1
|
Liu L, Guo J, Tong X, Zhang M, Chen X, Huang M, Zhu C, Bennett S, Xu J, Zou J. Mechanical strain regulates osteogenesis via Antxr1/LncRNA H19/Wnt/β-catenin axis. J Cell Physiol 2024; 239:e31214. [PMID: 38358001 DOI: 10.1002/jcp.31214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Alleviating bone loss is an essential way to prevent osteoporotic fractures. Proper exercise improves bone density without the side effects of long-term medications, but the mechanism is unclear. Our study explored the role of Antxr1/LncRNA H19/Wnt/β-catenin axis in the process of exercise-mediated alleviation of bone loss. Here we discovered that moderate-intensity treadmill exercise alleviates bone loss caused by ovariectomy and ameliorates bone strength accompanied by an increased lncRNA H19 expression. Concomitantly, Antxr1, a mechanosensitive protein was found downregulated by exercise but upregulated by ovariectomy. Interestingly, knockdown expression of Antxr1 increased lncRNA H19 expression and Wnt/β-catenin signaling pathway in bone marrow mesenchymal stem cells, whereas overexpression of Antxr1 decreased lncRNA H19 expression and Wnt/β-catenin signaling pathway. Hence, our study demonstrates the regulation of Antxr1/LncRNA H19/Wnt/β-catenin axis in the process of mechanical strain-induced osteogenic differentiation, which provides further mechanistic insight into the role of mechanical regulation in bone metabolism.
Collapse
Affiliation(s)
- Lifei Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation, The People's Hospital of Liaoning Province, Shenyang, China
| | - Jianmin Guo
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Guangzhou, China
| | - Xiaoyang Tong
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- College of Physical Education, Qingdao University of Science and Technology, Qingdao, China
| | - Miao Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- College of Physical Education, Yanshan University, Qinhuangdao, China
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Mei Huang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Samuel Bennett
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
2
|
Chen KH, Su CM, Liu WJ, Tzeng HE, Lee CL, Tsai CH. The joint effects of physical activity and sleep duration on risk of osteoporosis in Taiwanese adult population: The Taiwan Biobank Study. Osteoporos Int 2024; 35:523-531. [PMID: 37947843 PMCID: PMC10867060 DOI: 10.1007/s00198-023-06947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
Most studies investigating the association between physical activity and osteoporosis prevention only focused on specific types of physical activity. This study's evidence regarding the combined effects or interaction of sleep duration and physical activity. The findings emphasize the role of sleep duration and physical activity in association with osteoporosis. PURPOSE The associations between physical activity, sleep duration, and prevalent osteoporosis in Taiwanese adults were studied in this cross-sectional study. METHODS The Taiwan Biobank enrolled a community-based cohort of ~ 120,000 volunteers (as of April 30, 2020) between 30 and 76 years of age with no history of cancer. Amongst, bone mineral density (BMD) measures by dual-energy X-ray absorptiometry (DXA) were available in 22,402 participants. After excluding individuals who had no complete data of BMI (n = 23), MET score (n = 207), T-score (n = 8,826), and sleep duration (n = 16), 13,330 subjects were included as the primary cohort. Univariate and multivariable regression analyses were performed to determine the associations between the presence of osteoporosis, physical activity level, sleep duration, and other variables. RESULTS The results showed that after adjustment, subjects with physical activity < 20 METs/week and ≥ 20 METs/week (aOR = 1.017 and 0.767, respectively) were associated with risk of osteoporosis than those with zero MET. The odds of osteoporosis were not significantly lower in subjects who slept for ≥ 8 h/day (aOR = 0.934,p=0.266). In addition, compared to short sleepers with no physical activity, adults with increased physical activity ≥ 20 METs/week and sleep ≥ 8 h/day had a significantly lowest likelihood of osteoporosis (aOR = 0.702). Those with medium physical activity (< 20 METs/week) plus average sleep duration (6.5-8 h/day) did not have significant higher odds of osteoporosis (aOR = 1.129,p=0.151). CONCLUSION The findings emphasize the joint role of sleep duration and physical activity in association with osteoporosis. Adults with high physical activity plus high sleep hours have the highest BMD and lowest risk of osteoporosis.
Collapse
Affiliation(s)
- Kun-Hui Chen
- Department of Orthopedic Surgery, Taichung Veterans General Hospital, Taichung, 407219, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402204, Taiwan
- Department of Computer Science & Information Engineering, College of Computing and Informatics, Providence University, Taichung City, 43301, Taiwan
| | - Chen-Ming Su
- Department of Sports Medicine, China Medical University, Taichung, 406040, Taiwan
| | - Wei-Ju Liu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 407219, Taiwan
- Intelligent Data Mining Laboratory, Department of Medical Research, Taichung Veterans General Hospital, Taichung, 407219, Taiwan
| | - Huey-En Tzeng
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402204, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 407219, Taiwan
- School of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Division of Transfusion Medicine /Hematology - Oncology, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Chia-Lin Lee
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402204, Taiwan.
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 407219, Taiwan.
- Intelligent Data Mining Laboratory, Department of Medical Research, Taichung Veterans General Hospital, Taichung, 407219, Taiwan.
- Department of Public Health, College of Public Health, China Medical University, Taichung, 406040, Taiwan.
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
| | - Chun-Hao Tsai
- Department of Sports Medicine, China Medical University, Taichung, 406040, Taiwan.
- Department of Orthopedics, China Medical University Hospital, Taichung, 406040, Taiwan.
- College of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
3
|
Zhu C, Ding H, Shi L, Zhang S, Tong X, Huang M, Liu L, Guan X, Zou J, Yuan Y, Chen X. Exercise improved bone health in aging mice: a role of SIRT1 in regulating autophagy and osteogenic differentiation of BMSCs. Front Endocrinol (Lausanne) 2023; 14:1156637. [PMID: 37476496 PMCID: PMC10355118 DOI: 10.3389/fendo.2023.1156637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/07/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction This study was designed to investigate the effect of running exercise on improving bone health in aging mice and explore the role of the SIRT1 in regulating autophagy and osteogenic differentiation of Bone marrow Mesenchymal Stem Cells (BMSCs). Methods Twelve-month-old male C57BL/6J mice were used in this study as the aging model and were assigned to treadmill running exercise for eight weeks. Non-exercise male C57BL/6J mice of the same old were used as aging control and five-month-old mice were used as young controls. BMSCs were isolated from mice and subjected to mechanical stretching stimulation in vitro. Results The results showed that aging mice had lower bone mass, bone mineral density (BMD), and autophagy than young mice, while running exercise improved BMD and bone mass as well as upregulated autophagy in bone cells. Mechanical loading increased osteogenic differentiation and autophagy in BMSCs, and knockdown of SIRT1 in BMSCs demonstrated that SIRT1-regulated autophagy involved the mechanical loading activation of osteogenic differentiation. Conclusion Taken together, this study revealed that exercise improved bone health during aging by activating bone formation, which can be attributed to osteogenic differentiation of BMSCs through the activation of SIRT1-mediated autophagy. The mechanisms underlying this effect may involve mechanical loading.
Collapse
Affiliation(s)
- Chengyu Zhu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Haili Ding
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Liang Shi
- Department of Gynaecology and Obstetrics, Xinchang People’s Hospital, Shaoxing, China
| | - Shihua Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaoyang Tong
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Mei Huang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lifei Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Xiaotian Guan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Cento AS, Leigheb M, Caretti G, Penna F. Exercise and Exercise Mimetics for the Treatment of Musculoskeletal Disorders. Curr Osteoporos Rep 2022; 20:249-259. [PMID: 35881303 PMCID: PMC9522759 DOI: 10.1007/s11914-022-00739-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The incidence of musculoskeletal disorders affecting bones, joints, and muscles is dramatically increasing in parallel with the increased longevity of the worldwide population, severely impacting on the individual's quality of life and on the healthcare costs. Inactivity and sedentary lifestyle are nowadays considered the main drivers of age-associated musculoskeletal disorders and exercise may counteract such alterations also in other bone- and muscle-centered disorders. This review aims at clarifying the potential use of exercise training to improve musculoskeletal health. RECENT FINDINGS Both the skeletal muscle and the bone are involved in a complex crosstalk determining, in part through tissue-specific and inflammatory/immune released factors, the occurrence of musculoskeletal disorders. Exercise is able to modulate the levels of those molecules and several associated molecular pathways. Evidence from preclinical and clinical trials supports the adoption of exercise and the future use of exercise mimicking drugs will optimize the care of individuals with musculoskeletal disorders.
Collapse
Affiliation(s)
- Alessia S Cento
- Department of Clinical and Biological Sciences, University of Torino, Corso Raffaello, 30, 10125, Torino, Italy
| | - Massimiliano Leigheb
- Orthopaedics and Traumatology Unit, "Maggiore della Carità" Hospital, Department of Health Sciences, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Giuseppina Caretti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, Corso Raffaello, 30, 10125, Torino, Italy.
| |
Collapse
|