1
|
Kim H, Kim KS, Lee YC, Cho JH. Chloroform Extract from Fermented Viola mandshurica Regulates LPS-Induced Inflammation Response in RAW 264.7 Cells by Inhibiting iNOS and COX-2. J Microbiol Biotechnol 2024; 35:e2408047. [PMID: 39849923 PMCID: PMC11813387 DOI: 10.4014/jmb.2408.08047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/12/2024] [Accepted: 11/30/2024] [Indexed: 01/25/2025]
Abstract
Inflammatory is a crucial part of the immune system of body protect it from harmful invaders, such as bacteria, viruses, and other foreign substances. In this study, the effects of chloroform extract of fermented Viola mandshurica (CEFV) on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 macrophages were investigated. The CEFV significantly inhibited NO production and reduced the expression of inducible nitric oxide synthase (iNOS) at both protein and mRNA levels in a dose-dependent manner. Also, CEFV decreased PGE2 production, suppressed COX-2 expression, and inhibited the activation of the ERK and JNK pathways but not the p38 pathway. Taken together, CEFV suppressed NF-κB activation, which is a key regulator in the inflammatory response. The main phenolic compounds identified in CEFV were tectoridin, luteolin, resveratrol, and hesperetin. Therefore, in this study, CEFC exhibits potent anti-inflammatory effects by downregulating the production of pro-inflammatory mediators and inhibiting key inflammatory pathway in RAW264.7 cells.
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A
University, Busan 49315, Republic of Korea
| | - Kyoung-Sook Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A
University, Busan 49315, Republic of Korea
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A
University, Busan 49315, Republic of Korea
| | - Jong Hyun Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A
University, Busan 49315, Republic of Korea
| |
Collapse
|
2
|
Yu J, Yang S, Zhang X, Liu X, Tang X, Wang L, Chen J, Luo H, Liu C, Song C. Integrating metagenomics and culturomics to uncover the soil bacterial community in Asparagus cochinchinensis cultivation. Front Microbiol 2024; 15:1467864. [PMID: 39697658 PMCID: PMC11652531 DOI: 10.3389/fmicb.2024.1467864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Asparagus cochinchinensis is a medicinal plant in China, which has gained attention owing its protective effect in human health. However, there are seldom studies to systematically reveal the rhizosphere bacterial community of A. cochinchinensis. In this study, we employed metagenomics and culturomics to analyze the bacterial community composition and diversity in continuous rhizosphere soil of A. cochinchinensis. Meanwhile, we assessed the effect of soil physicochemical properties on the bacterial community. Results showed that the most abundant TAXA is a taxon belonging to the family Streptomycetaceae, the genus Mycobacterium and the species Oligotropha carboxidovorans. The bacterial communities across various areas were similar. Significant differences of exchangeable magnesium and available phosphorus level were observed between three groups. Furthermore, bacterial community structure correlated closely with soil physicochemical properties. Additionally, a total of 103 strains were isolated and identified, representing 28 species. Based on this study, the rhizosphere bacterial community of A. cochinchinensis might influence its growth and development. The rhizosphere strains were isolated and their function request further investigation. This study firstly revealed the bacterial community in the A. cochinchinensis rhizosphere soil, providing valuable references for its quality improvement in practical cultivation process.
Collapse
Affiliation(s)
- Jingsheng Yu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuai Yang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyong Zhang
- Traditional Chinese Medicine Health Industry Promotion Center of Dongxing District, Neijiang, China
- Neijiang Dongxing District Bureau of Health, Neijiang, China
| | - Xiongwei Liu
- Traditional Chinese Medicine Health Industry Promotion Center of Dongxing District, Neijiang, China
- Committee of Education, Science, Culture and Health of Dongxing District, Neijiang, China
| | - Xuebo Tang
- Traditional Chinese Medicine Health Industry Promotion Center of Dongxing District, Neijiang, China
| | - Liuyan Wang
- Traditional Chinese Medicine Health Industry Promotion Center of Dongxing District, Neijiang, China
| | - Jinglan Chen
- Traditional Chinese Medicine Health Industry Promotion Center of Dongxing District, Neijiang, China
| | - Huimin Luo
- Traditional Chinese Medicine Health Industry Promotion Center of Dongxing District, Neijiang, China
| | - Changmin Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Fusco V, Chieffi D, Fanelli F, Montemurro M, Rizzello CG, Franz CMAP. The Weissella and Periweissella genera: up-to-date taxonomy, ecology, safety, biotechnological, and probiotic potential. Front Microbiol 2023; 14:1289937. [PMID: 38169702 PMCID: PMC10758620 DOI: 10.3389/fmicb.2023.1289937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria belonging to the genera Weissella and Periweissella are lactic acid bacteria, which emerged in the last decades for their probiotic and biotechnological potential. In 2015, an article reviewing the scientific literature till that date on the taxonomy, ecology, and biotechnological potential of the Weissella genus was published. Since then, the number of studies on this genus has increased enormously, several novel species have been discovered, the taxonomy of the genus underwent changes and new insights into the safety, and biotechnological and probiotic potential of weissellas and periweissellas could be gained. Here, we provide an updated overview (from 2015 until today) of the taxonomy, ecology, safety, biotechnological, and probiotic potential of these lactic acid bacteria.
Collapse
Affiliation(s)
- Vincenzina Fusco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Daniele Chieffi
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Montemurro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | | | | |
Collapse
|
4
|
Wang M, Wang S, Hu W, Wang Z, Yang B, Kuang H. Asparagus cochinchinensis: A review of its botany, traditional uses, phytochemistry, pharmacology, and applications. Front Pharmacol 2022; 13:1068858. [DOI: 10.3389/fphar.2022.1068858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Asparagus cochinchinensis (Lour.) Merr. (A. cochinchinensis) is a traditional herbal medicine that is used to treat constipation, fever, pneumonia, stomachache, tracheitis, rhinitis, cataract, acne, urticaria. More than 90 compounds have been identified from different structural types in A. cochinchinensis, including steroidal saponins, C21-steroides, lignans, polysaccharides, amino acids, etc. These bioactive ingredients make A. cochinchinensis remarkable for its pharmacological effects on anti-asthma, anti-inflammatory, anti-oxidation, anti-tumor, improving Alzheimer’s disease, neuroprotection, gut health-promoting and so on. Moreover, A. cochinchinensis also plays an important role in food, health product, cosmetic, and other fields. This review focused on the research publications of A. cochinchinensis and aimed to summarize the advances in the botany, traditional uses, phytochemistry, pharmacology, and applications which will provide reference for the further studies and applications of A. cochinchinensis.
Collapse
|
5
|
Song BR, Lee SJ, Kim JE, Choi HJ, Bae SJ, Choi YJ, Gong JE, Noh JK, Kim HS, Kang HG, Hong JT, Hwang DY. Anti-inflammatory effects of Capparis ecuadorica extract in phthalic-anhydride-induced atopic dermatitis of IL-4/Luc/CNS-1 transgenic mice. PHARMACEUTICAL BIOLOGY 2020; 58:1263-1276. [PMID: 33355498 PMCID: PMC7782699 DOI: 10.1080/13880209.2020.1856146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
CONTEXT The natural products derived from Capparis ecuadorica H.H. Iltis (Capparaceae) could have great potential for anti-inflammation since they inhibited the inflammatory response in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. OBJECT This study investigated the anti-inflammatory effects and related mechanism of methanol extract of C. ecuadorica leaves (MCE) during atopic dermatitis (AD) responses. MATERIALS AND METHODS Alterations in the phenotypical markers for AD, luciferase signal, iNOS-mediated COX-2 induction pathway, and inflammasome activation were analysed in non-Tg (n = 5) and 15% phthalic anhydride (PA) treated IL-4/Luc/CNS-1 transgenic (Tg) HR1 mice (n = 5 per group), subsequent to treatment with acetone-olive oil (AOO), vehicle (DMSO) and two dose MCE (20 and 40 mg/kg) three times a week for 4 weeks. RESULTS MCE treatment reduced the intracellular ROS level (48.2%), NO concentration (7.1 mmol/L) and inflammatory cytokine expressions (39.1%) in the LPS-stimulated RAW264.7 cells. A significant decrease was detected for ear thickness (16.9%), weight of lymph node (0.7 mg), IgE concentration (1.9 µg/mL), and epidermal thickness (31.8%) of the PA + MCE treated Tg mice. MCE treatment induced the decrease of luciferase signal derived from the IL-4 promoter and the recovery of the IL-4 downstream regulator cytokines. PA + MCE treated Tg mice showed decreasing infiltration of mast cells (42.5%), iNOS-mediated COX-2 induction pathway, MAPK signalling pathway and inflammasome activation in the ear tissue. CONCLUSIONS These findings provide the first evidence that MCE may have great potential to suppress chemical-induced skin inflammation through the suppression of IL-4 cytokine and the iNOS-mediated COX-2 induction pathway, and activation of inflammasome.
Collapse
Affiliation(s)
- Bo Ram Song
- Department of Biomaterials Science (BK21 FOUR program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Korea
| | - Su Jin Lee
- Department of Biomaterials Science (BK21 FOUR program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Korea
| | - Hyeon Jun Choi
- Department of Biomaterials Science (BK21 FOUR program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Korea
| | - Su Ji Bae
- Department of Biomaterials Science (BK21 FOUR program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Korea
| | - Yun Ju Choi
- Department of Biomaterials Science (BK21 FOUR program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Korea
| | - Jeong Eun Gong
- Department of Biomaterials Science (BK21 FOUR program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Korea
| | - Jin Kyung Noh
- Department of Biological Science, Universidad de Concepcion Edmundo Larenas, Concepcion, Chile
| | - Hye Sung Kim
- Department of Nano Fusion Technology, Pusan National University, Miryang-si, Korea
| | - Hyun-Gu Kang
- Laboratory of Veterinary Theriogenology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Korea
- CONTACT Dae Youn Hwang Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do, 50463, Korea
| |
Collapse
|
6
|
Sun LP, Shi FF, Zhang WW, Zhang ZH, Wang K. Antioxidant and Anti-Inflammatory Activities of Safflower ( Carthamus tinctorius L.) Honey Extract. Foods 2020; 9:foods9081039. [PMID: 32748813 PMCID: PMC7466186 DOI: 10.3390/foods9081039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Safflower honey is a unique type of monofloral honey collected from the nectar of Carthamus tinctorius L. in the Apis mellifera colonies of northwestern China. Scant information is available regarding its chemical composition and biological activities. Here, for the first time, we investigated this honey's chemical composition and evaluated its in vitro antioxidant and anti-inflammatory activities. Basic physicochemical parameters of the safflower honey samples in comparison to established quality standards suggested that safflower honeys presented a good level of quality. The in vitro antioxidant tests showed that extract from Carthamus tinctorius L. honey (ECH) effectively scavenged DPPH and ABTS+ free radicals. In lipopolysaccharides (LPS) activated murine macrophages inflammatory model, ECH treatment to the cells inhibited the release of nitric oxide and down-regulated the expressions of inflammatory-relating genes (iNOS, IL-1β, TNF-α and MCP-1). The expressions of the antioxidant genes TXNRD, HO-1, and NQO-1, were significantly boosted in a concentration-dependent manner. ECH decreased the phosphorylation of IκBα and inhibited the nuclear entry of the NF-κB-p65 protein, in LPS-stimulated Raw 264.7 cells, accompany with the increased expressions of Nrf-2 and HO-1, suggesting that ECH achieved the anti-inflammatory effects by inhibiting NF-κB signal transduction and boosting the antioxidant system via activating Nrf-2/HO-1 signaling. These results, taken together, indicated that safflower honey has great potential into developing as a high-quality agriproduct.
Collapse
Affiliation(s)
- Li-Ping Sun
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (L.-P.S.); (F.-F.S.); (W.-W.Z.); (Z.-H.Z.)
| | - Feng-Feng Shi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (L.-P.S.); (F.-F.S.); (W.-W.Z.); (Z.-H.Z.)
| | - Wen-Wen Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (L.-P.S.); (F.-F.S.); (W.-W.Z.); (Z.-H.Z.)
| | - Zhi-Hao Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (L.-P.S.); (F.-F.S.); (W.-W.Z.); (Z.-H.Z.)
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (L.-P.S.); (F.-F.S.); (W.-W.Z.); (Z.-H.Z.)
- Correspondence:
| |
Collapse
|
7
|
Choi JY, Kim SH, Kim JE, Park JW, Kang MJ, Choi HJ, Bae SJ, Lee JH, Jung YS, Hwang DY. Four amino acids as serum biomarkers for anti-asthma effects in the ovalbumin-induced asthma mouse model treated with extract of Asparagus cochinchinensis. Lab Anim Res 2019; 35:32. [PMID: 32257919 PMCID: PMC7081585 DOI: 10.1186/s42826-019-0033-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/10/2019] [Indexed: 11/30/2022] Open
Abstract
The butanol extract of Asparagus cochinchinensis roots fermented with Weissella cibaria (BAW) effectively prevents inflammation and remodeling of airway in the ovalbumin (OVA)-induced asthma model. To characterize biomarkers that can predict the anti-asthmatic effects induced by BAW treatment, we measured the alteration of endogenous metabolites in the serum of OVA-induced asthma mice after administration of low concentration BAW (BAWLo, 250 mg/kg) and high concentration BAW (BAWHi, 500 mg/kg) using 1H nuclear magnetic resonance (1H-NMR) spectral data. The number of immune cells and serum concentration of IgE as well as thickness of the respiratory epithelium and infiltration of inflammatory cells in the airway significantly recovered in the OVA+BAW treated group as compared to the OVA+Vehicle treated group. In the metabolic profile analysis, the pattern recognition showed completely separate clustering of serum analysis parameters between the OVA+Vehicle and OVA+BAW treated groups. Of the total endogenous metabolites, 19 metabolites were upregulated or downregulated in the OVA+Vehicle treated group as compared to the Control treated group. However, only 4 amino acids (alanine, glycine, methionine and tryptophan) were significantly recovered after BAWLo and BAWHi treatment. This study provides the first results pertaining to metabolic changes in the asthma model mice treated with OVA+BAW. Additionally, these findings show that 4 metabolites can be used as one of biomarkers to predict the anti-asthmatic effects.
Collapse
Affiliation(s)
- Jun Young Choi
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - So Hyun Kim
- 2College of Pharmacy, Pusan National University, Busan, 46241 South Korea
| | - Ji Eun Kim
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - Ji Won Park
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - Mi Ju Kang
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - Hyeon Jun Choi
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - Su Ji Bae
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - Jae Ho Lee
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea
| | - Young-Suk Jung
- 2College of Pharmacy, Pusan National University, Busan, 46241 South Korea
| | - Dae Youn Hwang
- 1Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup Miryang-si, Gyeongsangnam-do 50463 South Korea.,3Wellbeing Product Regional Innovation System Center, Pusan National University, Gyeongsangnam-do, 50463 South Korea
| |
Collapse
|
8
|
Chen X, Huang P, Wang J, Tian R, Chen Y, Chen Y, Zhang L, Ma Z. Identification of H 2S/NO-donating artemisinin derivatives as potential antileukemic agents. RSC Adv 2019; 10:501-511. [PMID: 35492518 PMCID: PMC9047252 DOI: 10.1039/c9ra08239e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/16/2019] [Indexed: 01/07/2023] Open
Abstract
Three H2S/NO-donating artemisinin derivatives were designed and synthesized. Their antiproliferative activities were evaluated against human acute myeloid leukemia (AML) cell lines of K562 and K562/ADR and human normal liver cells of LO2. Biological evaluation indicated that NO-donating compound 10c exhibited the most potent cytotoxicity against leukemia cells, similar to the bioactivity of clinical drug of homoharringtonine, but showed less toxicity than homoharringtonine against LO2 cells. Further mechanism studies revealed that 10c could enhance the levels of intracellular NO and ROS, induce apoptosis and S phase cell cycle arrest, and disturb the mitochondrial membrane potential in K562 and K562/ADR cells. Western blot results demonstrated that 10c noticeably promoted autophagy by up-regulating the levels of Beclin1 and L3-II expression, inhibited the AKT signaling, and stimulated the AMPK and JNK signaling in both leukemia cell lines. Overall, 10c exhibited the potential to be a promising candidate for the therapy of AML. Conjugate 10c exhibited potential antiproliferative activity against human acute myeloid leukemia cells.![]()
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Pediatric Hematology, West China Second University Hospital, Sichuan University Chengdu 610041 PR China
| | - Pei Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University Zunyi 563003 PR China
| | - Jing Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563003 PR China .,Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi 563003 PR China
| | - Runmei Tian
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University Zunyi 563003 PR China
| | - Yan Chen
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University Zunyi 563003 PR China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563003 PR China .,Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi 563003 PR China
| | - Lei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563003 PR China .,Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi 563003 PR China
| | - Zhigui Ma
- Department of Pediatric Hematology, West China Second University Hospital, Sichuan University Chengdu 610041 PR China
| |
Collapse
|
9
|
Kang MS, Yeu JE, Hong SP. Safety Evaluation of Oral Care Probiotics Weissella cibaria CMU and CMS1 by Phenotypic |and Genotypic Analysis. Int J Mol Sci 2019; 20:E2693. [PMID: 31159278 PMCID: PMC6601035 DOI: 10.3390/ijms20112693] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022] Open
Abstract
Weissella cibaria CMU and CMS1 are known to exert beneficial effects on the oral cavity but have not yet been determined to be generally recognized as safe (GRAS), although they are used as commercial strains in Korea. We aimed to verify the safety of W. cibaria CMU and CMS1 strains through phenotypic and genotypic analyses. Their safety was evaluated by a minimum inhibitory concentration assay for 14 antibiotics, DNA analysis for 28 antibiotic resistance genes (ARGs) and one conjugative element, antibiotic resistance gene transferability, virulence gene analysis, hemolysis, mucin degradation, toxic metabolite production, and platelet aggregation reaction. W. cibaria CMU showed higher kanamycin resistance than the European Food Safety Authority (EFSA) cut-off, but this resistance was not transferred to the recipient strain. W. cibaria CMU and CMS1 lacked ARGs in chromosomes and plasmids, and genetic analysis confirmed that antibiotic resistance of kanamycin was an intrinsic characteristic of W. cibaria. Additionally, these strains did not harbor virulence genes associated with pathogenic bacteria and lacked toxic metabolite production, β-hemolysis, mucin degradation, bile salt deconjugation, β-glucuronidase, nitroreductase activity, gelatin liquefaction, phenylalanine degradation, and platelet aggregation. Our findings demonstrate that W. cibaria CMU and CMS1 can achieve the GRAS status in future.
Collapse
Affiliation(s)
- Mi-Sun Kang
- Research Institute, Oradentics Inc., 1805-ho, 25 Seongsuil-ro-4-gil, Seongdong-gu, Seoul 04781, Korea.
| | - Ji-Eun Yeu
- Research Institute, Oradentics Inc., 1805-ho, 25 Seongsuil-ro-4-gil, Seongdong-gu, Seoul 04781, Korea.
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Sang-Phil Hong
- Division of Strategic Food Research, Korea Food Research Institute (KFRI), 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea.
| |
Collapse
|
10
|
The Anti-Inflammatory Effects of Fermented Herbal Roots of Asparagus cochinchinensis in an Ovalbumin-Induced Asthma Model. J Clin Med 2018; 7:jcm7100377. [PMID: 30360392 PMCID: PMC6210729 DOI: 10.3390/jcm7100377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/20/2018] [Accepted: 10/17/2018] [Indexed: 01/22/2023] Open
Abstract
Introduction: Roots of Asparagus cochinchinensis, which have pharmacologically active ingredients, have received great attention because they show good therapeutic effects for various inflammatory diseases without specific toxicity. This study investigated the anti-asthmatic effects of a butanol extract of Asparagus cochinchinensis roots that had been fermented with Weissella cibaria (BAW) and its possible underlying cholinergic regulation. Methods: Alterations of the anti-asthmatic markers and the molecular response factors were measured in an ovalbumin (OVA)-induced asthma model after treatment with BAW. Results: Treatment with BAW decreased the intracellular reactive oxygen species (ROS) production in lipopolysaccharides (LPS) activated RAW264.7 cells. The results of the animal experiments revealed lower infiltration of inflammatory cells and bronchial thickness, and a significant reduction in the number of macrophages and eosinophils, concentration of OVA-specific IgE, and expression of Th2 cytokines in the OVA + BAW treated group. In addition, a significant recovery of goblet cell hyperplasia, MMP-9 expression, and the VEGF signaling pathway was observed upon airway remodeling in the OVA + BAW treated group. Furthermore, these responses of BAW were linked to recovery of acetylcholine esterase (AChE) activity and muscarinic acetylcholine receptor (mAChR) M3 downstream signaling pathway in epithelial cells, smooth muscle cells, and afferent sensory nerves of OVA + BAW-treated mice. Conclusion: Overall, these findings are the first to provide evidence that the therapeutic effects of BAW can prevent airway inflammation and remodeling through the recovery of cholinergic regulation in structural cells and inflammatory cells of the chronic asthma model.
Collapse
|
11
|
Dose dependence and durability of the therapeutic effects of Asparagus cochinchinensis fermented extract in an ovalbumin-challenged asthma model. Lab Anim Res 2018; 34:101-110. [PMID: 30310406 PMCID: PMC6170224 DOI: 10.5625/lar.2018.34.3.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022] Open
Abstract
The butanol extract of Asparagus cochinchinensis roots fermented with Weissella cibaria (BAfW) significantly suppressed the inflammatory response induced by lipopolysaccharide (LPS) treatment in RAW264.7 cells. To investigate the dose dependence and durability of BAfW on the anti-asthma effects, alterations in key parameters were measured in ovalbumin (OVA)-challenged Balb/c mice treated with the different doses of BAfW at three different time points. The number of immune cells, OVA-specific IgE level, thickness of respiratory epithelium and mucus score decreased significantly in a dose-dependent manner in response to treatment with 125 to 500 mg/kg BAfW (P<0.05), although the highest level was detected in the 500 mg/kg treated group. Moreover, the decrease in these parameters was maintained from 24 to 48 h in the 500 mg/kg of BAfW treated group. At 72 h, the effects of BAfW on the number of immune cells, OVA-specific IgE level and thickness of respiratory epithelium partially disappeared. Overall, this study provides the first evidence that the anti-asthma effect of BAfW may reach the maximum level in OVA-challenged Balb/c mice treated with 500 mg/kg and that these effects can last for 48 h.
Collapse
|
12
|
Singh SP, Huck O, Abraham NG, Amar S. Kavain Reduces Porphyromonas gingivalis-Induced Adipocyte Inflammation: Role of PGC-1α Signaling. THE JOURNAL OF IMMUNOLOGY 2018; 201:1491-1499. [PMID: 30037847 DOI: 10.4049/jimmunol.1800321] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
A link between obesity and periodontitis has been suggested because of compromised immune response and chronic inflammation in obese patients. In this study, we evaluated the anti-inflammatory properties of Kavain, an extract from Piper methysticum, on Porphyromonas gingivalis-induced inflammation in adipocytes with special focus on peroxisome proliferation-activated receptor γ coactivator α (PGC-1α) and related pathways. The 3T3-L1 mouse preadipocytes and primary adipocytes harvested from mouse adipose tissue were infected with P. gingivalis, and inflammation (TNF-α; adiponectin/adipokines), oxidative stress, and adipogenic marker (FAS, CEBPα, and PPAR-γ) expression were measured. Furthermore, effect of PGC-1α knockdown on Kavain action was evaluated. Results showed that P. gingivalis worsens adipocyte dysfunction through increase of TNF-α, IL-6, and iNOS and decrease of PGC-1α and adiponectin. Interestingly, although Kavain obliterated P. gingivalis-induced proinflammatory effects in wild-type cells, Kavain did not affect PGC-1α-deficient cells, strongly advocating for Kavain effects being mediated by PGC-1α. In vivo adipocytes challenged with i.p. injection of P. gingivalis alone or P. gingivalis and Kavain displayed the same phenotype as in vitro adipocytes. Altogether, our findings established anti-inflammatory and antioxidant effects of Kavain on adipocytes and emphasized protective action against P. gingivalis-induced adipogenesis. The use of compounds such as Kavain offer a portal to potential therapeutic approaches to counter chronic inflammation in obesity-related diseases.
Collapse
Affiliation(s)
- Shailendra P Singh
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595
| | - Olivier Huck
- INSERM, UMR 1260, Regenerative Nanomedicine (Fédération de Médicine Translationalle de Strasbourg), 67000 Strasbourg, France; and.,Periodontology, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595
| | - Salomon Amar
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595;
| |
Collapse
|