1
|
Ren J, Xin R, Cui X, Xu Y, Li C. Quercetin relieves compression-induced cell death and lumbar disc degeneration by stabilizing HIF1A protein. Heliyon 2024; 10:e37349. [PMID: 39296087 PMCID: PMC11408125 DOI: 10.1016/j.heliyon.2024.e37349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Background Lumbar disc degeneration (LDD) is a prevalent condition characterized by the decreased viability and functional impairment of nucleus pulposus mesenchymal stem cells (NPMSCs). Shaoyao-Gancao decoction (SGD), a traditional Chinese medicine formula, has been used to treat LDD, but its active components and mechanisms are unclear. Methods An integrative network pharmacology and transcriptome analysis were conducted to identify bioactive compounds in SGD that could target LDD. NPMSCs were cultured under mechanical compression as a cellular model of LDD. A rat model of annulus fibrosus needle-puncture was established to induce intervertebral disc degeneration. The effects of quercetin, a predicted active component, on alleviating compression-induced NPMSC death and LDD were evaluated in vitro and in vivo. Results The analysis identified hypoxia-inducible factor 1-alpha (HIF1A) as a potential target of quercetin in LDD. HIF1A was upregulated in degenerated human disc samples and compression-treated NPMSCs. Quercetin treatment alleviated compression-induced oxidative stress, apoptosis, and loss of viability in NPMSCs by stabilizing HIF1A. The protective effects of quercetin were abrogated by HIF1A inhibition. In the rat model, quercetin ameliorated intervertebral disc degeneration. Conclusion Our study identified HIF1A as a protective factor against compression-induced cell death in NPMSCs. Quercetin, a bioactive compound found in the traditional Chinese medicine formula SGD, improved the survival of NPMSCs and alleviated LDD progression by stabilizing HIF1A. Targeting the HIF1A pathway through natural compounds like quercetin could represent a promising strategy for the clinical management of LDD and potentially other degenerative disc diseases.
Collapse
Affiliation(s)
- Junxiao Ren
- The First Clinical Medical College of Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Rui Xin
- The First Clinical Medical College of Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Xiaoping Cui
- Chongqing Fengdu County Traditional Chinese Medicine Hospital, Chongqing, 408200, China
| | - Yongqing Xu
- The 920th Hospital of Joint Logistics SupportForce of PLA, Kunming, 650032, Yunnan, China
| | - Chuan Li
- The First Clinical Medical College of Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| |
Collapse
|
2
|
Xia Q, Zhao Y, Dong H, Mao Q, Zhu L, Xia J, Weng Z, Liao W, Hu Z, Yi J, Feng S, Jiang Y, Xin Z. Progress in the study of molecular mechanisms of intervertebral disc degeneration. Biomed Pharmacother 2024; 174:116593. [PMID: 38626521 DOI: 10.1016/j.biopha.2024.116593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024] Open
Abstract
Degenerative intervertebral disc disease (IVDD) is one of the main spinal surgery, conditions, which markedly increases the incidence of low back pain and deteriorates the patient's quality of life, and it imposes significant social and economic burdens. The molecular pathology of IVDD is highly complex and multilateral however still not ompletely understood. New findings indicate that IVDD is closely associated with inflammation, oxidative stress, cell injury and extracellular matrix metabolismdysregulation. Symptomatic management is the main therapeutic approach adopted for IVDD, but it fails to address the basic pathological changes and the causes of the disease. However, research is still focusing on molecular aspects in terms of gene expression, growth factors and cell signaling pathways in an attempt to identify specific molecular targets for IVDD treatment. The paper summarizes the most recent achievements in molecularunderstanding of the pathogenesis of IVDD and gives evidence-based recommendations for clinical practice.
Collapse
Affiliation(s)
- Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Zongyue Hu
- Department of Pain Rehabilitation, Affiliated Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang, Hubei Province 443003, China
| | - Jiangbi Yi
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Shuai Feng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Youhong Jiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, Paris 75005, France.
| |
Collapse
|
3
|
Yang J, Wu J, Lu H, Wang J, Hou Z. Hotspot Analysis and Frontier Exploration of Stem Cell Research in Intervertebral Disc Regeneration and Repair: A Bibliometric and Visualization Study. World Neurosurg 2024; 184:e613-e632. [PMID: 38367857 DOI: 10.1016/j.wneu.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Stem cells have shown tremendous potential and vast prospects in the research of intervertebral disc (IVD) regeneration and repair, attracting considerable attention in recent years. In this study, a bibliometric analysis and visualization techniques were employed to probe and analyze the hotspots and frontiers of stem cell research in IVD regeneration and repair, aiming to provide valuable references and insights for further investigations. METHODS This study utilized the Science Citation Index Expanded from the Web of Science Core Collection database to retrieve and extract relevant literature records as research samples. Visual analysis tools such as VOSviewer 1.6.19, CiteSpace 6.2.R4, and bibliometric online analysis platforms were employed to construct scientific knowledge maps, providing a comprehensive and systematic exposition from various perspectives including collaboration networks, cocitation networks, and co-occurrence networks. RESULTS A total of 1075 relevant studies have been published in 303 journals by 4181 authors from 1198 institutions across 54 countries/regions. Over the past 20 years, the field of research has witnessed a significant growth in annual publications and citations. China and the United States have emerged as the primary participants and contributors, with the AO Research Institute Davos, Zhejiang University, and Tokai University being the top 3 leading research institutions. The most productive and highly cited author is Sakai D, who is regarded as a key leader in this research field. The journals with the highest number of publications and citations are Spine and Biomaterials, which are considered to be high-quality and authoritative core journals in this field. The current research focuses primarily on the sources and selection of stem cells, optimization of transplantation strategies, mechanisms of IVD regeneration, and the combined application of stem cells and biomaterials. However, there are still some challenges that need to be addressed, including posttransplantation stability, assessment of regenerative effects, and translation into clinical applications. Future research will concentrate on the diversity of stem cell sources, the application of novel biomaterials, personalized treatments, and the development of gene editing technologies, among other cutting-edge directions. CONCLUSIONS This study utilized bibliometric analysis and visualization techniques to unveil the hotspots and frontiers in the research on stem cells for IVD regeneration and repair. These research findings provide essential guidance and references for further experimental design and clinical applications. However, additional experiments and clinical studies are still needed to address the challenges and difficulties faced in the field of IVD regeneration and repair, thus offering novel strategies and approaches for the treatment of IVD diseases.
Collapse
Affiliation(s)
- Jiali Yang
- Department of Orthopedics and Traumatology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China; Department of Orthopedics and Traumatology, Yancheng TCM Hospital, Yancheng, China
| | - Jiaojiao Wu
- Xiangyu Pharmaceutical Co., Ltd., Linyi, China
| | - Hua Lu
- Department of Orthopedics and Traumatology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China; Department of Orthopedics and Traumatology, Yancheng TCM Hospital, Yancheng, China
| | - Jing Wang
- Department of Orthopedics and Traumatology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China; Department of Orthopedics and Traumatology, Yancheng TCM Hospital, Yancheng, China
| | - Zhaomeng Hou
- Department of Orthopedics and Traumatology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China; Department of Orthopedics and Traumatology, Yancheng TCM Hospital, Yancheng, China.
| |
Collapse
|
4
|
Xia Y, Yang R, Hou Y, Wang H, Li Y, Zhu J, Fu C. Application of mesenchymal stem cell-derived exosomes from different sources in intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:1019437. [PMID: 36277386 PMCID: PMC9585200 DOI: 10.3389/fbioe.2022.1019437] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a main cause of lower back pain, leading to psychological and economic burdens to patients. Physical therapy only delays pain in patients but cannot eliminate the cause of IVDD. Surgery is required when the patient cannot tolerate pain or has severe neurological symptoms. Although surgical resection of IVD or decompression of the laminae eliminates the diseased segment, it damages adjacent normal IVD. There is also a risk of re-protrusion after IVD removal. Cell therapy has played a crucial role in the development of regenerative medicine. Cell transplantation promotes regeneration of degenerative tissue. However, owing to the lack of vascular structure in IVD, sufficient nutrients cannot be provided for transplanted mesenchymal stem cells (MSCs). In addition, dead cells release harmful substances that aggravate IVDD. Extracellular vesicles (EVs) have been extensively studied as an emerging therapeutic approach. EVs generated by paracrine MSCs retain the potential of MSCs and serve as carriers to deliver their contents to target cells to regulate target cell activity. Owing to their double-layered membrane structure, EVs have a low immunogenicity and no immune rejection. Therefore, EVs are considered an emerging therapeutic modality in IVDD. However, they are limited by mass production and low loading rates. In this review, the structure of IVD and advantages of EVs are introduced, and the application of MSC-EVs in IVDD is discussed. The current limitations of EVs and future applications are described.
Collapse
Affiliation(s)
- Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ruohan Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yulin Hou
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Changfeng Fu,
| |
Collapse
|
5
|
Huang X, Lan Y, Shen J, Chen Z, Xie Z. Extracellular Vesicles in Bone Homeostasis: Emerging Mediators of Osteoimmune Interactions and Promising Therapeutic Targets. Int J Biol Sci 2022; 18:4088-4100. [PMID: 35844790 PMCID: PMC9274499 DOI: 10.7150/ijbs.69816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
An imbalance in bone homeostasis results in bone loss and poor healing in bone diseases and trauma. Osteoimmune interactions, as a key contributor to bone homeostasis, depend on the crosstalk between mesenchymal stem cell-osteoblast (MSC-OB) and monocyte-macrophage (MC-Mφ) lineages. Currently, extracellular vesicles (EVs) are considered to be involved in cell-to-cell communication and represent a novel avenue to enhance our understanding of bone homeostasis and to develop novel diagnostic and therapeutic options. In this comprehensive review, we aim to present recent advances in the study of the effect of MC-Mφ-derived EVs on osteogenesis and the regulatory effects of MSC-OB-derived EVs on the differentiation, recruitment and efferocytosis of Mφ. Furthermore, we discuss the role of EVs as crucial mediators of the communication between these cell lineages involved in the development of common bone diseases, with a focus on osteoporosis, osteoarthritis, bone fracture, and periodontal disease. Together, this review focuses on the apparent discrepancies in current research findings and future directions for translating fundamental insights into clinically relevant EV-based therapies for improving bone health.
Collapse
Affiliation(s)
- Xiaoyuan Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Yanhua Lan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Jiahui Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
6
|
Gao B, Jiang B, Xing W, Xie Z, Luo Z, Zou W. Discovery and Application of Postnatal Nucleus Pulposus Progenitors Essential for Intervertebral Disc Homeostasis and Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104888. [PMID: 35195356 PMCID: PMC9069184 DOI: 10.1002/advs.202104888] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/16/2022] [Indexed: 05/15/2023]
Abstract
Intervertebral disc degeneration (IDD) results from the dysfunction of nucleus pulposus (NP) cells and the exhaustion of NP progenitors (ProNPs). The cellular applications of NP cells during IDD are currently limited due to the lack of in vivo studies showing whether NP cells are heterogeneous and contain ProNPs throughout postnatal stages. In this study, single-cell RNA sequencing of purified NP cells is used to map four molecularly defined populations and urotensin II receptor (UTS2R)-expressing postnatal ProNPs is identified, which are markedly exhausted during IDD, in mouse and human specimens. The lineage tracing shows that UTS2R+ ProNPs preferentially resides in the NP periphery with its niche factor tenascin-C and give rise to functional NP cells. It is also demonstrated that transplanting UTS2R+ ProNPs with tenascin-C into injured intervertebral discs attenuate the progression of IDD. The study provides a novel NP cell atlas, identified resident ProNPs with regenerative potential, and revealed promising diagnostic and therapeutic targets for IDD.
Collapse
Affiliation(s)
- Bo Gao
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Institute of Orthopaedic SurgeryXijing HospitalAir Force Military Medical UniversityXi'anShaanxiChina
| | - Bo Jiang
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Wenhui Xing
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Zaiqi Xie
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Zhuojing Luo
- Institute of Orthopaedic SurgeryXijing HospitalAir Force Military Medical UniversityXi'anShaanxiChina
| | - Weiguo Zou
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| |
Collapse
|
7
|
Li T, Peng Y, Chen Y, Huang X, Li X, Zhang Z, Du J. Long intergenic non-coding RNA -00917 regulates the proliferation, inflammation, and pyroptosis of nucleus pulposus cells via targeting miR-149-5p/NOD-like receptor protein 1 axis. Bioengineered 2022; 13:6036-6047. [PMID: 35184666 PMCID: PMC8974084 DOI: 10.1080/21655979.2022.2043100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Tengfei Li
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Ye Peng
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Yufei Chen
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Xiaogang Huang
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Xiaojie Li
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Zhenyu Zhang
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Junjie Du
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| |
Collapse
|
8
|
Xuan A, Ruan D, Wang C, He Q, Wang D, Hou L, Zhang C, Li C, Ji W, Wen T, Xu C, Zhu Z. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:490-503. [PMID: 35427416 PMCID: PMC9154349 DOI: 10.1093/stcltm/szac013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
The treatment of intervertebral disc degeneration (IVDD) is still a huge challenge for clinical updated surgical techniques and basic strategies of intervertebral disc regeneration. Few studies have ever tried to combine surgery and cell therapy to bridge the gap between clinical and basic research. A prospective clinical study with a 72-month follow-up was conducted to assess the safety and feasibility of autologous discogenic cells transplantation combined with discectomy in the treatment of lumbar disc herniation (LDH) and to evaluate the regenerative ability of discogenic cells in IVDD. Forty patients with LDH who were scheduled to have discectomy enrolled in our study and were divided into the observed group (transplantation of autologous discogenic cells after discectomy) and control group (only-discectomy). Serial MRI and X-ray were used to evaluate the degenerative extent of index discs, and clinical scores were used to determine the symptomatic improvement. No adverse events were observed in the observed group, and seven patients in the control group underwent revisions. Both groups had significant improvement of all functional scores post-operatively, with the observed group improving more considerably at 36-month and 72-month follow-up. The height and water content of discs in both groups decreased significantly since 36 months post-op with the control group decreased more obviously. Discectomy combined with autologous discogenic cells transplantation is safe and feasible in the treatment of LDH. Radiological analysis demonstrated that discogenic cells transplantation could slow down the further degeneration of index discs and decrease the complications of discectomy.
Collapse
Affiliation(s)
- Anwu Xuan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Dike Ruan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
- Corresponding author: Dike Ruan, MD, The Second School of Clinical Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, People’s Republic of China, and the Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, 6 Fucheng Road, Haidian District, Beijing 100048, People’s Republic of China.
| | - Chaofeng Wang
- Department of Orthopedics, Xi’an Honghui Hospital, Xi’an, People’s Republic of China
| | - Qing He
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Deli Wang
- Department of Orthopedics, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Lisheng Hou
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Chao Zhang
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Chao Li
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Wei Ji
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Tianyong Wen
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Cheng Xu
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Zhenbiao Zhu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
9
|
Wang F. Causes and Preventive Measures of Sports Injuries in Physical Fitness Tests in Colleges and Universities Based on Biological Characteristics. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2280205. [PMID: 34804447 PMCID: PMC8601814 DOI: 10.1155/2021/2280205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/14/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022]
Abstract
Biological characteristics refer to the morphological and physiological characteristics exhibited by individual organisms. The indicators of individual biological characteristics mainly include physical indicators such as height, weight, chest circumference, and health-related physical indicators such as blood pressure, grip strength, and vital capacity. This article mainly introduces the cause analysis and preventive measures of a physical fitness test in colleges and universities based on biological characteristics and intends to provide ideas and directions for the cause analysis and preventive measures of a physical fitness test in colleges and universities. This paper proposes a research method for the cause analysis and preventive measures of sports injuries in college physical fitness tests based on biological characteristics. Research experiments on the cause analysis and preventive measures of sports injuries in the physical fitness test of colleges and universities. The experimental results in this paper show that the most frequent cause of sports injuries among boys is lack of self-protection awareness, with a probability of 24.24%; among girls, the most frequent cause of sports injuries is insufficient flexibility, with a probability of 22.86%.
Collapse
Affiliation(s)
- Feng Wang
- School of Physical Education, Wuhan Business University, Wuhan 430056, Hubei, China
| |
Collapse
|
10
|
Zhang XB, Chen XY, Qi J, Zhou HY, Zhao XB, Hu YC, Zhang RH, Yu DC, Gao XD, Wang KP, Ma L. New hope for intervertebral disc degeneration: bone marrow mesenchymal stem cells and exosomes derived from bone marrow mesenchymal stem cell transplantation. Curr Gene Ther 2021; 22:291-302. [PMID: 34636308 DOI: 10.2174/1566523221666211012092855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs), multidirectional cells with self-renewal capacity, can differentiate into many cell types and play essential roles in tissue healing and regenerative medicine. Cell experiments and in vivo research in animal models have shown that BMSCs can repair degenerative discs by promoting cell proliferation and expressing extracellular matrix (ECM) components, such as type II collagen and protein-polysaccharides. Delaying or reversing the intervertebral disc (IVD) degeneration (IDD) process at an etiological level may be an effective strategy. However, despite increasingly in-depth research, some deficiencies in cell transplantation timing and strategy remain, preventing the clinical application of cell transplantation. Exosomes exhibit the characteristics of the mother cells from which they were secreted and can inhibit nucleus pulposus (NP) cell (NPC) apoptosis and delay IDD through intercellular communication. Furthermore, the use of exosomes effectively avoids problems associated with cell transplantation, such as immune rejection. This manuscript introduces almost all of the BMSCs and exosomes derived from BMSCs (BMSCs-Exos) described in the IDD literature. Many challenges regarding the use of cell transplantation and therapeutic exosome intervention for IDD remain to be overcome.
Collapse
Affiliation(s)
- Xiao-Bo Zhang
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Shanxi 710000. China
| | - Xiang-Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Jin Qi
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Hai-Yu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Xiao-Bing Zhao
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Yi-Cun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Rui-Hao Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - De-Chen Yu
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Xi-Dan Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Ke-Ping Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Lin Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| |
Collapse
|
11
|
Zhang Q, Shen Y, Zhao S, Jiang Y, Zhou D, Zhang Y. Exosomes miR-15a promotes nucleus pulposus-mesenchymal stem cells chondrogenic differentiation by targeting MMP-3. Cell Signal 2021; 86:110083. [PMID: 34252537 DOI: 10.1016/j.cellsig.2021.110083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 12/27/2022]
Abstract
The physiology of the nucleus pulposus (NP) in intervertebral disc degeneration (IVD) has been studied widely. However, interactions involving nucleus pulposus -mesenchymal stem cells (NP-MSCs) are less understood. MicroRNA 15a (miR-15a) is known to target and modulate genes involved in cellular proliferation and apoptosis. This study aimed to understand the interactions and impact of miR-15a and NP-MSCs on chondrogenic differentiation and IVD degeneration. Exosomes secreted by NP cells were purified by differential centrifugation and identified by transmission electron microscopy and exosomal markers. Further, by co-culture these exosomes were re-introduced into the NP-MSC cells, which were confirmed by fluorescence confocal microscopy. NP-MSCs treated with exo-miR-15a increases aggrecan and collagen II mRNA and protein levels while decreasing mRNA and protein levels of ADAMTS4/5 and MMP-3/-13. Toluidine blue staining confirmed that chondrogenic differentiation was increased in NP-MSCs treated with exo-miR-15a. NP-MSCs treated with exo-anti-miR-15a inhibit aggrecan and collagen II expression while increasing ADAMTS4/5 and MMP-3/-13 expression and decreasing chondrogenic differentiation. Dual-luciferase reporter assays revealed that miR-15a directly targets MMP-3 and downregulates its expression. Overexpression of miR-15a increased proliferation and colony formation, whereas combinatorial overexpression with MMP3, suppressed miR-15a's effects. This was also evident through the decreased phosphorylation of PI3K and Akt, upregulation of Wnt3a and β-catenin in the presence of miR-15a, but overexpression of MMP3 indicated an opposite effect. Overall, these data demonstrate that exo-miR-15a promotes NP-MSCs chondrogenic differentiation by downregulating MMP-3 through PI3K/Akt and Wnt3a/β-catenin axis.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Yifei Shen
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Shujie Zhao
- Department of Orthopedics, The People's Hospital of Jiangsu Province, Nanjing, Jiangsu 210029, China
| | - Yuqing Jiang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Dong Zhou
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213003, China.
| | - Yunkun Zhang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
12
|
Liu Y, Liu H, Meng Y, Zhang L. [Research progress of endogenous repair strategy in intervertebral disc]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:636-641. [PMID: 33998219 DOI: 10.7507/1002-1892.202012070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the research progress of endogenous repair strategy (ERS) in intervertebral disc (IVD). Methods The domestic and foreign literature related to ERS in IVD in recent years was reviewed, and its characteristics, status, and prospect in the future were summarized. Results The key of ERS in IVD is to improve the vitality of stem/progenitor cells in IVD or promote its migration from stem cell Niche to the tissue that need to repair. These stem/progenitor cells in IVD are derived from nucleus pulposus, annulus fibrosus, and cartilaginous endplate, showing similar biological characteristics to mesenchymal stem cells including the expression of the specific stem/progenitor cell surface markers and gene, and also the capacity of multiple differentiations potential. However, the development, senescence, and degeneration of IVD have consumed these stem/progenitor cells, and the harsh internal microenvironment further impair their biological characteristics, which leads to the failure of endogenous repair in IVD. At present, relevant research mainly focuses on improving the biological characteristics of endogenous stem/progenitor cells, directly supplementing endogenous stem/progenitor cells, biomaterials and small molecule compounds to stimulate the endogenous repair in IVD, so as to improve the effect of endogenous repair. Conclusion At present, ERS has gotten some achievements in the treatment of IVD degeneration, but its related studies are still in the pre-clinical stage. So further studies regarding ERS should be carried out in the future, especially in vivo experiments and clinical transformation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Hao Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Yang Meng
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Liang Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou Jiangsu, 225000, P.R.China
| |
Collapse
|
13
|
Guerrero J, Häckel S, Croft AS, Albers CE, Gantenbein B. The effects of 3D culture on the expansion and maintenance of nucleus pulposus progenitor cell multipotency. JOR Spine 2021; 4:e1131. [PMID: 33778405 PMCID: PMC7984018 DOI: 10.1002/jsp2.1131] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Low back pain (LBP) is a global health concern. Increasing evidence implicates intervertebral disk (IVD) degeneration as a major contributor. In this respect, tissue-specific progenitors may play a crucial role in tissue regeneration, as these cells are perfectly adapted to their niche. Recently, a novel progenitor cell population was described in the nucleus pulposus (NP) that is positive for Tie2 marker. These cells have self-renewal capacity and in vitro multipotency potential. However, extremely low numbers of the NP progenitors limit the feasibility of cell therapy strategies. OBJECTIVE Here, we studied the influence of the culture method and of the microenvironment on the proliferation rate and the differentiation potential of human NP progenitors in vitro. METHOD Cells were obtained from human NP tissue from trauma patients. Briefly, the NP tissue cells were cultured in two-dimensional (2D) (monolayer) or three-dimensional (3D) (alginate beads) conditions. After 1 week, cells from 2D or 3D culture were expanded on fibronectin-coated flasks. Subsequently, expanded NP cells were then characterized by cytometry and tri-lineage differentiation, which was analyzed by qPCR and histology. Moreover, experiments using Tie2+ and Tie2- NP cells were also performed. RESULTS The present study aims to demonstrate that 3D expansion of NP cells better preserves the Tie2+ cell populations and increases the chondrogenic and osteogenic differentiation potential compared to 2D expansion. Moreover, the cell sorting experiments reveal that only Tie2+ cells were able to maintain the pluripotent gene expression if cultured in 3D within alginate beads. Therefore, our results highly suggest that the maintenance of the cell's multipotency is mainly, but not exclusively, due to the higher presence of Tie2+ cells due to 3D culture. CONCLUSION This project not only might have a scientific impact by evaluating the influence of a two-step expansion protocol on the functionality of NP progenitors, but it could also lead to an innovative clinical approach.
Collapse
Affiliation(s)
- Julien Guerrero
- Tissue Engineering for Orthopaedics & Mechanobiology, Department for BioMedical Research (DBMR) of the Faculty of Medicine of the University of BernUniversity of BernSwitzerland
| | - Sonja Häckel
- Department of Orthopaedic Surgery & Traumatology, InselspitalBern University HospitalBernSwitzerland
| | - Andreas S. Croft
- Tissue Engineering for Orthopaedics & Mechanobiology, Department for BioMedical Research (DBMR) of the Faculty of Medicine of the University of BernUniversity of BernSwitzerland
| | - Christoph E. Albers
- Department of Orthopaedic Surgery & Traumatology, InselspitalBern University HospitalBernSwitzerland
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology, Department for BioMedical Research (DBMR) of the Faculty of Medicine of the University of BernUniversity of BernSwitzerland
- Department of Orthopaedic Surgery & Traumatology, InselspitalBern University HospitalBernSwitzerland
| |
Collapse
|
14
|
Nan LP, Wang F, Ran D, Zhou SF, Liu Y, Zhang Z, Huang ZN, Wang ZY, Wang JC, Feng XM, Zhang L. Naringin alleviates H 2O 2-induced apoptosis via the PI3K/Akt pathway in rat nucleus pulposus-derived mesenchymal stem cells. Connect Tissue Res 2020; 61:554-567. [PMID: 31294637 DOI: 10.1080/03008207.2019.1631299] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: To investigate the protective effect of naringin (Nar) on H2O2-induced apoptosis of nucleus pulposus-derived mesenchymal stem cells (NPMSC) and the potential mechanism in this process. Methods: Rat NPMSC were cultured in MSC culture medium or culture medium with different concentrations of H2O2. Nar or the combination of Nar and LY294002 was added into the culture medium to investigate the effects of Nar. Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. The apoptosis rate was determined using Annexin V/PI dual staining and terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assays. Additionally, the levels of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were analyzed by flow cytometry. ATP level in NPMSC was analyzed via ATP detection kit. Mitochondrial ultrastructure change was observed through transmission electron microscope (TEM). Levels of apoptosis-associated molecules (cleaved caspase-3, Bax and Bcl-2) were evaluated via RT-PCR and western blot, respectively. Results: The cells isolated from NP met the criteria for MSC. H2O2 significantly promoted NPMSC apoptosis in a dose and time-dependent manner. Nar showed no cytotoxicity effect on NPMSC up to a concentration of 100 μM for 24 h. Nar exhibited protective effects against H2O2-induced NPMSC apoptosis including apoptosis rate, expressions of proapoptosis and antiapoptosis related genes and protein. Nar could also alleviate H2O2-induced mitochondrial dysfunction of increased mitochondrial ROS production, reduced MMP, decreased intracellular ATP and mitochondrial ultrastructure change. However, these protected effects were inhibited after LY294002 treatment. Conclusions: Our results demonstrated that Nar efficiently attenuated H2O2-induced NPMSC apoptosis and mitochondrial dysfunction. The activation of ROS-mediated PI3K/Akt pathway may be the potential mechanism in this process.
Collapse
Affiliation(s)
- Li-Ping Nan
- Department of Orthopedics, Dalian Medical University , Dalian, Liaoning, China.,Department of Orthopedics, Clinical Medical College of Yangzhou University , Yangzhou, Jiangsu, China
| | - Feng Wang
- Department of Orthopedics, Dalian Medical University , Dalian, Liaoning, China.,Department of Orthopedics, Clinical Medical College of Yangzhou University , Yangzhou, Jiangsu, China
| | - Di Ran
- College of Veterinary Medicine, Yangzhou University , Yangzhou, China
| | - Shi-Feng Zhou
- Department of Orthopedics, Clinical Medical College of Yangzhou University , Yangzhou, Jiangsu, China
| | - Yang Liu
- Department of Orthopedics, Dalian Medical University , Dalian, Liaoning, China.,Department of Orthopedics, Clinical Medical College of Yangzhou University , Yangzhou, Jiangsu, China
| | - Zhen Zhang
- Department of Orthopedics, Dalian Medical University , Dalian, Liaoning, China.,Department of Orthopedics, Clinical Medical College of Yangzhou University , Yangzhou, Jiangsu, China
| | - Ze-Nan Huang
- Department of Orthopedics, Clinical Medical College of Yangzhou University , Yangzhou, Jiangsu, China
| | - Ze-Yu Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University , Yangzhou, Jiangsu, China
| | - Jing-Cheng Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University , Yangzhou, Jiangsu, China
| | - Xin-Min Feng
- Department of Orthopedics, Clinical Medical College of Yangzhou University , Yangzhou, Jiangsu, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University , Yangzhou, Jiangsu, China
| |
Collapse
|
15
|
Liu Y, Li Y, Nan LP, Wang F, Zhou SF, Feng XM, Liu H, Zhang L. Insights of stem cell-based endogenous repair of intervertebral disc degeneration. World J Stem Cells 2020; 12:266-276. [PMID: 32399135 PMCID: PMC7202923 DOI: 10.4252/wjsc.v12.i4.266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
Low back pain has become more prevalent in recent years, causing enormous economic burden for society and government. Common therapies used in clinics including conservative treatment and surgery can only relieve pain. Subsequent cell-based treatment such as mesenchymal stem cell transplantation poses problems such as short duration of therapeutic effect and tumorigenesis. Recently, the discovery and identification of stem cell niche and stem/progenitor cells in intervertebral disc bring increased attention to endogenous repair strategy. Therefore, we review the studies involving endogenous repair strategy and present the characteristics and current status of this treatment. Meanwhile, we also discuss the strategy and perspective of endogenous repair strategy in future.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
- Department of Orthopedics, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Yan Li
- Department of Oncology, The Affiliated Cancer Hospital, School of Medicine, UESTC, Chengdu 610000, Sichuan Province, China
| | - Li-Ping Nan
- Department of Orthopedics, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Feng Wang
- Department of Orthopedics, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Shi-Feng Zhou
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Xin-Min Feng
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Hao Liu
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| |
Collapse
|
16
|
Abstract
Intervertebral disc (IVD) degeneration is associated with low back pain. In IVDs, a high mechanical load, high osmotic pressure and hypoxic conditions create a hostile microenvironment for resident cells. How IVD homeostasis and function are maintained under stress remains to be understood; however, several research groups have reported isolating native endogenous progenitor-like or otherwise proliferative cells from the IVD. The isolation of such cells implies that the IVD might contain a quiescent progenitor-like population that could be activated for IVD repair and regeneration. Increased understanding of endogenous disc progenitor cells will improve our knowledge of IVD homeostasis and, when combined with tissue engineering techniques, might hold promise for future therapeutic applications. In this Review, the characteristics of progenitor cells in different IVD compartments are discussed, as well as the potency of different cell populations within the IVD. The stem cell characteristics of these cells are also compared with those of mesenchymal stromal cells. On the basis of existing evidence, whether and how IVD degeneration and the hostile microenvironment might affect endogenous progenitor cell function are considered, and ways to channel the potential of these cells for IVD repair are suggested.
Collapse
|
17
|
Tian D, Liu J, Chen L, Zhu B, Jing J. The protective effects of PI3K/Akt pathway on human nucleus pulposus mesenchymal stem cells against hypoxia and nutrition deficiency. J Orthop Surg Res 2020; 15:29. [PMID: 31992313 PMCID: PMC6988348 DOI: 10.1186/s13018-020-1551-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND To study the effects of hypoxia and nutrition deficiency mimicking degenerated intervertebral disc on the biological behavior of human nucleus-derived pulposus mesenchymal stem cells (hNP-MSCs) and the role of PI3K/Akt pathway in the process in vitro. METHODS hP-MSCs were isolated from lumbar disc and were further identified by their immunophenotypes and multilineage differentiation. Then, cells were divided into the control group, hypoxia and nutrition deficiency group, the LY294002 group, and insulin-like growth factor 1 (IGF-1) group. Then cell apoptosis, the cell viability, the caspase 3 activity, and the expression of PI3K, Akt, and functional genes (aggrecan, collagen I, and collagen II) were evaluated. RESULT Our work showed that isolated cells met the criteria of International Society for cellular Therapy. Therefore, cells obtained from degenerated nucleus pulposus were definitely hNP-MSCs. Our results showed that hypoxia and nutrition deficiency could significantly increase cell apoptosis, the caspase 3 activity, and inhibit cell viability. Gene expression results demonstrated that hypoxia and nutrition deficiency could increase the relative expression of PI3K and Akt gene and inhibit the expression of functional genes. However, when the PI3K/Akt pathway was inhibited by LY294002, the cell apoptosis and caspase 3 activity significantly increased while the cell viability was obviously inhibited. Quantitative real-time PCR results showed that the expression of functional genes was more significantly inhibited. Our study further verified that the above-mentioned biological activities of hNP-MSCs could be significantly improved by IGF1. CONCLUSIONS PI3K/Akt signal pathway may have protective effects on human nucleus pulposus-derived mesenchymal stem cells against hypoxia and nutrition deficiency.
Collapse
Affiliation(s)
- DaSheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678#Fu Rong Road, Hefei, Anhui, 230601, People's Republic of China
| | - Jianjun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678#Fu Rong Road, Hefei, Anhui, 230601, People's Republic of China
| | - Lei Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678#Fu Rong Road, Hefei, Anhui, 230601, People's Republic of China
| | - Bin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678#Fu Rong Road, Hefei, Anhui, 230601, People's Republic of China
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678#Fu Rong Road, Hefei, Anhui, 230601, People's Republic of China.
| |
Collapse
|
18
|
Liu Y, Li Y, Huang ZN, Wang ZY, Nan LP, Wang F, Zhou SF, Wang JC, Feng XM, Zhang L. The effect of intervertebral disc degenerative change on biological characteristics of nucleus pulposus mesenchymal stem cell: an in vitro study in rats. Connect Tissue Res 2019; 60:376-388. [PMID: 31119993 DOI: 10.1080/03008207.2019.1570168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: To evaluate the change on biological characteristics of mesenchymal stem cell (MSC) derived from normal and degenerative intervertebral disc (IVD). Methods: MSC was isolated from normal and degenerative IVD rat model. Immunophenotype detected by flow cytometric analysis, expression of stemness genes determined by reverse-transcription polymerase chain reaction (RT-PCR) and osteogenic, adipogenic and chondrogenic differentiation were compared between MSC derived from normal IVD (N-NPMSC) and degenerative IVD (D-NPMSC). The biological characteristics including cell proliferation, colony formation, apoptosis, caspase-3 activity and mRNA and protein expressions of hypoxia inducible factor-1α (HIF-1α), glucose transporter 1 (GLUT-1), vascular endothelial growth factor (VEGF), silent information regulator protein 1 (SIRT1) and silent information regulator protein 6 (SIRT6) were compared between N-NPMSC and D-NPMSC. Results: Both of N-NPMSC and D-NPMSC highly expressed CD105, CD90 and CD73, and lower expressed CD34 and CD45. There was no significant difference in cell morphology and multipotent differentiation ability between N-NPMSC and D-NPMSC. D-NPMSC showed significantly lower expressions of stemness genes, cell proliferation and colony formation ability. D-NPMSC also exhibited increased cell apoptosis rate and caspase-3 expression, and significantly lower expressions of HIF-1α, GLUT-1, VEGF, SIRT1 and SIRT6 in mRNA and protein levels compared with N-NPMSC. Conclusions: N-NPMSC showed significantly higher proliferation rate, better colony forming and stemness maintenance ability, whereas reduced cell apoptosis rate compared with D-NPMSC. HIF-1α-mediated signal pathway may be involved in the regulation of NPMSC proliferation. These findings indicated that degenerative change of IVD should be taken into account when selecting a source of NPMSC for clinical application.
Collapse
Affiliation(s)
- Yang Liu
- a Department of Orthopedics , Dalian Medical University , Dalian , Liaoning , China
| | - Yan Li
- b Department of Internal Medicine , Dalian Medical University , Dalian , Liaoning , China
| | - Ze-Nan Huang
- c Department of Orthopedics , Clinical Medical College of Yangzhou University , Yangzhou , Jiangsu , People's Republic of China
| | - Ze-Yu Wang
- c Department of Orthopedics , Clinical Medical College of Yangzhou University , Yangzhou , Jiangsu , People's Republic of China
| | - Li-Ping Nan
- a Department of Orthopedics , Dalian Medical University , Dalian , Liaoning , China
| | - Feng Wang
- a Department of Orthopedics , Dalian Medical University , Dalian , Liaoning , China
| | - Shi-Feng Zhou
- c Department of Orthopedics , Clinical Medical College of Yangzhou University , Yangzhou , Jiangsu , People's Republic of China
| | - Jing-Cheng Wang
- c Department of Orthopedics , Clinical Medical College of Yangzhou University , Yangzhou , Jiangsu , People's Republic of China
| | - Xin-Min Feng
- c Department of Orthopedics , Clinical Medical College of Yangzhou University , Yangzhou , Jiangsu , People's Republic of China
| | - Liang Zhang
- c Department of Orthopedics , Clinical Medical College of Yangzhou University , Yangzhou , Jiangsu , People's Republic of China
| |
Collapse
|
19
|
Clouet J, Fusellier M, Camus A, Le Visage C, Guicheux J. Intervertebral disc regeneration: From cell therapy to the development of novel bioinspired endogenous repair strategies. Adv Drug Deliv Rev 2019; 146:306-324. [PMID: 29705378 DOI: 10.1016/j.addr.2018.04.017] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 03/29/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022]
Abstract
Low back pain (LBP), frequently associated with intervertebral disc (IVD) degeneration, is a major public health concern. LBP is currently managed by pharmacological treatments and, if unsuccessful, by invasive surgical procedures, which do not counteract the degenerative process. Considering that IVD cell depletion is critical in the degenerative process, the supplementation of IVD with reparative cells, associated or not with biomaterials, has been contemplated. Recently, the discovery of reparative stem/progenitor cells in the IVD has led to increased interest in the potential of endogenous repair strategies. Recruitment of these cells by specific signals might constitute an alternative strategy to cell transplantation. Here, we review the status of cell-based therapies for treating IVD degeneration and emphasize the current concept of endogenous repair as well as future perspectives. This review also highlights the challenges of the mobilization/differentiation of reparative progenitor cells through the delivery of biologics factors to stimulate IVD regeneration.
Collapse
Affiliation(s)
- Johann Clouet
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; CHU Nantes, Pharmacie Centrale, PHU 11, Nantes F-44093, France; Université de Nantes, UFR Sciences Biologiques et Pharmaceutiques, Nantes F-44035, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Marion Fusellier
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Department of Diagnostic Imaging, CRIP, National Veterinary School (ONIRIS), Nantes F-44307, France
| | - Anne Camus
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Catherine Le Visage
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Jérôme Guicheux
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France.
| |
Collapse
|
20
|
Cheng S, Li X, Jia Z, Lin L, Ying J, Wen T, Zhao Y, Guo Z, Zhao X, Li D, Ji W, Wang D, Ruan D. The inflammatory cytokine TNF-α regulates the biological behavior of rat nucleus pulposus mesenchymal stem cells through the NF-κB signaling pathway in vitro. J Cell Biochem 2019; 120:13664-13679. [PMID: 30938863 DOI: 10.1002/jcb.28640] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/17/2019] [Accepted: 02/28/2019] [Indexed: 12/27/2022]
Abstract
Nucleus pulposus (NP) mesenchymal stem cells (NPMSCs) are a potential cell source for intervertebral disc (IVD) regeneration; however, little is known about their response to tumor necrosis factor-α (TNF-α), a critical inflammation factor contributing to accelerating IVD degeneration. Accordingly, the aim of this study was to investigate the regulatory effects of TNF-α at high and low concentrations on the biological behaviors of healthy rat NPMSCs, including proliferation, migration, and NP differentiation. In this study, NPMSCs were treated with different concentration of TNF-α (0-200 ng/mL). Then we used annexin V/propidium iodide flow cytometry analysis to detect the apoptosis rate of NPMSCs. Cell Counting Kit-8, Edu assay, and cell cycle test were used to examine the proliferation of NPMSCs. Migration ability of NPMSCs was detected by wound healing assay and transwell migration assay. Pellets method was used to induce NP differentiation of NPMSCs, and immunohistochemical staining, real-time polymerase chain reaction, and Western blot analysis were used to examine the NPC phenotypic genes and proteins. The cells were further treated with the nuclear factor-κB (NF-κB) pathway inhibitor Bay 11-7082 to determine the role of the NF-κB pathway in the mechanism underlying the differentiation process. Results showed that treatment with a high concentration of TNF-α (50-200 ng/mL) could induce apoptosis of NPMSCs, whereas a relatively low TNF-α concentration (0.1-10 ng/mL) promoted the proliferation and migration of NPMSCs, but inhibited their differentiation toward NP cells. Moreover, we identified that the NF-κB signaling pathway is activated during the TNF-α-inhibited differentiation of NPMSCs, and the NF-κB signal inhibitor Bay 11-7082 could partially eliminate the adverse effect of TNF-α on the differentiation of NPMSCs. Therefore, our findings provide important insight into the dynamic biological behavior reactivity of NPMSCs to TNF-α during IVD degeneration process, thus may help us understanding the underlying mechanism of IVD degeneration.
Collapse
Affiliation(s)
- Shi Cheng
- Department of Orthopedic Surgery, Navy General Hospital, Beijing, China.,The Second Clinical College, Southern Medical University, Guangzhou, China
| | - Xiaochuan Li
- Department of Orthopedic Surgery, The People's Hospital of Gaozhou, Guangdong, China
| | - Zhiwei Jia
- Department of Orthopedics, The 306th Hospital of People's Liberation Army, Beijing, China
| | - Linghan Lin
- Department of Orthopedic Surgery, Navy General Hospital, Beijing, China
| | - Jinwei Ying
- Department of Orthopedic Surgery, Navy General Hospital, Beijing, China
| | - Tianyong Wen
- Department of Orthopedic Surgery, Navy General Hospital, Beijing, China
| | - Yachao Zhao
- Department of Orthopedic Surgery, Navy General Hospital, Beijing, China
| | - Ziming Guo
- Department of Orthopedic Surgery, Navy General Hospital, Beijing, China
| | - Xiyan Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dandan Li
- The Second Clinical College, Southern Medical University, Guangzhou, China
| | - Wei Ji
- Department of Orthopedic Surgery, Navy General Hospital, Beijing, China
| | - Deli Wang
- Department of Orthopedic Surgery, Peking University Shenzhen Hospital, Guangdong, China
| | - Dike Ruan
- Department of Orthopedic Surgery, Navy General Hospital, Beijing, China
| |
Collapse
|
21
|
Intervertebral Disc-Derived Stem/Progenitor Cells as a Promising Cell Source for Intervertebral Disc Regeneration. Stem Cells Int 2018; 2018:7412304. [PMID: 30662469 PMCID: PMC6312624 DOI: 10.1155/2018/7412304] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/18/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is considered to be the primary reason for low back pain. Despite remarkable improvements in both pharmacological and surgical management of IVD degeneration (IVDD), therapeutic effects are still unsatisfactory. It is because of the fact that these therapies are mainly focused on alleviating the symptoms rather than treating the underlying cause or restoring the structure and biomechanical function of the IVD. Accumulating evidence has revealed that the endogenous stem/progenitor cells exist in the IVD, and these cells might be a promising cell source in the regeneration of degenerated IVD. However, the biological characteristics and potential application of IVD-derived stem/progenitor cells (IVDSCs) have yet to be investigated in detail. In this review, the authors aim to perform a review to systematically discuss (1) the isolation, surface markers, classification, and biological characteristics of IVDSCs; (2) the aging- and degeneration-related changes of IVDSCs and the influences of IVD microenvironment on IVDSCs; and (3) the potential for IVDSCs to promote regeneration of degenerated IVD. The authors believe that this review exclusively address the current understanding of IVDSCs and provide a novel approach for the IVD regeneration.
Collapse
|
22
|
Wang SZ, Fan WM, Jia J, Ma LY, Yu JB, Wang C. Is exclusion of leukocytes from platelet-rich plasma (PRP) a better choice for early intervertebral disc regeneration? Stem Cell Res Ther 2018; 9:199. [PMID: 30021649 PMCID: PMC6052621 DOI: 10.1186/s13287-018-0937-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/07/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023] Open
Abstract
Background Platelet-rich plasma (PRP) is becoming a promising strategy to treat early intervertebral disc degeneration (IDD) in clinics. Pure PRP without leukocytes (P-PRP) may decrease the catabolic and inflammatory changes in the early degenerated intervertebral discs. The aim of this study was to investigate the effects of P-PRP on nucleus pulposus-derived stem cells (NPSCs) isolated from early degenerated intervertebral discs in vitro. Methods NPSCs isolated from early degenerated discs of rabbits were treated with P-PRP or leukocyte-platelet-rich PRP (L-PRP) in vitro, followed by measuring cell proliferation, stem cell marker expression, inflammatory gene expression, and anabolic and catabolic protein expression by immunostaining, quantitative real-time polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay. Results Cell proliferation was induced by P-PRP in a dose-dependent manner with maximum proliferation at 10% P-PRP dose. P-PRP induced differentiation of NPSCs into active nucleus pulposus cells. P-PRP mainly increased the expression of anabolic genes and relative proteins, aggrecan (AGC), collagen types II (Col II), while L-PRP predominantly increased the expression of catabolic and inflammatory genes, matrix metalloproteinase-1 (MMP-1), MMP-13, interleukin-1 beta (IL-1β), IL-6, tumor necrosis factor alpha (TNF-α), and protein production of IL-1β and TNF-α. Conclusions Leukocytes in PRP activate inflammatory and catabolic effects on NPSCs from early degenerated intervertebral discs. Hence, P-PRP may be a more suitable therapeutic strategy for early IDD.
Collapse
Affiliation(s)
- Shan-Zheng Wang
- The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China.,Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, 87 Ding Jia Qiao Road, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Wei-Min Fan
- The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China.
| | - Jun Jia
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, 87 Ding Jia Qiao Road, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Liang-Yu Ma
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, 87 Ding Jia Qiao Road, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Jia-Bin Yu
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, 87 Ding Jia Qiao Road, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Chen Wang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, 87 Ding Jia Qiao Road, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
23
|
Regenerative potential of human nucleus pulposus resident stem/progenitor cells declines with ageing and intervertebral disc degeneration. Int J Mol Med 2018; 42:2193-2202. [PMID: 30015833 DOI: 10.3892/ijmm.2018.3766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/04/2018] [Indexed: 11/05/2022] Open
Abstract
Numerous studies have demonstrated the presence of resident nucleus pulposus stem/progenitor cells (NPSCs) in the tissue of the intervertebral disc (IVD). However, the cellular identity of NPSCs during IVD degeneration and ageing are poorly defined at present, despite significant progress in the understanding of NPSC biology. In the present study, NPSCs were isolated from human degenerated IVD and were characterized by flow cytometry, gene expression assays and proliferation and multipotency analysis. The results of the present study demonstrated that NPSCs isolated from human degenerated IVD may be divided into two groups according to the expression of mesenchymal stem cell (MSC) surface markers: The high expression of MSC surface markers group (H‑NPSCs) was highly positive for CD29, CD44, CD73, CD90 and CD105 at rates >95%, and the low expression of MSC markers surface markers group (L‑NPSCs), with the expression of CD29 and CD105 exhibiting individual variability, however, all at rates <95%. The donors for H‑NPSCs were aged <20 years, while the majority of donors for L‑NPSCs were aged >25 years, with one exception aged <20 years. The results highlighted that the low expression of MSC surface markers in NPSCs from aged and degenerated NP tissues were associated with a low rate of proliferation and reduced differentiation potential, as well as downregulation of the NP progenitor marker Tie2 and higher expression of NP cell‑specific markers. These findings demonstrated that the regenerative potential of human NPSCs declines with ageing and degeneration of the IVD.
Collapse
|