1
|
Tao L, Liu Z, Li X, Wang H, Wang Y, Zhou D, Zhang H. Oleanonic acid ameliorates mutant Aβ precursor protein-induced oxidative stress, autophagy deficits, ferroptosis, mitochondrial damage, and ER stress in vitro. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167459. [PMID: 39134286 DOI: 10.1016/j.bbadis.2024.167459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Accumulation in the brain of amyloid-β (Aβ), derived from cleavage of Aβ precursor protein (APP), is a hallmark of Alzheimer's disease (AD). Oleanonic acid (OA), a phytochemical from several plants, has proven anti-inflammatory effects, but its role in AD remains unknown. Here we found that OA reduced APP expression and inhibited oxidative stress via Nrf2/HO-1 signaling in SH-SY5Y neuroblastoma cells stably overexpressing APP. OA suppressed phosphorylated mTOR but increased autophagy markers ATG5 and LC3-II. Moreover, OA rescued ferroptosis-related factors GPX4, NCOA, and COX2 and ER stress markers GRP78, CHOP, and three main induction pathways of ER stress including IRE1/XBP1s, PERK/EIF2α, and ATF6. OA alleviated mitochondrial damage through MFN1, MFN2, OPA1, FIS1, and DRP1. Furthermore, OA upregulated GDF11 expression and downregulated phosphorylation of ErbB4 and TrkB without affecting BDNF levels. Thus, OA might protect neurons from APP-induced neurotoxicity by inhibiting oxidative stress, autophagy deficits, ferroptosis, mitochondrial damage, and ER stress in AD, providing a new promising therapeutic strategy in patients with AD.
Collapse
Affiliation(s)
- Liqing Tao
- School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang, China; Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Zewang Liu
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xinying Li
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hongyan Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yicheng Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Dongming Zhou
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Zhang
- School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang, China; Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
2
|
Zhu X, Wang L, Wang K, Yao Y, Zhou F. Erdafitinib promotes ferroptosis in human uveal melanoma by inducing ferritinophagy and lysosome biogenesis via modulating the FGFR1/mTORC1/TFEB signaling axis. Free Radic Biol Med 2024; 222:552-568. [PMID: 38971541 DOI: 10.1016/j.freeradbiomed.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Uveal melanoma (UM) is a rare yet lethal primary intraocular malignancy affecting adults. Analysis of data from The Cancer Genome Atlas (TCGA) database revealed that FGFR1 expression was increased in UM tumor tissues and was linked to aggressive behavior and a poor prognosis. This study assessed the anti-tumor effects of Erdafitinib, a selective pan-FGFR inhibitor, in both in vitro and in vivo UM models. Erdafitinib exhibited a robust anti-cancer activity in UM through inducing ferroptosis in the FGFR1-dependent manner. Transcriptomic data revealed that Erdafitinib mediated its anti-cancer effects via modulating the ferritinophagy/lysosome biogenesis. Subsequent research revealed that Erdafitinib exerted its effects by reducing the expression of FGFR1 and inhibiting the activity of mTORC1 in UM cells. Concurrently, it enhanced the dephosphorylation, nuclear translocation, and transcriptional activity of TFEB. The aggregation of TFEB in nucleus triggered FTH1-dependent ferritinophagy, leading to lysosomal activation and iron overload. Conversely, the overexpression of FGFR1 served to mitigate the effects of Erdafitinib on ferritinophagy, lysosome biogenesis, and the activation of the mTORC1/TFEB signaling pathway. In vivo experiments have convincingly shown that Erdafitinib markedly curtails tumor growth in an UM xenograft mouse model, an effect that is closely correlated with a decrease in FGFR1 expression levels. The present study is the first to demonstrate that Erdafitinib powerfully induces ferroptosis in UM by orchestrating the ferritinophagy and lysosome biogenesis via modulating the FGFR1/mTORC1/TFEB signaling. Consequently, Erdafitinib emerges as a strong candidate for clinical trial investigation, and FGFR1 emerges as a novel and promising therapeutic target in the treatment of UM.
Collapse
Affiliation(s)
- Xue Zhu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu Province, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Ling Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu Province, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Ke Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu Province, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| | - Ying Yao
- Department of Pharmacy, Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, Jiangsu Province, China.
| | - Fanfan Zhou
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
3
|
Zhu C, Liu J, Lin J, Xu J, Yu E. Investigating the effects of Ginkgo biloba leaf extract on cognitive function in Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14914. [PMID: 39238068 PMCID: PMC11377177 DOI: 10.1111/cns.14914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
AIMS Alzheimer's disease (AD) is a neurodegenerative disorder with limited treatment options. This study aimed to investigate the therapeutic effects of Ginkgo biloba leaf extract (GBE) on AD and explore its potential mechanisms of action. METHODS Key chemical components of GBE, including quercetin, luteolin, and kaempferol, were identified using network pharmacology methods. Bioinformatics analysis revealed their potential roles in AD through modulation of the PI3K/AKT/NF-κB signaling pathway. RESULTS Mouse experiments demonstrated that GBE improved cognitive function, enhanced neuronal morphology, and reduced serum inflammatory factors. Additionally, GBE modulated the expression of relevant proteins and mRNA. CONCLUSION GBE shows promise as a potential treatment for AD. Its beneficial effects on cognitive function, neuronal morphology, and inflammation may be attributed to its modulation of the PI3K/AKT/NF-κB signaling pathway. These findings provide experimental evidence for the application of Ginkgo biloba leaf in AD treatment and highlight its potential mechanisms of action.
Collapse
Affiliation(s)
- Cheng Zhu
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jie Liu
- The Second People's Hospital of Chuzhou Sleep Disorders Department, Chuzhou, China
| | - Jixin Lin
- Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaxi Xu
- General Psychiatric Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Enyan Yu
- Clinical Psychology Department, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
4
|
Han X, Song Z, Liu J, Zhang Y, Wu M, Liu H. Effects of Different Drying Methods on the Quality of Bletilla striata Scented Tea. Molecules 2023; 28:2438. [PMID: 36985409 PMCID: PMC10055807 DOI: 10.3390/molecules28062438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Flower tea is widely loved as a drink, especially for the beautiful and rich flowers of the orchid family, and the drying method for different flowers is also unique. GC-MS is widely used to study volatile substances to determine the quality of flower teas. The findings show that the freeze-drying method can retain the original aroma and flavor of Bletilla striata has the highest sensory evaluation score, with the key flavor substances ethyl caproate and N-heptanal containing 1.14% and 6.28%, respectively, and their ROAV values reaching 54.46 and 100.00. Additionally, the freeze-drying method can well retain flavonoids, polysaccharides, and phenolic components, while providing better antioxidant and antibacterial properties. The stove-drying method would make Bletilla striata slightly burnt and less flavorful and efficacious than freeze-drying; the air-drying method is difficult to retain the special odor and fragrance of Bletilla striata flowers and has the lowest sensory evaluation score, with the presence of volatile components with irritating and unpleasant odors such as pyrazine and 2-pentylfuran, while not showing better efficacy. In addition, steam fixation would destroy the morphology and flavor of Bletilla striata, lose polysaccharide and phenolic components, and reduce the efficacy of Bletilla striata scented tea, but could retain the flavonoid components well. In summary, direct freeze-drying without steam fixation is the best process for drying Bletilla striata scented tea, stove-drying without steam fixation is more economical and convenient in actual production and application, steam fixation and air-drying are not suitable as drying processes for Bletilla striata scented tea. This study analyzed the quality of Bletilla striata scented tea under different drying methods, promoted the further processing of Bletilla striata scented tea, and provided a reference for the comprehensive utilization of Bletilla striata scented tea.
Collapse
Affiliation(s)
- Xue Han
- Institute of Modern Chinese Herbal Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550002, China
- Guizhou Institute of Crop Variety Resources, Guiyang 550006, China
| | - Zhiqin Song
- Institute of Modern Chinese Herbal Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550002, China
- Guizhou Institute of Crop Variety Resources, Guiyang 550006, China
| | - Jiawei Liu
- Guizhou Key Laboratory of Agricultural Biotechnology, China Guizhou University, Guiyang 550006, China
| | - Yeshan Zhang
- Guizhou Key Laboratory of Agricultural Biotechnology, China Guizhou University, Guiyang 550006, China
| | - Mingkai Wu
- Institute of Modern Chinese Herbal Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550002, China
- Guizhou Institute of Crop Variety Resources, Guiyang 550006, China
| | - Hai Liu
- Institute of Modern Chinese Herbal Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550002, China
- Guizhou Institute of Crop Variety Resources, Guiyang 550006, China
| |
Collapse
|
5
|
Du X, Lou N, Hu S, Xiao R, Chu C, Huang Q, Lu L, Li S, Yang J. Anti-Aging of the Nervous System and Related Neurodegenerative Diseases With Chinese Herbal Medicine. Am J Alzheimers Dis Other Demen 2023; 38:15333175231205445. [PMID: 37818604 PMCID: PMC10624054 DOI: 10.1177/15333175231205445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Human beings have always pursued a prolonged lifespan, while the aging of the nervous system is associated with a large variety of diseases. Pathological aging of the nervous system results in a series of neurodegenerative diseases and can cause disability and death in the elderly. Therefore, there is an urgent need for the prevention and treatment of nervous system aging. Chinese herbal medicines have a long history, featuring rich and safe ingredients, and have great potential for the development of anti-aging treatment. We searched the publications on PubMed with key words "anti-aging of the nervous system" and "Chinese herbal medicine" in recent 10 years, and found sixteen Chinese herbal medicines. Then by comparing their popularity of use as well as active components based on the research articles, five common Chinese herbal medicines namely Ginseng Radix, Lycii Fructus, Astragali Radix, Coptidis Rhizoma and Ginkgo Folium, were confirmed to be the most related to anti-nervous system aging and neural degenerative diseases. At the same time, the active ingredients, research models, action mechanisms and curative effects of these five common Chinese herbal medicines were reviewed. From the five common Chinese herbal medicines reviewed in this paper, many encouraging effects of Chinese herbal medicines on treating nervous system aging and related diseases were revealed and more potent herbs would be explored with the help of the proposed possible mechanisms.
Collapse
Affiliation(s)
- Xiaohui Du
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Nanbin Lou
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Sinan Hu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Ruopeng Xiao
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qiankai Huang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Lin Lu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Shanshan Li
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jing Yang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| |
Collapse
|
6
|
Wang K, Chen Y, Zhu X, Zou W, Zhou F. Ginkgo biloba Extract Attenuates Light-Induced Photoreceptor Degeneration by Modulating CAV-1—Redoxosome Signaling. Antioxidants (Basel) 2022; 11:antiox11071268. [PMID: 35883759 PMCID: PMC9311990 DOI: 10.3390/antiox11071268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
The clinical potential of Ginkgo biloba extract (GBE) in the prevention and/or treatment of retinal degenerative diseases has been widely explored; however, the underlying molecular mechanism is poorly understood. Photoreceptor degeneration is the hallmark of retinal degenerative diseases and leads to vision impairment or loss. In this study, the effect of GBE against white light (WL) illumination-induced photoreceptor degeneration was investigated, as well as its underlying mechanism. To evaluate the in vitro activity of GBE, analysis of cell viability, cell apoptosis, oxidative stress, NOX (NADH oxidase) activity and mitochondrial membrane potential (MMP), as well as Western blotting and transcriptome sequencing and analysis, were conducted. To evaluate the in vivo activity of GBE, HE staining, electroretinography (ERG), Terminal-deoxynucleoitidyl transferase (TdT)-mediated nick end labeling (TUNEL) assay and immunofluorescence analysis were conducted. Our study showed that GBE treatment significantly attenuated WL illumination-induced oxidative damage in photoreceptor 661W cells—a finding that was also verified in C57BL/6J mice. Further molecular study revealed that WL illumination downregulated caveolin-1 (CAV-1) expression, interrupted CAV-1-NOX2 interaction, re-located NOX2 from the cell membrane to the cytoplasm and induced the formation of redoxosomes, which led to cell death. However, these cytotoxic events were significantly alleviated by GBE treatment. Interestingly, CAV-1 overexpression showed a consistent protective effect with GBE, while CAV-1 silencing impacted the protective effect of GBE against WL illumination-induced oxidative damage in in vitro and in vivo models. Thus, GBE was identified to prevent photoreceptor cell death due to CAV-1-dependent redoxosome activation, oxidative stress and mitochondrial dysfunction resulting from WL illumination. Overall, our study reveals the protective effect of GBE on photoreceptors against WL illumination-induced oxidative damage in in vitro and in vivo models, which effect is mediated through the modulation of CAV-1-redoxosome signaling. Our findings contribute to better understanding the therapeutic effect of GBE in preventing photoreceptor degeneration in retinal degenerative diseases, and GBE may become a novel therapeutic agent that is effective in reducing the morbidity of these diseases.
Collapse
Affiliation(s)
- Ke Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; (Y.C.); (X.Z.)
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (K.W.); (W.Z.); Tel.: +86-510-8551-4482 (K.W.)
| | - Yuan Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; (Y.C.); (X.Z.)
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xue Zhu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; (Y.C.); (X.Z.)
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Wenjun Zou
- Department of Ophthalmology, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China
- Correspondence: (K.W.); (W.Z.); Tel.: +86-510-8551-4482 (K.W.)
| | - Fanfan Zhou
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| |
Collapse
|