1
|
Guo Y, Deng F, Jiang Y, Cao G, Zhang Y, Liu G, Alimujiang M, Ayati M, Chen Y, Chen L, Lv S, Dou X. IL-37 Alleviates Sepsis-Induced Lung Injury by Inhibiting Inflammatory Response Through the TGF-β/Smad3 Pathway. Immunol Invest 2025:1-15. [PMID: 40270428 DOI: 10.1080/08820139.2025.2495958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Introduction: Sepsis is caused by an uncontrolled inflammatory response and immune dysfunction, with lung injury being the most common complication and one of the leading causes of death in clinically ill patients. Interleukin 37 (IL-37) is a multifunctional cytokine that plays a vital role in various pathophysiological processes, including inflammation, infection, and immunity.Methods: The study involved both clinical and animal experiments (establishing an animal model of sepsis-induced lung injury). Firstly, 50 patients with sepsis-induced lung injury and 50 healthy controls were included. In addition, a more in-depth study was conducted using animal models.Results: IL-37, IL-6, PCT, and CRP levels were significantly higher in the sepsis-induced lung injury group. Correlation analysis revealed that IL-37 significantly correlated with IL-6, PCT, and CRP levels. In animal experiments, IL-37 significantly attenuated CLP-induced pulmonary edema and cellular injury while reducing the levels of inflammatory factors IL-6 and TNF-α, as well as sepsis-related inflammatory markers PCT and CRP. Moreover, IL-37 significantly downregulated the expression levels of genes and proteins of apoptosis-related molecules Caspase-3 and Bax and pathway molecules TGF-β and Smad3. Discussion: The TGF-β/Smad3 pathway is involved in the process of IL-37 inhibiting inflammatory response and ameliorating sepsis-induced lung injury.
Collapse
Affiliation(s)
- Yufang Guo
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Feifei Deng
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
| | - Yali Jiang
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
- Ili & Jiangsu Joint Institute of Health, Yili, Xinjiang, P.R. China
| | - Guodong Cao
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
- Ili & Jiangsu Joint Institute of Health, Yili, Xinjiang, P.R. China
| | - Yixin Zhang
- Department of Critical Care Medicine, Medical School of Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Gaowu Liu
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
| | - Mayinur Alimujiang
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
| | - Mairhaba Ayati
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
| | - Yufeng Chen
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
| | - Lili Chen
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
| | - Su Lv
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
| | - Xueqin Dou
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yili, Xinjiang, P.R. China
| |
Collapse
|
2
|
Song L, Jiang W, Lin H, Yu J, Liu K, Zheng R. Post-translational modifications in sepsis-induced organ dysfunction: mechanisms and implications. Front Immunol 2024; 15:1461051. [PMID: 39234245 PMCID: PMC11371574 DOI: 10.3389/fimmu.2024.1461051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
As a grave and highly lethal clinical challenge, sepsis, along with its consequent multiorgan dysfunction, affects millions of people worldwide. Sepsis is a complex syndrome caused by a dysregulated host response to infection, leading to fatal organ dysfunction. An increasing body of evidence suggests that the pathogenesis of sepsis is both intricate and rapid and involves various cellular responses and signal transductions mediated by post-translational modifications (PTMs). Hence, a comprehensive understanding of the mechanisms and functions of PTMs within regulatory networks is imperative for understanding the pathological processes, diagnosis, progression, and treatment of sepsis. In this review, we provide an exhaustive and comprehensive summary of the relationship between PTMs and sepsis-induced organ dysfunction. Furthermore, we explored the potential applications of PTMs in the treatment of sepsis, offering a forward-looking perspective on the understanding of infectious diseases.
Collapse
Affiliation(s)
- Lin Song
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Wei Jiang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Hua Lin
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jiangquan Yu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Ke Liu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Ruiqiang Zheng
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
3
|
Bi CF, Liu J, Yang LS, Zhang JF. Research Progress on the Mechanism of Sepsis Induced Myocardial Injury. J Inflamm Res 2022; 15:4275-4290. [PMID: 35923903 PMCID: PMC9342248 DOI: 10.2147/jir.s374117] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
Sepsis is an abnormal condition with multiple organ dysfunctions caused by the uncontrolled infection response and one of the major diseases that seriously hang over global human health. Besides, sepsis is characterized by high morbidity and mortality, especially in intensive care unit (ICU). Among the numerous subsequent organ injuries of sepsis, myocardial injury is one of the most common complications and the main cause of death in septic patients. To better manage septic inpatients, it is necessary to understand the specific mechanisms of sepsis induced myocardial injury (SIMI). Therefore, this review will elucidate the pathophysiology of SIMI from the following certain mechanisms: apoptosis, mitochondrial damage, autophagy, excessive inflammatory response, oxidative stress and pyroptosis, and outline current therapeutic strategies and potential approaches in SIMI.
Collapse
Affiliation(s)
- Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Jia Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- Correspondence: Li-Shan Yang; Jun-Fei Zhang, Email ;
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People’s Republic of China
| |
Collapse
|
4
|
Zhang R, Niu Z, Liu J, Dang X, Feng H, Sun J, Pan L, Peng Z. LncRNA SNHG1 promotes sepsis-induced myocardial injury by inhibiting Bcl-2 expression via DNMT1. J Cell Mol Med 2022; 26:3648-3658. [PMID: 35678255 PMCID: PMC9258699 DOI: 10.1111/jcmm.17358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 03/24/2022] [Accepted: 04/22/2022] [Indexed: 12/02/2022] Open
Abstract
Myocardial injury is a frequently occurring complication of sepsis. This study aims to investigate the molecular mechanism of long noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1)-mediated DNA methyltransferase 1/B-cell lymphoma-2 (DNMT1/Bcl-2) axis in sepsis-induced myocardial injury. Mice and HL-1 cells were treated with lipopolysaccharide (LPS) to establish animal and cellular models simulating sepsis and inflammation. LncRNA SNHG1 was screened out as a differentially expressed lncRNA in sepsis samples through microarray profiling, and the upregulated expression of lncRNA SNHG1 was confirmed in myocardial tissues of LPS-induced septic mice and HL-1 cells. Further experiments suggested that silencing of lncRNA SNHG1 reduced the inflammation and apoptotic rate of LPS-induced HL-1 cells. LncRNA SNHG1 inhibited Bcl-2 expression by recruiting DNMT1 to Bcl-2 promoter region to cause methylation. Inhibition of Bcl-2 promoter methylation reduced the inflammation and apoptotic rate of LPS-induced HL-1 cells. In vivo experiments substantiated that lncRNA SNHG1 silencing alleviated sepsis-induced myocardial injury in mice. Taken together, lncRNA SNHG1 promotes LPS-induced myocardial injury in septic mice by downregulating Bcl-2 through DNMT1-mediated Bcl-2 methylation.
Collapse
Affiliation(s)
- Rui Zhang
- Emergency DepartmentThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zequn Niu
- Emergency DepartmentThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jie Liu
- Emergency DepartmentThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiaoyan Dang
- Emergency DepartmentThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Hui Feng
- Emergency DepartmentThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jiangli Sun
- Emergency DepartmentThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Longfei Pan
- Emergency DepartmentThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zhuo Peng
- Emergency DepartmentThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
5
|
袁 圆, 年 峰, 李 徽, 杨 慧, 吴 玉, 马 梦, 汪 开, 陈 雪, 张 自, 栗 根, 杨 小, 吴 强. [Protective effect of excretory-secretory proteins from Trichinella spiralis muscle larvae against myocardial injury in septic mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:824-831. [PMID: 35790432 PMCID: PMC9257356 DOI: 10.12122/j.issn.1673-4254.2022.06.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To evaluate the protective effect of excretory-secretory proteins from Trichinella spiralis muscle larvae (Ts-MES) on sepsis-induced myocardial injury in mice. METHODS Eighty male BALB/C mice were randomized equally into sham-operated group, myocardial injury group, Ts-MES treatment group and dexamethasone treatment group. In the latter 3 groups, sepsis-induced myocardial injury models were established by cecal ligation and perforation; the sham operation was performed by exposure of the cecum without ligation or perforation. Forty minutes after the operation, the mice were given intraperitoneal injections 150 μL PBS, 20 μg TS-MES or 0.3 mg/kg dexamethasone as indicated. At 12 h after the operation, 6 mice were randomly selected from each group for echocardiography, and 8 mice were used for observing the survival rate within 72 h. The remaining 6 mice were examined for myocardial pathologies with HE staining and serum levels of NTPro-BNP and cTnI with ELISA; the expressions of TNF-α, IL-6, IL-10 and TGF-β in the serum and myocardial tissue were detected using ELISA and qRT-PCR. RESULTS Compared with the sham-operated mice, the septic mice showed significantly decreased cardiac function indexes (LVEF, LVFS, and E/A) with lowered survival rate within 72 h (P < 0.001) and significantly higher myocardial injury scores and serum levels of NTPro-BNP and cTnI (P < 0.01). Treatment with TS-MES significantly improved the cardiac function and 72-h survival rate (P < 0.05) and lowered the myocardial injury scores and serum levels of NTPro-BNP and cTnI (P < 0.05) in the septic mice. Compared with the sham-operated mice, the septic mice had obviously increased TNF-α and IL-6 levels in the serum and myocardial tissue (P < 0.001), which were significantly lowered by treatment with TS-MES (P < 0.05). TS-MES and dexamethasone both increased the levels of IL-10 and TGF-β in the septic mice, but the changes were significant only in TS-MES-treated mice (P < 0.05). CONCLUSION Ts-MES are capable of protecting against myocardial injury in septic mice by reducing the production of pro-inflammatory cytokines and enhancing the levels of regulatory cytokines.
Collapse
Affiliation(s)
- 圆 袁
- 蚌埠医学院人体解剖学教研室,安徽 蚌埠 233000Department of Human Anatomy, Bengbu Medical College, Bengbu 233000, China
| | - 峰 年
- 蚌埠医学院附属蚌埠第三人民医院肿瘤内科,安徽 蚌埠 233000Department of Oncology, Bengbu Third People's Hospital Affiliated to Bengbu Medical College, Bengbu 233000, China
| | - 徽徽 李
- 蚌埠医学院组织胚胎学教研室,安徽 蚌埠 233000Department of Histology and Embryology, Bengbu Medical College, Bengbu 233000, China
| | - 慧娟 杨
- 蚌埠医学院第一附属医院肾病科,安徽 蚌埠 233000Department of Nephrology, Bengbu Medical College, Bengbu 233000, China
| | - 玉芝 吴
- 蚌埠医学院免疫学实验中心,安徽 蚌埠 233000Immunology Experiment Center, Bengbu Medical College, Bengbu 233000, China
| | - 梦禧 马
- 蚌埠医学院免疫学实验中心,安徽 蚌埠 233000Immunology Experiment Center, Bengbu Medical College, Bengbu 233000, China
| | - 开贵 汪
- 蚌埠医学院免疫学实验中心,安徽 蚌埠 233000Immunology Experiment Center, Bengbu Medical College, Bengbu 233000, China
| | - 雪玲 陈
- 蚌埠医学院免疫学实验中心,安徽 蚌埠 233000Immunology Experiment Center, Bengbu Medical College, Bengbu 233000, China
| | - 自强 张
- 蚌埠医学院免疫学实验中心,安徽 蚌埠 233000Immunology Experiment Center, Bengbu Medical College, Bengbu 233000, China
| | - 根 栗
- 蚌埠医学院免疫学实验中心,安徽 蚌埠 233000Immunology Experiment Center, Bengbu Medical College, Bengbu 233000, China
| | - 小迪 杨
- 蚌埠医学院病原生物学教研室,安徽 蚌埠 233000Department of Pathogen Biology, Bengbu Medical College, Bengbu 233000, China
| | - 强 吴
- 蚌埠医学院第一附属医院重症医学科,安徽 蚌埠 233000Department of Intensive Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
6
|
Cui T, Liu W, Yu C, Ren J, Li Y, Shi X, Li Q, Zhang J. Protective Effects of Allicin on Acute Myocardial Infarction in Rats via Hydrogen Sulfide-mediated Regulation of Coronary Arterial Vasomotor Function and Myocardial Calcium Transport. Front Pharmacol 2022; 12:752244. [PMID: 35046802 PMCID: PMC8762278 DOI: 10.3389/fphar.2021.752244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myocardial infarction (AMI) is a condition with high morbidity and mortality, for which effective treatments are lacking. Allicin has been reported to exert therapeutic effects on AMI, but the underlying mechanisms of its action have not been fully elucidated. To investigate this, a rat model of AMI was generated by ligating the left anterior descending branch of the coronary artery. DL-propargylglycine (PAG), a specific hydrogen sulfide (H2S) synthetase inhibitor, was used to examine the effects of allicin on H2S production. Isolated coronary arteries and cardiomyocytes were assessed for vascular reactivity and cellular Ca2+ transport using a multiwire myography system and a cell-contraction-ion detection system, respectively. Allicin administration improved cardiac function and myocardial pathology, reduced myocardial enzyme levels, and increased H2S and H2S synthetase levels. Allicin administration resulted in concentration-dependent effects on coronary artery dilation, which were mediated by receptor-dependent Ca2+ channels, ATP-sensitive K+ channels, and sarcoplasmic reticulum (SR) Ca2+ release induced by the ryanodine receptor. Allicin administration improved Ca2+ homeostasis in cardiomyocytes by increasing cardiomyocyte contraction, Ca2+ transient amplitude, myofilament sensitivity, and SR Ca2+ content. Allicin also enhanced Ca2+ uptake via SR Ca2+-ATPase and Ca2+ removal via the Na+/Ca2+ exchanger, and it reduced SR Ca2+ leakage. Notably, the protective effects of allicin were partially attenuated by blockade of H2S production with PAG. Our findings provide novel evidence that allicin-induced production of H2S mediates coronary artery dilation and regulation of Ca2+ homeostasis in AMI. Our study presents a novel mechanistic insight into the anti-AMI effects of allicin and highlights the therapeutic potential of this compound.
Collapse
Affiliation(s)
- Tianwei Cui
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Weiyu Liu
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenghao Yu
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianxun Ren
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yikui Li
- Health Prevention Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolu Shi
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuyan Li
- Department of General Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinyan Zhang
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Hydrogen Sulfide and the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:99-128. [PMID: 34302690 DOI: 10.1007/978-981-16-0991-6_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is the "third gasotransmitter" recognized alongside nitric oxide (NO) and carbon monoxide (CO). H2S exhibits an array of biological effects in mammalian cells as revealed by studies showing important roles in the cardiovascular system, in cell signalling processes, post-translational modifications and in the immune system. Regarding the latter, using pharmacological and genetic approaches scientists have shown this molecule to have both pro- and anti-inflammatory effects in mammalian systems. The anti-inflammatory effects of H2S appeared to be due to its inhibitory action on the nuclear factor kappa beta signalling pathway; NF-kB representing a transcription factor involved in the regulation pro-inflammatory mediators like nitric oxide, prostaglandins, and cytokines. In contrast, results from several animal model describe a more complicated picture and report on pro-inflammatory effects linked to exposure to this molecule; linked to dosage used and point of administration of this molecule. Overall, roles for H2S in several inflammatory diseases spanning arthritis, atherosclerosis, sepsis, and asthma have been described by researchers. In light this work fascinating research, this chapter will cover H2S biology and its many roles in the immune system.
Collapse
|
8
|
Moreno-Navarrete JM, Comas F, de Jager V, Fernández-Real JM, Bouma HR. Cecal Ligation and Puncture-Induced Sepsis Promotes Brown Adipose Tissue Inflammation Without Any Impact on Expression of Thermogenic-Related Genes. Front Physiol 2021; 12:692618. [PMID: 34322037 PMCID: PMC8313297 DOI: 10.3389/fphys.2021.692618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Aims: The negative effects of chronic low-level inflammation on adipose tissue physiology have been extensively demonstrated, whereas the effects of acute inflammation are less studied. Here, we aimed to investigate the effects of sepsis-induced acute inflammation on gene expression markers of brown and white adipose tissue functionality. Methods: Brown adipose tissue (BAT) and perirenal white adipose tissue (prWAT) gene expression markers were analyzed in cecal ligation and puncture (CLP)-induced sepsis mice model. Results: CLP-induced sepsis attenuated expression of adipogenesis-related genes, in parallel to increased Tnf, Il6, and Ltf gene expression in prWAT. In contrast, CLP-induced sepsis resulted in increased expression of pro-inflammatory genes (Il6, Ltf, and Lbp) in BAT, without affecting expression of genes encoding for thermogenic activity. Conclusion: Sepsis promotes both prWAT and BAT inflammation, associated with reduced adipogenesis-related gene expression in prWAT, without significant effects on BAT thermogenic genes.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta" and Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn) (CB06/03/010), Girona, Spain.,Department of Medicine, Universitat de Girona, Girona, Spain
| | - Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta" and Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn) (CB06/03/010), Girona, Spain
| | - Vincent de Jager
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta" and Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn) (CB06/03/010), Girona, Spain.,Department of Medicine, Universitat de Girona, Girona, Spain
| | - Hjalmar R Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
9
|
Chen YH, Teng X, Hu ZJ, Tian DY, Jin S, Wu YM. Hydrogen Sulfide Attenuated Sepsis-Induced Myocardial Dysfunction Through TLR4 Pathway and Endoplasmic Reticulum Stress. Front Physiol 2021; 12:653601. [PMID: 34177611 PMCID: PMC8220204 DOI: 10.3389/fphys.2021.653601] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Aims: We examined the change in endogenous hydrogen sulfide (H2S) production and its role in sepsis-induced myocardial dysfunction (SIMD). Results: Significant elevations in plasma cardiac troponin I (cTnI), creatine kinase (CK), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) were noted in SIMD patients, whereas left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), and plasma H2S were significantly decreased relative to those in the controls. Plasma H2S was linearly related to LVEF and LVFS. Subsequently, an SIMD model was developed in mice by injecting lipopolysaccharide (LPS), and NaHS, an H2S donor, was used to elucidate the pathophysiological role of H2S. The mice showed decreased ventricular function and increased levels of TNF-α, IL-1β, cTnI, and CK after LPS injections. Toll-like receptor (TLR) 4 protein and endoplasmic reticulum stress (ERS) proteins were over expressed in the SIMD mice. All of the parameters above showed more noticeable variations in cystathionine γ-lyase knockout mice relative to those in wild type mice. The administration of NaHS could improve ventricular function and attenuate inflammation and ERS in the heart. Conclusion: Overall, these findings indicated that endogenous H2S deficiency contributed to SIMD and exogenous H2S ameliorated sepsis-induced myocardial dysfunction by suppressing inflammation and ERS via inhibition of the TLR4 pathway.
Collapse
Affiliation(s)
- Yu-Hong Chen
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Department of Critical Care Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Zhen-Jie Hu
- Department of Critical Care Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan-Yang Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yu-Ming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China.,Key Laboratory of Vascular Medicine of Hebei Province, Shijiazhuang, China
| |
Collapse
|
10
|
Yang X, Sun J, Sun F, Yao Y, Tian T, Zhou J, Shen W, Lu M, Lei M. TRIM31 promotes apoptosis via TAK1-mediated activation of NF-κB signaling in sepsis-induced myocardial dysfunction. Cell Cycle 2020; 19:2685-2700. [PMID: 33016203 DOI: 10.1080/15384101.2020.1826235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sepsis is a major condition caused by an overwhelming inflammatory response to an infection. Sepsis-induced myocardial dysfunction (SIMD) is a common complication in septic patients and a major predictor of morbidity and mortality. Here, we investigated the role of tripartite motif 31 (TRIM31) protein in sepsis progression in vitro and in vivo. Quantitative real-time PCR and western blot were used to detect the expression levels of relative genes and proteins. Cell proliferation and apoptosis were evaluated to determine cell viability. H&E and IHC staining were performed to examine morphological and pathological changes in mice. ELISA assay was used to detect inflammatory factors. TRIM31 was upregulated in septic patients compared with normal people. TRIM31 depletion reduced LPS-induced apoptosis whereas TRIM31 overexpression-elevated LPS-induced apoptosis. Furthermore, TRIM31 interacted with and ubiquitinated transforming growth factor-β-activated kinase-1 (TAK1), resulting in TAK1 activation and subsequent induction of NF-κB signaling. Of note, Trim31 depletion or blockade by PDTC treatment inhibited LPS-induced apoptosis in vivo. In conclusion, TRIM31 played an important role in SIMD by activating TAK1-mediated NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiaofang Yang
- Intensive Care Department of Shanghai Seventh People's Hospital , Shanghai, China
| | - Jingjing Sun
- Intensive Care Department of Shanghai Seventh People's Hospital , Shanghai, China
| | - FangYuan Sun
- Intensive Care Department of Shanghai Seventh People's Hospital , Shanghai, China
| | - Yulong Yao
- Intensive Care Department of Shanghai Seventh People's Hospital , Shanghai, China
| | - Tianning Tian
- Intensive Care Department of Shanghai Seventh People's Hospital , Shanghai, China
| | - Jiayi Zhou
- Intensive Care Department of Shanghai Seventh People's Hospital , Shanghai, China
| | - Weihong Shen
- Intensive Care Department of Shanghai Seventh People's Hospital , Shanghai, China
| | - Ming Lu
- Intensive Care Department of Shanghai Seventh People's Hospital , Shanghai, China
| | - Ming Lei
- Intensive Care Department of Shanghai Seventh People's Hospital , Shanghai, China
| |
Collapse
|
11
|
Jin Y, Wang H, Li J, Dang M, Zhang W, Lei Y, Zhao H. Exploring the beneficial role of telmisartan in sepsis-induced myocardial injury through inhibition of high-mobility group box 1 and glycogen synthase kinase-3β/nuclear factor-κB pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:311-317. [PMID: 32587125 PMCID: PMC7317178 DOI: 10.4196/kjpp.2020.24.4.311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/31/2020] [Indexed: 02/02/2023]
Abstract
In the present experimental study, cecal ligation and puncture significantly increased the myocardial injury assessed in terms of excess release of creative kinase-MB (CK-MB), cardiac troponin I (cTnI), interleukin (IL)-6 and decrease of IL-10 in the blood following 12 h of laparotomy procedure as compared to normal control. Also, a significant increase in protein expression levels of high-mobility group box 1 (HMGB1) and decreased phosphorylation of glycogen synthase kinase-3β (GSK-3β) was observed in the myocardial tissue as compared to normal control. A single independent administration of telmisartan (2 and 4 mg/kg) and AR-A014418 (1 and 2 mg/kg) substantially reduced sepsis-induced myocardial injury in terms of decrease levels of CK-MB, cTnI and IL-6, HMGB1, GSK-3β and increase in IL-10 and p-GSK-3β in the blood in sepsis- subjected rats. The effects of telmisartan at dose 4 mg/kg and AR-A014418 at a dose of 2 mg/kg were significantly higher than the telmisartan at a dose of 2 mg/kg and AR-A014418 1 mg/kg respectively. Further, no significant effects on different parameters were observed in the sham control group in comparison to normal. Therefore it is plausible to suggest that sepsis may increase the levels of angiotensin II to trigger GSK-3β-dependent signaling to activate the HMGB1/receptors for advanced glycation end products, which may promote inflammation and myocardial injury in sepsis-subjected rats.
Collapse
Affiliation(s)
- Yan Jin
- Emergency Department, Second Affiliated Hospital of Dalian Medical University Dalian, Jinan, Shandong 116027, P.R. China
| | - Hong Wang
- Emergency Department, Second Affiliated Hospital of Dalian Medical University Dalian, Jinan, Shandong 116027, P.R. China
| | - Jing Li
- Department of Cardiology, Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110021, P.R. China
| | - Minyan Dang
- Innoscience Research Sdn Bhd, Subang Jaya, Selangor 47650, Malaysia
| | - Wenzhi Zhang
- Innoscience Research Sdn Bhd, Subang Jaya, Selangor 47650, Malaysia
| | - Yan Lei
- Innoscience Research Sdn Bhd, Subang Jaya, Selangor 47650, Malaysia
| | - Hao Zhao
- mergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
12
|
Li L, Peng X, Guo L, Zhao Y, Cheng Q. Sepsis causes heart injury through endoplasmic reticulum stress-mediated apoptosis signaling pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:964-971. [PMID: 32509067 PMCID: PMC7270664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Endoplasmic reticulum stress (ERS), arising from the loss of dynamic balance in endoplasmic reticulum function under stress and inflammation, has been implicated in the progression of sepsis. Multiple organ failure caused by sepsis still has a high mortality rate, of which the heart is one of the more damaged organs. In this research, a rat model of sepsis was set up by cecal ligation and puncture (CLP); serum myocardial enzyme levels were measured using an automated biochemical analyzer, inflammatory cytokine levels were measured by ELISA kit, and cardiac histology and cardiomyocyte apoptosis were measured by hematoxylin and eosin (H&E) staining and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay to assess the extent of myocardial damage. Western blot was used to detect expression of related proteins. The results showed that serum myocardial enzymes and pro-inflammatory factors were elevated in septic rats, and the increase was most significant in the CLP 24 h group. At the same time, the myocardium of septic rats had a histopathologic abnormality. After CLP, levels of endoplasmic reticulum stress related protein were upregulated. After 12 and 24 hours, the density of apoptotic cells in the myocardium of CLP-treated rats increased significantly, and the expression of apoptosis-related proteins changed significantly. This suggests that the unfolded protein response occurs during sepsis and causes damage to the heart muscle. Endoplasmic reticulum stress-mediated apoptotic signaling pathway is one of the causes of cardiac injury caused by sepsis, and may be a key to clinical prevention of cardiac dysfunction caused by sepsis.
Collapse
Affiliation(s)
- Lei Li
- Department of Critical Care Medicine, Medical School of Shihezi UniversityShihezi 832003, P. R. China
| | - Xin Peng
- Department of Critical Care Medicine, Medical School of Shihezi UniversityShihezi 832003, P. R. China
| | - Lichun Guo
- Department of Critical Care Medicine, Medical School of Shihezi UniversityShihezi 832003, P. R. China
| | - Yuhan Zhao
- Department of Critical Care Medicine, Medical School of Shihezi UniversityShihezi 832003, P. R. China
| | - Qinghong Cheng
- Department of Critical Care Medicine, Medical School of Shihezi UniversityShihezi 832003, P. R. China
- Department of Critical Care Medicine, First Affiliated Hospital, School of Medicine, Shihezi UniversityShihezi 832008, Xinjiang, P. R. China
| |
Collapse
|
13
|
Kalluruttimmal R, Thekke Thattariyil D, Panthalattu Parambil A, Sen AK, Chakkumkumarath L, Manheri MK. Electronically-tuned triarylmethine scaffolds for fast and continuous monitoring of H 2S levels in biological samples. Analyst 2019; 144:4210-4218. [PMID: 31188362 DOI: 10.1039/c9an00522f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A sensor for the detection and quantification of H2S in biological samples should ideally meet a set of criteria such as fast detection, high sensitivity in the desired concentration range, high selectivity, non-interference from biomolecules like proteins, ease of synthesis, long-term stability and water solubility. Although a number of H2S probes are known, none of them possess all the above attributes that are relevant for practical applications. As part of a program to develop reliable chemical probes for continuous monitoring of this gasotransmitter in the blood plasma of sepsis-prone individuals in post-operative wards, we have looked at the possibility of improving the reactivity and selectivity profile of triarylmethine dyes towards different nucleophiles. After achieving high sensitivity through electronic control, the interference from sulfite, thiosulfate and metabisulfite was addressed by introducing a metal salt-mediated desulfuration step that results in dye regeneration selectively from its H2S adduct. Typically, if the analyte contains only H2S, the loss of absorbance in the first step gets completely reinstated after the second step; absorbance changes in both steps vary linearly with sulfide concentration and either of these two steps can be used for the quantification of H2S with the help of standard plots. In the presence of interfering ions, the first step will show decolourization due to the presence of all of them whereas only the H2S-adduct will undergo desulfuration in the second step which can be used for quantification. The decolourization step is instantaneous while the desulfuration requires only about 50 s, making the entire protocol complete in less than a minute. The methodology optimized here also meets the requirements mentioned above for real-life applications.
Collapse
Affiliation(s)
- Ramshad Kalluruttimmal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | | | | | | | | | | |
Collapse
|
14
|
Lin J, Zhao H, Jiao F, Ma L, Wang W, Ma L. Lymphocyte Hydrogen Sulfide Production Predicts Coronary Artery Lesions in Children with Kawasaki Disease: A Preliminary, Single-Center Study. J Trop Pediatr 2019; 66:171-177. [PMID: 31302704 PMCID: PMC7110701 DOI: 10.1093/tropej/fmz047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To identify whether lymphocyte hydrogen sulfide production is a potential biomarker for predicting coronary artery lesions (CAL) in children with Kawasaki disease (KD). Eighty-six children with KD, 33 normal children and 43 children with fever from June 2016 to January 2019 in Shaanxi Provincial People's Hospital were enrolled. Of 86 KD patients, 16 patients exhibited CAL. Lymphocyte hydrogen sulfide production was significantly greater in KD patients (13.7 ± 2.7) nmol/min/108 lymphocytes than in the controls (9.26 ± 3.33) nmol/min/108 lymphocytes and the fever group (8.21 ± 2.77) nmol/min/108 lymphocytes. The lymphocyte hydrogen sulfide production was greater in CAL patients than the non-CAL patients [(16.24 ± 1.81) vs. (13.12 ± 2.58), p < 0.001]. Receiver operating characteristic curve indicated when the lymphocyte hydrogen sulfide production was >15.285 nmol/min/108 lymphocytes, the sensitivity and specificity for predicting CAL at convalescence were 87.5% and 82.9%, respectively. Lymphocyte hydrogen sulfide production in the acute period is a potentially useful biomarker for predicting CAL in KD children.
Collapse
Affiliation(s)
- Jing Lin
- School of Public Health, Xi'an Jiaotong University, Xi’an, 710061China,Correspondence: Jing Lin, School of Public Health, Xi'an Jiaotong University, Xi’an, 710061 China. Tel: (86)-18092782146. E-mail <>
| | - Huacai Zhao
- Department of Urology, The Third Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710068 China
| | - Fuyong Jiao
- Department of Pediatrics, The Third Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710068 China
| | - Lei Ma
- Department of Pediatrics, The Third Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710068 China
| | - Weiqing Wang
- School of Public Health, Xi'an Jiaotong University, Xi’an, 710061China
| | - Le Ma
- School of Public Health, Xi'an Jiaotong University, Xi’an, 710061China
| |
Collapse
|
15
|
Liu J, Li J, Tian P, Guli B, Weng G, Li L, Cheng Q. H 2S attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism. Exp Ther Med 2019; 17:4064-4072. [PMID: 31007743 PMCID: PMC6468938 DOI: 10.3892/etm.2019.7440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 02/08/2019] [Indexed: 12/16/2022] Open
Abstract
The heart is the most vulnerable target organ in sepsis, and it has been previously reported that hydrogen sulfide (H2S) has a protective role in heart dysfunction caused by sepsis. Additionally, studies have demonstrated that the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway has a protective function during sepsis. However, the potential association between H2S and PI3K/Akt in sepsis-induced cardiac dysfunction is unclear. Therefore, the PI3K inhibitor LY294002 was used to investigate the role of PI3K/Akt signaling in the protective effects of H2S during sepsis-induced myocardial injury. A rat sepsis model was established using cecal ligation and puncture (CLP) surgery. Sodium hydrosulfide, a H2S donor, was administered intraperitoneally (8.9 µmol/kg), and serum myocardial enzyme levels, inflammatory cytokine levels, cardiac histology and cardiomyocyte apoptosis were assessed to determine the extent of myocardial damage. The results demonstrated that exogenous H2S reduced serum myocardial enzyme levels, decreased the levels of the inflammatory factors tumor necrosis factor (TNF)-α and interleukin (IL)-6, and increased the level of anti-inflammatory IL-10 following CLP. Staining of histological sections demonstrated that myocardial damage and cardiomyocyte apoptosis were alleviated by the administration of exogenous H2S. Western blot analysis was used to detect phosphorylated and total PI3K and Akt levels, as well as NF-κB, B-cell lymphoma-2, Bcl-2-associated X protein (Bax) and caspase levels, and the results demonstrated that H2S significantly increased PI3K and Akt phosphorylation. This indicated that the PI3K/Akt signaling pathway was activated by H2S. Additionally, H2S reduced Bax and caspase expression, indicating that apoptosis was inhibited, and decreased NF-κB levels, indicating that inflammation was reduced. Furthermore, the PI3K inhibitor LY294002 eliminated the protective effects of H2S. In conclusion, the results of the current study suggest that exogenous H2S activates PI3K/Akt signaling to attenuate myocardial damage in sepsis.
Collapse
Affiliation(s)
- Jianping Liu
- Department of Critical Care Medicine, Medical School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Jianhua Li
- Department of Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Peigang Tian
- Department of Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Bahaer Guli
- Department of Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Guopeng Weng
- Department of Critical Care Medicine, Medical School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Lei Li
- Department of Critical Care Medicine, Medical School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Qinghong Cheng
- Department of Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| |
Collapse
|
16
|
Abstract
Sepsis was known to ancient Greeks since the time of great physician Hippocrates (460-377 BC) without exact information regarding its pathogenesis. With time and medical advances, it is now considered as a condition associated with organ dysfunction occurring in the presence of systemic infection as a result of dysregulation of the immune response. Still with this advancement, we are struggling for the development of target-based therapeutic approach for the management of sepsis. The advancement in understanding the immune system and its working has led to novel discoveries in the last 50 years, including different pattern recognition receptors. Inflammasomes are also part of these novel discoveries in the field of immunology which are <20 years old in terms of their first identification. They serve as important cytosolic pattern recognition receptors required for recognizing cytosolic pathogens, and their pathogen-associated molecular patterns play an important role in the pathogenesis of sepsis. The activation of both canonical and non-canonical inflammasome signaling pathways is involved in mounting a proinflammatory immune response via regulating the generation of IL-1β, IL-18, IL-33 cytokines and pyroptosis. In addition to pathogens and their pathogen-associated molecular patterns, death/damage-associated molecular patterns and other proinflammatory molecules involved in the pathogenesis of sepsis affect inflammasomes and vice versa. Thus, the present review is mainly focused on the inflammasomes, their role in the regulation of immune response associated with sepsis, and their targeting as a novel therapeutic approach.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Australia,
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia,
| |
Collapse
|
17
|
Lin J, Zhao H, Jiao F, Ma L, Ma L. Lymphocyte hydrogen sulfide production predicts intravenous immunoglobulin resistance in children with Kawasaki disease: A preliminary, single-center, case-control study. Medicine (Baltimore) 2018; 97:e13069. [PMID: 30461609 PMCID: PMC6392715 DOI: 10.1097/md.0000000000013069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The aim of the study was to identify whether lymphocyte hydrogen sulfide production is a potential biomarker to predict intravenous immunoglobulin (IVIG) resistance in children with Kawasaki disease (KD).This preliminary, single-center, case-control study conducted between June 2016 and March 2018 in Shaanxi Provincial People's Hospital, 85 children (50 with KD and 35 healthy controls) were included. Laboratory biomarkers were collected from the medical records. All patients with KD received 1 g/kg/d IVIG for 2 days and 30-50 mg/kg/d oral aspirin. The aspirin dose was reduced from 3 to 5 mg/kg/d after body temperature normalized. Plasma hydrogen sulfide levels were detected using sulfide electrode. Lymphocyte hydrogen sulfide levels were detected using the human hydrogen sulfide ELISA kits at the acute stage.Of 50 patients with KD, 31 and 19 were diagnosed with complete KD (cKD) and incomplete KD (iKD), respectively. Eleven patients with KD were resistant to IVIG treatment. The laboratory biomarker findings and levels of plasma and lymphocyte hydrogen sulfide were significantly different between the patients with KD and control group (P < .001). Moreover, lymphocyte hydrogen sulfide production was significantly greater in IVIG-resistant patients than in the IVIG-responsive patients, both in cKD and iKD (P = .018 and P < .001 respectively). Receiver operating characteristic curve indicated that when the lymphocyte hydrogen sulfide production was >15.285 nmol/min/10 lymphocytes, the sensitivity and specificity for predicting IVIG resistance were 90.9% and 76.9%, respectively.Lymphocyte hydrogen sulfide production could serve as a predictor of the therapeutic efficacy of IVIG in children with KD.
Collapse
Affiliation(s)
- Jing Lin
- School of Public Health, Xi’an Jiaotong University, Xian
| | | | - Fuyong Jiao
- Department of Pediatrics, The Third Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Lei Ma
- Department of Pediatrics, The Third Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Le Ma
- School of Public Health, Xi’an Jiaotong University, Xian
| |
Collapse
|