incident cataract (adjusted hazard ratio [95% confidence interval]: 1.4 [1.2-1.6]). In patients with SA, elder age, heart disease, chronic pulmonary disease, and diabetes mellitus were independent risk factors for incident cataract. CONCLUSIONS Our study revealed a significantly higher risk for developing cataract in patients with SA. Physicians caring for patients with SA should be aware of this ophthalmic complication. CITATION Liu P-K, Chang Y-C, Wang N-K, et al. The association between cataract and sleep apnea: a nationwide population-based cohort study. J Clin Sleep Med. 2022;18(3):769-777.
Collapse
Affiliation(s)
- Pei-Kang Liu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, New York
| | - Yo-Chen Chang
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Nan-Kai Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, New York
| | - Joseph Ryu
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, New York
| | - Rong-Kung Tsai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Shiuh-Liang Hsu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jen-Yu Hung
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Yao Hsu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Sleep Disorders Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
- Graduate Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Ju Tsai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Sleep Disorders Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Rowan S, Jiang S, Francisco SG, Pomatto LCD, Ma Z, Jiao X, Campos MM, Aryal S, Patel SD, Mahaling B, Riazuddin SA, Duh EJ, Lachke SA, Hejtmancik JF, de Cabo R, FitzGerald PG, Taylor A. Aged Nrf2-Null Mice Develop All Major Types of Age-Related Cataracts. Invest Ophthalmol Vis Sci 2021; 62:10. [PMID: 34882206 PMCID: PMC8665303 DOI: 10.1167/iovs.62.15.10] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Age-related cataracts affect the majority of older adults and are a leading cause of blindness worldwide. Treatments that delay cataract onset or severity have the potential to delay cataract surgery, but require relevant animal models that recapitulate the major types of cataracts for their development. Unfortunately, few such models are available. Here, we report the lens phenotypes of aged mice lacking the critical antioxidant transcription factor Nfe2l2 (designated as Nrf2 −/−). Methods Three independent cohorts of Nrf2 −/− and wild-type C57BL/6J mice were evaluated for cataracts using combinations of slit lamp imaging, photography of freshly dissected lenses, and histology. Mice were fed high glycemic diets, low glycemic diets, regular chow ad libitum, or regular chow with 30% caloric restriction. Results Nrf2 −/− mice developed significant opacities between 11 and 15 months and developed advanced cortical, posterior subcapsular, anterior subcapsular, and nuclear cataracts. Cataracts occurred similarly in male mice fed high or low glycemic diets, and were also observed in 21-month male and female Nrf2 −/− mice fed ad libitum or 30% caloric restriction. Histological observation of 18-month cataractous lenses revealed significant disruption to fiber cell architecture and the retention of nuclei throughout the cortical region of the lens. However, fiber cell denucleation and initiation of lens differentiation was normal at birth, with the first abnormalities observed at 3 months. Conclusions Nrf2 −/− mice offer a tool to understand how defective antioxidant signaling causes multiple forms of cataract and may be useful for screening drugs to prevent or delay cataractogenesis in susceptible adults.
Collapse
Affiliation(s)
- Sheldon Rowan
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States.,Department of Ophthalmology, Tufts University School of Medicine, Tufts University, Boston, Massachusetts, United States.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, United States
| | - Shuhong Jiang
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States
| | - Sarah G Francisco
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States
| | - Laura C D Pomatto
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, Maryland, United States
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Maria M Campos
- NEI Histology Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Shaili D Patel
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Binapani Mahaling
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - S Amer Riazuddin
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Elia J Duh
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, Maryland, United States
| | - Paul G FitzGerald
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States
| | - Allen Taylor
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States.,Department of Ophthalmology, Tufts University School of Medicine, Tufts University, Boston, Massachusetts, United States.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, United States
| |
Collapse
|
11
|
Jingyuan H, Yan L, Wenjing P, Wenqiang J, Bo L, Linghong M, Qunlang Z, Hualiang L, Xianping G. Dietary selenium enhances the growth and anti-oxidant capacity of juvenile blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2020; 101:115-125. [PMID: 32220627 DOI: 10.1016/j.fsi.2020.03.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
Sodium selenite was added to basal diet at five levels (0.10, 0.42, 0.67, 1.06 and 1.46 mg Se/kg) and fed fish for 8 weeks. The dietary selenium requirement of juvenile blunt snout bream (Megalobrama amblycephala) was quantified. Dietaryseleniums at 0.67-1.06 mg Se/kg improved weight gain rate, specific growth rate and feed efficiency. The optimal amount was 0.96 mg/kg, for which the specific growth rate was 1.798%/day and the weight gain rate was 173.852% (p < 0.05). Se deposition in muscle was increased (p < 0.05) at ≥0.67 mg/kg, but moisture, protein, lipid and ash content were not affected. Physiological status and lipid metabolism were improved by 1.06-1.46 mg/kg dietary selenium based on total protein and albumin in plasma, and total cholesterol and triglycerides (p < 0.05). Activities of hepatic anti-oxidant enzymes catalase, total superoxide dismutase, glutathione peroxidase and reduced glutathione were enhanced at Se1.06 (p < 0.05). However, malondialdehyde content was lowered at Se1.06 (p < 0.05). Expression of anti-inflammatory cytokines, nuclear factor erythroid 2-related factor 2 (Nrf2) and kelch-like ECH-associated protein 1 (Keap-1) in liver were elevated at Se1.06 (p < 0.05), as were mRNA levels of glutathione peroxidase, copper zinc superoxide dismutase and catalase. Expression of pro-inflammatory cytokines, interleukin 8, tumour necrosis factor-α and transforming growth factor-β were inhibited at 0.67-1.46 mg/kg (p < 0.05). In general, 0.96 mg/kg was optimal, and optimal selenium enhanced antioxidant stress tolerance and anti-inflammatory ability.
Collapse
Affiliation(s)
- Hao Jingyuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Lin Yan
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Centre (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Pan Wenjing
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Centre (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Jiang Wenqiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Liu Bo
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Centre (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Miao Linghong
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Centre (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Zhou Qunlang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Centre (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Liang Hualiang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Centre (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Ge Xianping
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Centre (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| |
Collapse
|
12
|
Tian F, Zhao J, Bu S, Teng H, Yang J, Zhang X, Li X, Dong L. KLF6 Induces Apoptosis in Human Lens Epithelial Cells Through the ATF4-ATF3-CHOP Axis. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1041-1055. [PMID: 32210535 PMCID: PMC7069589 DOI: 10.2147/dddt.s218467] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/01/2019] [Indexed: 12/18/2022]
Abstract
Background Many studies have confirmed that high myopia is related to the high prevalence of cataracts, which results from apoptosis of lens epithelial cells (LECs) due to endoplasmic reticulum stress. Krüppel-like factor 6 (KLF6) is a tumor suppressor that is involved in the regulation of cell proliferation and apoptosis. Purpose In this study, our purpose was to find the relationship between KLF6-induced apoptosis in LECs and ATF4 (activating transcription factor 4)-ATF3 (activating transcription factor 3)-CHOP (C/EBP homologous protein) signaling pathway. Methods KLF6, ATF4, ATF3, and CHOP were ectopically expressed using cDNAs subcloned into the pCDNA3.1+ vector. ATF4, ATF3, and CHOP knockdown were performed by small interfering RNA (siRNA). Expression of relative gene was tested using QT-PCR and western-blot. Then, accompanied by UVB stimulation, cell viability was measured by CCK-8 assay; The cell damage was examined by live & dead staining; The apoptotic markers Bax and Bcl-2 were detected by immunoblotting; Quantitative apoptotic levels were measured with the Apoptosis Detection Kit; The expression level of reactive oxygen-free radical (ROS) was analyzed by DCFH-DA` probe. Results Ectopically expressed ATF4, ATF3, and CHOP-induced apoptosis in cells, whereas ATF4, ATF3, and CHOP knockdown by small interfering RNA (siRNA) blocked KLF6-induced apoptosis. In addition, we determined that ATF4 regulates ATF3 and CHOP expression and that ATF3 silencing reduces CHOP upregulation without changing ATF4 levels; however, ATF4 and ATF3 expression was unaffected by blockade of CHOP, suggesting that KLF6 triggers endoplasmic reticulum stress in LECs by mediating the ATF4-ATF3/CHOP axis. Besides, KLF6 overexpression significantly induced LEC apoptosis under UV radiation, as demonstrated by the elevated Bax/Bcl-2 ratio. Conclusion The ATF4-ATF3-CHOP pathway plays an important role in KLF6-induced apoptosis in HLECs. Our results increase our understanding of the mechanisms that regulate LEC apoptosis and contribute to the development of a new preventative strategy for cataract.
Collapse
Affiliation(s)
- Fang Tian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Jinzhi Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Shaochong Bu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - He Teng
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Jun Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| |
Collapse
|
13
|
Chen X, Han K, Zhang T, Qi G, Jiang Z, Hu C. Grass carp (Ctenopharyngodon idella) NRF2 alleviates the oxidative stress and enhances cell viability through upregulating the expression of HO-1. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:417-428. [PMID: 31758371 DOI: 10.1007/s10695-019-00729-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
As a member of the Cap 'n' Collar (CNC) family, NRF2 contains a basic leucine zipper (bZip) and can regulate the downstream target gene heme oxygenase 1 (HO-1) in response to oxidative stress. In the present study, a grass carp (Ctenopharyngodon idella) NRF2 ORF was cloned and identified. The largest ORF (1782 bp) encodes a polypeptide of 593 amino acids. The deduced amino acid sequence of grass carp NRF2 (CiNRF2) contains a well-conserved DNA-binding domain (BRLZ domain). Phylogenetic tree analysis revealed that CiNRF2 has a closer evolutionary relationship with other fish counterparts. After CIK (C. idellus kidney) cells were persistently stimulated with tunicamycin (TM), CiNRF2 was significantly upregulated from 12 to 36 h. Then, the expression was dropped at 48 h post-infection. Additionally, when TM or TG (thapsigargin) stimulated CIK cells, overexpression of CiNRF2 in cells downregulated the expression of Bip mRNA, a marker protein of oxidative stress, suggesting that fish NRF2 can alleviate the oxidative stress level induced by TM or TG. To study the protective mechanism of fish NRF2, the DNA sequences of CiNRF2 and CiATF4 (grass carp ATF4) were separately sub-cloned into the expression vectors pEGFP and pCMV-Flag for co-immunoprecipitation and GST pull-down assays. These assays showed that CiNRF2 can combine with CiATF4 through its Neh1 domain. Meanwhile, we cloned grass carp HO-1 promoter sequence and constructed the recombinant plasmid of pGL3-HO-1. Soon afterwards, pGL3-HO-1 was co-transfected into grass carp ovary (CO) cells with pcDNA3.1-CiNRF2 or pcDNA3.1-CiATF4, respectively. The results showed that the luciferase activity of pGL3-HO-1 in the overexpressed CiNRF2 plus CiATF4 cells was significantly increased, along with the increase of cell viability (~ 133%). However, when HO-1 was knocked down in cells, CiNRF2 was unable to perform its function. These results demonstrated that CiNRF2 was effective in protecting grass carp against the oxidative stress induced by TM and increasing cell viability by upregulating HO-1 expression.
Collapse
Affiliation(s)
- Xin Chen
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
- Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Kun Han
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
- Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Tao Zhang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
- Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Guoqin Qi
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
- Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Zeyin Jiang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
- Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China.
- Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China.
| |
Collapse
|
14
|
Liu XF, Zhou DD, Xie T, Hao JL, Malik TH, Lu CB, Qi J, Pant OP, Lu CW. The Nrf2 Signaling in Retinal Ganglion Cells under Oxidative Stress in Ocular Neurodegenerative Diseases. Int J Biol Sci 2018; 14:1090-1098. [PMID: 29989056 PMCID: PMC6036726 DOI: 10.7150/ijbs.25996] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/22/2018] [Indexed: 12/28/2022] Open
Abstract
Retinal ganglion cells (RGCs) are one of the important cell types affected in many ocular neurodegenerative diseases. Oxidative stress is considered to be involved in retinal RGCs death in ocular neurodegenerative diseases. More and more attention has been focused on studying the agents that may have neuroprotective effects. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key nuclear transcription factor for the systemic antioxidant defense system. This review elucidates the underlying mechanism of the Nrf2-mediated neuroprotective effects on RGCs in ocular neurodegenerative diseases, such as diabetic retinopathy and retinal ischemia-reperfusion injury. Several Nrf2 inducers that shield RGCs from oxidative stress-induced neurodegeneration via regulating Nrf2 signaling are discussed.
Collapse
Affiliation(s)
- Xiu-Fen Liu
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Dan-Dan Zhou
- Department of Radiology, The First Hospital of Jilin University, Jilin, China
| | - Tian Xie
- Department of . Neurosurgery, The People's Hospital of Jilin Province, Jilin, China
| | - Ji-Long Hao
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Tayyab Hamid Malik
- Department of Gastroenterology, The First Hospital of Jilin University, Jilin, China
| | - Cheng-Bo Lu
- Department of Cardiology, The First Hospital of Jiamusi University, Heilongjiang, China
| | - Jing Qi
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Om Prakash Pant
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Cheng-Wei Lu
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
15
|
Nrf2 protects human lens epithelial cells against H 2O 2-induced oxidative and ER stress: The ATF4 may be involved. Exp Eye Res 2018; 169:28-37. [PMID: 29421327 DOI: 10.1016/j.exer.2018.01.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022]
Abstract
Our previous study has shown heme oxygenase-1 (HO-1) protects human lens epithelial cells (LECs) against H2O2-induced oxidative stress and apoptosis. Nrf2, the major regulator of HO-1, is triggered during the mutual induction of oxidative stress and ER stress. In response to ER stress, unfolded protein response (UPR) serves as a program of transcriptional and translational regulation mechanism with PERK involved. Both Nrf2 and ATF4 are activated as the downstream effect of PERK signaling coordinating the convergence of dual stresses. However, the ways in which Nrf2 interacting with ATF4 regulates deteriorated redox state have not yet been fully explored. Here, the transfected LECs with Nrf2 overexpression illustrated enhanced resistance in morphology and viability upon H2O2 treatment condition. Intracellular ROS accumulation arouses ER stress, initiating PERK dependent UPR and inducing the downstream signal Nrf2 and ATF4 auto-phosphorylation. Further, converging at target promoters, ATF4 facilitates Nrf2 with the expression of ARE-dependent phase II antioxidant and detoxification enzymes. According to either Nrf2 or ATF4 gene modification, our data suggests a novel interaction between Nrf2 and ATF4 under oxidative and ER stress, thus drives specific enzymatic and non-enzymatic reactions of antioxidant mechanisms maintaining redox homeostasis. Therapies that restoring Nrf2 or ATF4 expression might help to postpone LECs aging and age-related cataract formation.
Collapse
|
16
|
Nrf2, a Potential Therapeutic Target against Oxidative Stress in Corneal Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2326178. [PMID: 29209447 PMCID: PMC5676473 DOI: 10.1155/2017/2326178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/20/2017] [Indexed: 01/09/2023]
Abstract
Corneal diseases are one of the major causes of blindness worldwide. Conservative medical agents, which may prevent sight-threatening corneal disease progression, are urgently desired. Numerous evidences have revealed the involvement of oxidative stress in various corneal diseases, such as corneal wound healing and Fuchs endothelial corneal dystrophy (FECD). Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like erythroid-cell-derived protein with CNC homology- (ECH-) associated protein 1 (Keap1)/antioxidant response element (ARE) signaling is well known as one of the main antioxidative defense systems. To the best of our knowledge, this is the first review to elucidate the different expression profiles of Nrf2 signaling as well as the underlying mechanisms in corneal diseases, implicating that Nrf2 may serve as a potentially promising therapeutic target for corneal diseases.
Collapse
|
17
|
Liu X, Hao J, Xie T, Malik TH, Lu C, Liu C, Shu C, Lu C, Zhou D. Nrf2 as a target for prevention of age-related and diabetic cataracts by against oxidative stress. Aging Cell 2017; 16:934-942. [PMID: 28722304 PMCID: PMC5595676 DOI: 10.1111/acel.12645] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 12/11/2022] Open
Abstract
Cataract is one of the most important causes of blindness worldwide, with age-related cataract being the most common one. Agents preventing cataract formation are urgently required. Substantial evidences point out aggravated oxidative stress as a vital factor for cataract formation. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like erythroid-cell-derived protein with CNC homology (ECH)-associated protein 1 (Keap1) system is considered as one of the main cellular defense mechanisms against oxidative stresses. This review discusses the role of Nrf2 pathway in the prevention of cataracts and highlights that Nrf2 suppressors may augment oxidative stress of the lens, and Nrf2 inducers may decrease the oxidative stress and prevent the cataract formation. Thus, Nrf2 may serve as a promising therapeutic target for cataract treatment.
Collapse
Affiliation(s)
- Xiu‐Fen Liu
- Department of OphthalmologyThe First Hospital of Jilin UniversityJilinChina
| | - Ji‐Long Hao
- Department of OphthalmologyThe First Hospital of Jilin UniversityJilinChina
| | - Tian Xie
- Department of NeurosurgeryThe People's Hospital of Jilin ProvinceJilinChina
| | - Tayyab Hamid Malik
- Department of GastroenterologyThe First Hospital of Jilin UniversityJilinChina
| | - Cheng‐Bo Lu
- Department of CardiologyThe First Hospital of Jiamusi UniversityHeilongjiangChina
| | - Cong Liu
- Department of OphthalmologyThe First Hospital of Jilin UniversityJilinChina
| | - Chang Shu
- Department of Obstetrics and GynecologyThe First Hospital of Jilin UniversityJilinChina
| | - Cheng‐Wei Lu
- Department of OphthalmologyThe First Hospital of Jilin UniversityJilinChina
| | - Dan‐Dan Zhou
- Department of RadiologyThe First Hospital of Jilin UniversityJilinChina
| |
Collapse
|
18
|
Periyasamy P, Shinohara T. Age-related cataracts: Role of unfolded protein response, Ca 2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection. Prog Retin Eye Res 2017; 60:1-19. [PMID: 28864287 PMCID: PMC5600869 DOI: 10.1016/j.preteyeres.2017.08.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
Age-related cataracts are closely associated with lens chronological aging, oxidation, calcium imbalance, hydration and crystallin modifications. Accumulating evidence indicates that misfolded proteins are generated in the endoplasmic reticulum (ER) by most cataractogenic stresses. To eliminate misfolded proteins from cells before they can induce senescence, the cells activate a clean-up machinery called the ER stress/unfolded protein response (UPR). The UPR also activates the nuclear factor-erythroid-2-related factor 2 (Nrf2), a central transcriptional factor for cytoprotection against stress. Nrf2 activates nearly 600 cytoprotective target genes. However, if ER stress reaches critically high levels, the UPR activates destructive outputs to trigger programmed cell death. The UPR activates mobilization of ER-Ca2+ to the cytoplasm and results in activation of Ca2+-dependent proteases to cleave various enzymes and proteins which cause the loss of normal lens function. The UPR also enhances the overproduction of reactive oxygen species (ROS), which damage lens constituents and induce failure of the Nrf2 dependent cytoprotection. Kelch-like ECH-associated protein 1 (Keap1) is an oxygen sensor protein and regulates the levels of Nrf2 by the proteasomal degradation. A significant loss of DNA methylation in diabetic cataracts was found in the Keap1 promoter, which overexpresses the Keap1 protein. Overexpressed Keap1 significantly decreases the levels of Nrf2. Lower levels of Nrf2 induces loss of the redox balance toward to oxidative stress thereby leading to failure of lens cytoprotection. Here, this review summarizes the overall view of ER stress, increases in Ca2+ levels, protein cleavage, and loss of the well-established stress protection in somatic lens cells.
Collapse
Affiliation(s)
- Palsamy Periyasamy
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Toshimichi Shinohara
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|