1
|
Wu Y, Zhang Y, Zheng Q, Wang Q, Fang X, Zhu Z, Lu J, Sun D. Myocardial dysfunction caused by MyBPC3 P459fs mutation in hypertrophic cardiomyopathy: evidence from multi-omics approaches and super-resolution imaging. Front Cardiovasc Med 2025; 12:1529921. [PMID: 40083819 PMCID: PMC11903464 DOI: 10.3389/fcvm.2025.1529921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025] Open
Abstract
Introduction Mutations in the sarcomere protein, particularly in cardiac myosin binding protein C gene (MyBPC3), were the most frequent genetic cause of hypertrophic cardiomyopathy (HCM). The pathogenic MyBPC3 P459fs mutation has been reported in HCM patients. However, there was limited knowledge of the structure-function relationships and potential pathways in clinical HCM with MyBPC3 P459fs mutation. Methods We used multi-omics approaches and super-resolution imaging to explore the effects of MyBPC3 P459fs mutation on humans and cells. HCM patients carrying MyBPC3 P459fs mutation (MyBPC3-P459fs HCMs) and healthy controls (HCs) were evaluated for myocardial function using both conventional and advanced echocardiography. In parallel, H9C2 myocardial cells infected with either MyBPC3 P459fs mutation (P459fs cells) or its wild type (WT cells) were investigated for myocardial fiber formation and the potential pathways behind this using super-resolution imaging and metabolomics and proteomics. Results First, conventional and advanced echocardiography showed that MyBPC3-P459fs HCMs exhibited left ventricular diastolic and systolic dysfunction. Subsequently, super-resolution imaging indicated that P459fs cells formed fewer and shorter myocardial fibers in the cytoplasm compared to WT cells. Moreover, our metabolomic and proteomic data suggested several key components of mitochondrial membrane integrity, myocardial remodeling, myocardial energy metabolism, oxidative stress, inflammation, and actin binding capacity were significantly altered in response to P459fs mutation. Conclusions This investigation indicated myocardial dysfunction and myocardial fiber disarray in clinical HCMs with MyBPC3 P459fs mutation and added potential pathways underlying this. These findings provided a link between the observed structural and functional disorders in MyBPC3 P459fs mutation and its onset of HCM pathogenesis and might have a significant translational contribution to effective treatment in HCM patients with MyBPC3 P459fs mutation.
Collapse
Affiliation(s)
- Yupeng Wu
- Department of Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
- Department of Neurosurgery, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Yuzhu Zhang
- Department of Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
- Shenyang Clinical Medical Research Center for Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Qirui Zheng
- Department of Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
- Shenyang Clinical Medical Research Center for Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Qiyuan Wang
- Department of Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
- Shenyang Clinical Medical Research Center for Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Xingyu Fang
- Department of Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
- Shenyang Clinical Medical Research Center for Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Zaihan Zhu
- Department of Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
- Shenyang Clinical Medical Research Center for Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Jing Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Dandan Sun
- Department of Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
- Shenyang Clinical Medical Research Center for Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, China
| |
Collapse
|
2
|
Bae AN, Lee H, Yang H, Mukherjee S, Im SS, Lee JH, Park JH. Enhancing Regulatory T cell function by mevalonate pathway inhibition prevents liver fibrosis. Biochem Biophys Res Commun 2025; 742:151094. [PMID: 39632293 DOI: 10.1016/j.bbrc.2024.151094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Liver fibrosis is a well-established risk factor for liver cancer development. Despite extensive mechanistic studies on liver fibrosis, the role of the immune cell network in fibrotic disease remains poorly understood. In this study, we demonstrate that regulatory T cells (Tregs) are involved in preventing liver fibrosis by regulating the mevalonate pathway. Blocking the mevalonate pathway increased the granzyme B secretion from Tregs, while restoring the pathway reduced it. Statin treatment, which inhibits the mevalonate pathway, alleviated liver fibrosis progression and enhanced the immunosuppressive function of Tregs in vivo. Mechanistically, mevalonate products, including geranylgeranyl pyrophosphate, inhibited the phosphorylation and activation of LKB1, that is a key regulator of Treg homeostasis. Furthermore, these products disrupted the interaction between LKB1 and cAMP-dependent protein kinase (PKA), leading to further reduction of LKB1 phosphorylation. These findings suggest that targeting LKB1 in Tregs through statin treatment prevents the progression of liver fibrosis, offering a promising and safe therapeutic strategy for liver disease and liver cancer.
Collapse
Affiliation(s)
- An-Na Bae
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, South Korea
| | - Hajin Lee
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, South Korea
| | - Huiseong Yang
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, South Korea
| | - Sulagna Mukherjee
- Department of Physiology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Seung-Soon Im
- Department of Physiology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Jae-Ho Lee
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, South Korea
| | - Jong Ho Park
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, South Korea.
| |
Collapse
|
3
|
Zhu H, Zhu T, Dubiao D, Zhang X. Metformin Attenuates Myocardial Ischemia-Reperfusion Injury through the AMPK-HMGCR-ROS Signaling Axis. KARDIOLOGIIA 2024; 64:48-56. [PMID: 39526518 DOI: 10.18087/cardio.2024.10.n2739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To explore the role and mechanism of metformin (MET) in regulating myocardial injury caused by cardiac ischemia-reperfusion. MATERIAL AND METHODS A rat model of myocardial ischemia-reperfusion injury was established by ligation of the anterior descending branch of the left coronary artery. The myocardial area at risk and the infarction size were measured by Evans blue and 2,3,5‑triphenyltetrazole chloride (TTC) staining, respectively. Terminal Deoxynucleotidyl Transferase-Mediated dUTP Nick End Labeling (TUNEL) staining was used to detect apoptosis of cardiomyocytes. The expression of 4‑hydroxynonenal (4‑HNE) was detected by immunohistochemical staining. Real-time quantitative polymerase chain reaction (RT-PCR) and Western blot were used to detect mRNA and expression of the Adenosine 5'-monophosphate-activated protein kinase (AMPK) - 3‑hydroxy-3‑methylglutaryl-CoA reductase (HMGCR) signaling pathway, respectively. RESULTS MET treatment decreased the infarct size and the activity of the myocardial enzyme profile, thus demonstrating protection of ischemic myocardium. The number of TUNEL positive cells significantly decreased. Immunohistochemical results showed that MET decreased the expression of 4‑HNE in myocardial tissue and the content of malondialdehyde (MDA) in myocardial cells. Further experimental results showed that MET decreased HMGCR transcription and protein expression, and increased AMPK phosphorylation. In the model of hypoxia and reoxygenation injury of cardiomyocytes, MET increased the viability of cardiomyocytes, decreased the activity of lactic dehydrogenase (LDH), decreased malondialdehyde content and intracellular reactive oxygen species (ROS) concentrations, and regulate the AMPK-HMGCR signaling pathway through coenzyme C (ComC). CONCLUSION MET inhibits the expression of HMGCR by activating AMPK, reduces oxidative damage and apoptosis of cardiomyocytes, and alleviates myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- He Zhu
- Department of Vascular Surgery, Zhejiang Chinese Medical University
| | - Tao Zhu
- Department of Vascular Surgery, Zhejiang Chinese Medical University
| | - Dubiao Dubiao
- Department of Cardiology, Kecheng District People's Hospital
| | - Xinmei Zhang
- Department of Vascular Surgery, Quzhou People's Hospital, the Quzhou Affiliated Hospital of Wenzhou Medical University
| |
Collapse
|
4
|
Mohamed RH, Abdelrahim DS, Hay NHA, Fawzy NM, M DKM, Yehia DAY, AbdelMaksoud OM, Tamim YM. The role of protein prenylation inhibition through targeting FPPS by zoledronic acid in the prevention of renal fibrosis in rats. Sci Rep 2024; 14:18283. [PMID: 39112499 PMCID: PMC11306734 DOI: 10.1038/s41598-024-68303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Renal fibrosis (RF) represents the most widespread pathological condition in chronic kidney disease (CKD). Recently, protein prenylation has been implicated in the fibrosis's progression. The research examined the renoprotective effect of zoledronic acid (ZA) (50 µg/kg/week) in a rat model of carbon tetrachloride (CCl4)-induced RF through targeting protein prenylation. Forty Wistar male rats were split up into the control group, vehicle-treated group, model-RF group, and RF-ZA group. Mean arterial blood pressure (MBP), BUN, serum creatinine, and urine albumin-creatinine ratio (uACR), protein levels of farnesyl pyrophosphate (FPP), tumour necrosis factor-alpha (TNF-α), transforming growth factor-β (TGF-β), and malondialdehyde (MDA), and catalase and gene expression of farnesyl pyrophosphate synthase (FPPS) and nuclear factor-kB (NF-κB) were measured. Immunohistochemical staining for renal interleukin-6 (IL-6), α-smooth muscle actin (α-SMA), and caspase-3, as well as histopathological alterations, were assessed. ZA considerably ceased the reduction in MBP, markedly reduced uACR, serum creatinine, BUN, and expression of FPPS, FPP, NF-κB, TGF-β, TNF-α, and MDA, and significantly increased catalase levels compared to the model-RF rats. ZA ameliorated the CCl4-induced histopathological alterations and suppressed the expression of caspase-3, α-SMA, and IL-6. In conclusion, ZA preserved renal function and prevented renal fibrosis in a rat model. These were achieved through targeting protein prenylation mainly by inhibiting FPPS.
Collapse
Affiliation(s)
- Reham Hussein Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbasia, Cairo, Egypt.
| | - Dina S Abdelrahim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbasia, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Modern Technology & Information University, Cairo, Egypt
| | - Nesma Hussein Abdel Hay
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nesma Mohamed Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Doaa Karem M M
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Omnia M AbdelMaksoud
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Yomna M Tamim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbasia, Cairo, Egypt
| |
Collapse
|
5
|
Guan Q, Zhang Z, Zhao P, Huang L, Lu R, Liu C, Zhao Y, Shao X, Tian Y, Li J. Identification of idiopathic pulmonary fibrosis hub genes and exploration of the mechanisms of action of Jinshui Huanxian formula. Int Immunopharmacol 2024; 132:112048. [PMID: 38593509 DOI: 10.1016/j.intimp.2024.112048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a common and heterogeneous chronic disease, and the mechanism of Jinshui Huanxian formula (JHF) on IPF remains unclear. For a total of 385 lung normal tissue samples from the Gene Expression Omnibus database, 37,777,639 gene pairs were identified through microarray and RNA-seq platforms. Using the individualized differentially expressed gene (DEG) analysis algorithm RankComp (FDR < 0.01), we identified 344 genes as DEGs in at least 95 % (n = 81) of the IPF samples. Of these genes, IGF1, IFNGR1, GLI2, HMGCR, DNM1, KIF4A, and TNFRSF11A were identified as hub genes. These genes were verified using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in mice with pulmonary fibrosis (PF) and MRC-5 cells, and they were highly effective at classifying IPF samples in the independent dataset GSE134692 (AUC = 0.587-0.788) and mice with PF (AUC = 0.806-1.000). Moreover, JHF ameliorated the pathological changes in mice with PF and significantly reversed the changes in hub gene expression (KIF4A, IFNGR1, and HMGCR). In conclusion, a series of IPF hub genes was identified, and validated in an independent dataset, mice with PF, and MRC-5 cells. Moreover, the abnormal gene expression was normalized by JHF. These findings provide guidance for further exploration of the pathogenesis and treatment of IPF.
Collapse
Affiliation(s)
- Qingzhou Guan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenzhen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Peng Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Lidong Huang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ruilong Lu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Chunlei Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yakun Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xuejie Shao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yange Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China; Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| |
Collapse
|
6
|
Ovchinnikov A, Potekhina A, Arefieva T, Filatova A, Ageev F, Belyavskiy E. Use of Statins in Heart Failure with Preserved Ejection Fraction: Current Evidence and Perspectives. Int J Mol Sci 2024; 25:4958. [PMID: 38732177 PMCID: PMC11084261 DOI: 10.3390/ijms25094958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Systemic inflammation and coronary microvascular endothelial dysfunction are essential pathophysiological factors in heart failure (HF) with preserved ejection fraction (HFpEF) that support the use of statins. The pleiotropic properties of statins, such as anti-inflammatory, antihypertrophic, antifibrotic, and antioxidant effects, are generally accepted and may be beneficial in HF, especially in HFpEF. Numerous observational clinical trials have consistently shown a beneficial prognostic effect of statins in patients with HFpEF, while the results of two larger trials in patients with HFrEF have been controversial. Such differences may be related to a more pronounced impact of the pleiotropic properties of statins on the pathophysiology of HFpEF and pro-inflammatory comorbidities (arterial hypertension, diabetes mellitus, obesity, chronic kidney disease) that are more common in HFpEF. This review discusses the potential mechanisms of statin action that may be beneficial for patients with HFpEF, as well as clinical trials that have evaluated the statin effects on left ventricular diastolic function and clinical outcomes in patients with HFpEF.
Collapse
Affiliation(s)
- Artem Ovchinnikov
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (A.P.); (A.F.)
- Department of Clinical Functional Diagnostics, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St., 20, p. 1, 127473 Moscow, Russia
| | - Alexandra Potekhina
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (A.P.); (A.F.)
| | - Tatiana Arefieva
- Laboratory of Cell Immunology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia;
- Faculty of Basic Medicine, Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia
| | - Anastasiia Filatova
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (A.P.); (A.F.)
- Laboratory of Cell Immunology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia;
| | - Fail Ageev
- Out-Patient Department, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia;
| | - Evgeny Belyavskiy
- Medizinisches Versorgungszentrum des Deutsches Herzzentrum der Charite, Augustenburger Platz 1, 13353 Berlin, Germany;
| |
Collapse
|
7
|
Tang Y, Wang Y, Wang S, Wang R, Xu J, Peng Y, Ding L, Zhao J, Zhou G, Sun S, Zhang Z. Methylation and transcriptomic expression profiles of HUVEC in the oxygen and glucose deprivation model and its clinical implications in AMI patients. Front Genet 2023; 14:1293393. [PMID: 38145212 PMCID: PMC10740152 DOI: 10.3389/fgene.2023.1293393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The obstructed coronary artery undergoes a series of pathological changes due to ischemic-hypoxic shocks during acute myocardial infarction (AMI). However, the altered DNA methylation levels in endothelial cells under these conditions and their implication for the etiopathology of AMI have not been investigated in detail. This study aimed to explore the relationship between DNA methylation and pathologically altered gene expression profile in human umbilical vein endothelial cells (HUVECs) subjected to oxygen-glucose deprivation (OGD), and its clinical implications in AMI patients. The Illumina Infinium MethylationEPIC BeadChip assay was used to explore the genome-wide DNA methylation profile using the Novaseq6000 platform for mRNA sequencing in 3 pairs of HUVEC-OGD and control samples. GO and KEGG pathway enrichment analyses, as well as correlation, causal inference test (CIT), and protein-protein interaction (PPI) analyses identified 22 hub genes that were validated by MethylTarget sequencing as well as qRT-PCR. ELISA was used to detect four target molecules associated with the progression of AMI. A total of 2,524 differentially expressed genes (DEGs) and 22,148 differentially methylated positions (DMPs) corresponding to 6,642 differentially methylated genes (DMGs) were screened (|Δβ|>0.1 and detection p < 0.05). After GO, KEGG, correlation, CIT, and PPI analyses, 441 genes were filtered. qRT-PCR confirmed the overexpression of VEGFA, CCL2, TSP-1, SQSTM1, BCL2L11, and TIMP3 genes, and downregulation of MYC, CD44, BDNF, GNAQ, RUNX1, ETS1, NGFR, MME, SEMA6A, GNAI1, IFIT1, and MEIS1. DNA fragments BDNF_1_ (r = 0.931, p < 0.0001) and SQSTM1_2_NEW (r = 0.758, p = 0.0043) were positively correlated with the expressions of corresponding genes, and MYC_1_ (r = -0.8245, p = 0.001) was negatively correlated. Furthermore, ELISA confirmed TNFSF10 and BDNF were elevated in the peripheral blood of AMI patients (p = 0.0284 and p = 0.0142, respectively). Combined sequencing from in vitro cellular assays with clinical samples, aiming to establish the potential causal chain of the causal factor (DNA methylation) - mediator (mRNA)-cell outcome (endothelial cell ischemic-hypoxic injury)-clinical outcome (AMI), our study identified promising OGD-specific genes, which provided a solid basis for screening fundamental diagnostic and prognostic biomarkers of coronary endothelial cell injury of AMI. Moreover, it furnished the first evidence that during ischemia and hypoxia, the expression of BNDF was regulated by DNA methylation in endothelial cells and elevated in peripheral blood.
Collapse
Affiliation(s)
- Yuning Tang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
| | - Yongxiang Wang
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Shengxiang Wang
- School of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Runqing Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
| | - Jin Xu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
| | - Yu Peng
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Liqiong Ding
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jing Zhao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Gang Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Shougang Sun
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zheng Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Rana A, Singh TU, Sharma M, Gari M, Kumar T, Parida S, Lingaraju MC, Kumar Mariappan A, Kumar A, Kumar D. Pravastatin attenuates isoprenaline induced cardiac fibrosis in a mouse model. Biotech Histochem 2023; 98:567-577. [PMID: 37814775 DOI: 10.1080/10520295.2023.2260303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
We investigated the effects of pravastatin (PRAVA) on isoprenaline (ISP) induced cardiac fibrosis using four groups of mice: untreated control, PRAVA, ISP, ISP + PRAVA groups. ISP, 20 mg/kg, was administered subcutaneously daily for 14 days. PRAVA, 20 mg/kg, was administered orally daily for 14 days. Mice were sacrificed on day15 and heart and blood samples were collected to investigate cardiac injury markers. The mean body weight for the ISP group on day 15 was decreased significantly compared to day 0; PRAVA increased the mean body weight slightly on day 15 of treatment compared to day 0. The heart:body weight ratio was increased in the ISP group compared to the control group, but the ratio was returned to near control ratio in the PRAVA + ISP group. The serum creatine kinase-myocardial band (CK-MB) level was reduced significantly in the PRAVA + ISP group compared to the ISP group. Serum triglyceride level was decreased significantly in ISP + PRAVA group compared to the ISP group. PRAVA administration significantly reduced tissue collagen I and III levels in the ISP + PRAVA group compared to the ISP group. Lipid oxidation was decreased and reduced glutathione activity was increased in the PRAVA + ISP group compared to the ISP group. IL-6, α-SMA, CTGF, TGF-β and SMAD-3 gene expressions were decreased in the PRAVA + ISP group compared to the ISP group. We found fewer inflammatory cells and less fibrosis in heart tissue in the PRAVA + ISP group compared to the ISP group. PRAVA decreased ISP induced cardiac fibrosis by reducing oxidative stress, collagen deposition and inflammation, as well as by decreasing expression of TGF-β, SMAD-3 and CTGF genes.
Collapse
Affiliation(s)
- Abhinav Rana
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Meemansha Sharma
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Manju Gari
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Tarun Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Asok Kumar Mariappan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Akhilesh Kumar
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
9
|
Somers T, Siddiqi S, Morshuis WJ, Russel FGM, Schirris TJJ. Statins and Cardiomyocyte Metabolism, Friend or Foe? J Cardiovasc Dev Dis 2023; 10:417. [PMID: 37887864 PMCID: PMC10607220 DOI: 10.3390/jcdd10100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Statins inhibit HMG-CoA reductase, the rate-limiting enzyme in cholesterol synthesis, and are the cornerstone of lipid-lowering treatment. They significantly reduce cardiovascular morbidity and mortality. However, musculoskeletal symptoms are observed in 7 to 29 percent of all users. The mechanism underlying these complaints has become increasingly clear, but less is known about the effect on cardiac muscle function. Here we discuss both adverse and beneficial effects of statins on the heart. Statins exert pleiotropic protective effects in the diseased heart that are independent of their cholesterol-lowering activity, including reduction in hypertrophy, fibrosis and infarct size. Adverse effects of statins seem to be associated with altered cardiomyocyte metabolism. In this review we explore the differences in the mechanism of action and potential side effects of statins in cardiac and skeletal muscle and how they present clinically. These insights may contribute to a more personalized treatment strategy.
Collapse
Affiliation(s)
- Tim Somers
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Sailay Siddiqi
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Wim J. Morshuis
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Frans G. M. Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Tom J. J. Schirris
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
10
|
Lanzer JD, Valdeolivas A, Pepin M, Hund H, Backs J, Frey N, Friederich HC, Schultz JH, Saez-Rodriguez J, Levinson RT. A network medicine approach to study comorbidities in heart failure with preserved ejection fraction. BMC Med 2023; 21:267. [PMID: 37488529 PMCID: PMC10367269 DOI: 10.1186/s12916-023-02922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/05/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Comorbidities are expected to impact the pathophysiology of heart failure (HF) with preserved ejection fraction (HFpEF). However, comorbidity profiles are usually reduced to a few comorbid disorders. Systems medicine approaches can model phenome-wide comorbidity profiles to improve our understanding of HFpEF and infer associated genetic profiles. METHODS We retrospectively explored 569 comorbidities in 29,047 HF patients, including 8062 HFpEF and 6585 HF with reduced ejection fraction (HFrEF) patients from a German university hospital. We assessed differences in comorbidity profiles between HF subtypes via multiple correspondence analysis. Then, we used machine learning classifiers to identify distinctive comorbidity profiles of HFpEF and HFrEF patients. Moreover, we built a comorbidity network (HFnet) to identify the main disease clusters that summarized the phenome-wide comorbidity. Lastly, we predicted novel gene candidates for HFpEF by linking the HFnet to a multilayer gene network, integrating multiple databases. To corroborate HFpEF candidate genes, we collected transcriptomic data in a murine HFpEF model. We compared predicted genes with the murine disease signature as well as with the literature. RESULTS We found a high degree of variance between the comorbidity profiles of HFpEF and HFrEF, while each was more similar to HFmrEF. The comorbidities present in HFpEF patients were more diverse than those in HFrEF and included neoplastic, osteologic and rheumatoid disorders. Disease communities in the HFnet captured important comorbidity concepts of HF patients which could be assigned to HF subtypes, age groups, and sex. Based on the HFpEF comorbidity profile, we predicted and recovered gene candidates, including genes involved in fibrosis (COL3A1, LOX, SMAD9, PTHL), hypertrophy (GATA5, MYH7), oxidative stress (NOS1, GSST1, XDH), and endoplasmic reticulum stress (ATF6). Finally, predicted genes were significantly overrepresented in the murine transcriptomic disease signature providing additional plausibility for their relevance. CONCLUSIONS We applied systems medicine concepts to analyze comorbidity profiles in a HF patient cohort. We were able to identify disease clusters that helped to characterize HF patients. We derived a distinct comorbidity profile for HFpEF, which was leveraged to suggest novel candidate genes via network propagation. The identification of distinctive comorbidity profiles and candidate genes from routine clinical data provides insights that may be leveraged to improve diagnosis and identify treatment targets for HFpEF patients.
Collapse
Affiliation(s)
- Jan D Lanzer
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Bioquant, Heidelberg, Germany.
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
- Informatics for Life, Heidelberg, Germany.
| | - Alberto Valdeolivas
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Mark Pepin
- Institute of Experimental Cardiology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Hauke Hund
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Hans-Christoph Friederich
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
| | - Jobst-Hendrik Schultz
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
| | - Rebecca T Levinson
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Bioquant, Heidelberg, Germany.
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany.
- Informatics for Life, Heidelberg, Germany.
| |
Collapse
|
11
|
Marzook H, Gupta A, Tomar D, Saleh MA, Patil K, Semreen MH, Hamoudi R, Soares NC, Qaisar R, Ahmad F. Nicotinamide riboside kinase-2 regulates metabolic adaptation in the ischemic heart. J Mol Med (Berl) 2023; 101:311-326. [PMID: 36808555 DOI: 10.1007/s00109-023-02296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
Ischemia-induced metabolic remodeling plays a critical role in the pathogenesis of adverse cardiac remodeling and heart failure however, the underlying molecular mechanism is largely unknown. Here, we assess the potential roles of nicotinamide riboside kinase-2 (NRK-2), a muscle-specific protein, in ischemia-induced metabolic switch and heart failure through employing transcriptomic and metabolomic approaches in ischemic NRK-2 knockout mice. The investigations revealed NRK-2 as a novel regulator of several metabolic processes in the ischemic heart. Cardiac metabolism and mitochondrial function and fibrosis were identified as top dysregulated cellular processes in the KO hearts post-MI. Several genes linked to mitochondrial function, metabolism, and cardiomyocyte structural proteins were severely downregulated in the ischemic NRK-2 KO hearts. Analysis revealed significantly upregulated ECM-related pathways which was accompanied by the upregulation of several key cell signaling pathways including SMAD, MAPK, cGMP, integrin, and Akt in the KO heart post-MI. Metabolomic studies identified profound upregulation of metabolites mevalonic acid, 3,4-dihydroxyphenylglycol, 2-penylbutyric acid, and uridine. However, other metabolites stearic acid, 8,11,14-eicosatrienoic acid, and 2-pyrrolidinone were significantly downregulated in the ischemic KO hearts. Taken together, these findings suggest that NRK-2 promotes metabolic adaptation in the ischemic heart. The aberrant metabolism in the ischemic NRK-2 KO heart is largely driven by dysregulated cGMP and Akt and mitochondrial pathways. KEY MESSAGES: Post-myocardial infarction metabolic switch critically regulates the pathogenesis of adverse cardiac remodeling and heart failure. Here, we report NRK-2 as a novel regulator of several cellular processes including metabolism and mitochondrial function post-MI. NRK-2 deficiency leads to downregulation of genes important for mitochondrial pathway, metabolism, and cardiomyocyte structural proteins in the ischemic heart. It was accompanied by upregulation of several key cell signaling pathways including SMAD, MAPK, cGMP, integrin, and Akt and dysregulation of numerous metabolites essential for cardiac bioenergetics. Taken together, these findings suggest that NRK-2 is critical for metabolic adaptation of the ischemic heart.
Collapse
Affiliation(s)
- Hezlin Marzook
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. 27272 , Sharjah, United Arab Emirates
| | - Anamika Gupta
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. 27272 , Sharjah, United Arab Emirates
| | - Dhanendra Tomar
- Department of Internal Medicine, Section On Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mohamed A Saleh
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. 27272 , Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Kiran Patil
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. 27272 , Sharjah, United Arab Emirates
| | - Mohammad H Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. 27272 , Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. 27272, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. 27272 , Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
- Division of Surgery and Interventional Science, University College London, London, W1W 7EJ, UK
| | - Nelson C Soares
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. 27272 , Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. 27272, Sharjah, United Arab Emirates
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av.a Padre Cruz, Lisbon, 1649-016, Portugal
| | - Rizwan Qaisar
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. 27272 , Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
| | - Firdos Ahmad
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. 27272 , Sharjah, United Arab Emirates.
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, 59911, Abu Dhabi, United Arab Emirates.
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, 37240, USA.
| |
Collapse
|
12
|
Pan X, Chen X, Ren Q, Yue L, Niu S, Li Z, Zhu R, Chen X, Jia Z, Zhen R, Ban J, Chen S. Single-cell transcriptomics identifies Col1a1 and Col1a2 as hub genes in obesity-induced cardiac fibrosis. Biochem Biophys Res Commun 2022; 618:30-37. [PMID: 35714568 DOI: 10.1016/j.bbrc.2022.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Obesity is a risk factor for cardiovascular disease, leading to ventricular dysfunction and cardiac fibrosis, in which non-cardiomyocytes (nonCMs) play an important role. Early detection and treatment of heart illness may help to limit its progression. We screened for key markers of obesity-induced cardiac fibrosis using single-cell transcriptomics techniques. To begin, an obese mouse model was constructed using a high-fat diet. From a pathogenic perspective, pathological alterations in the obesity-induced heart were found. Differentially expressed genes (DEGs) were identified and functional enrichment analysis was performed. Then, to look for hub genes, key modules of DEGs were built. Finally, the cellular location of the hub genes was investigated. In mice, a high-fat diet raised body weight, messed up myocardial shape, and increased cardiac collagen content. NonCMs transcriptome data revealed 15 different cell types, including fibroblasts, immunological cells, and endothelial cells. There were a total of 33 DEGs found, with 22 up-regulated genes and 11 down-regulated genes. DEGs have a high connection with collagen and extracellular matrix (ECM), according to functional enrichment analysis. Col1a1 and Col1a2 scored well in module analysis and hub gene screening, and were chosen as hub genes. Col1a1 and Col1a2 were shown to be mostly expressed by fibroblasts after localization study. As a result, we believe Col1a1 and Col1a2 may be important markers of obesity-induced cardiac fibrosis, in which fibroblasts play a critical role.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xing Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Nephrology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Qingjuan Ren
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Lin Yue
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Shu Niu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Zelin Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Ruiyi Zhu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xiaoyi Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Zhuoya Jia
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Ruoxi Zhen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jiangli Ban
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Shuchun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
13
|
Li W, Li Y, Cui S, Liu J, Tan L, Xia H, Zhang C. Se alleviates homocysteine-induced fibrosis in cardiac fibroblasts via downregulation of lncRNA MEG3. Exp Ther Med 2021; 22:1269. [PMID: 34594406 PMCID: PMC8456485 DOI: 10.3892/etm.2021.10704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Selenium (Se) is considered to have antioxidant properties, which are beneficial for heart condition. Hyperhomocysteinemia (HHCY) has been suggested to potentially lead to heart failure and is characterized by cardiac fibrosis; however, investigation on the role of Se and HHCY in cardiac fibrosis is rare. Since previous studies demonstrated the important role of the long non-coding RNA maternally expressed 3 (MEG3) in some heart diseases, the present study aimed to determine how Se and MEG3 might exert regulatory effects on HCY-induced fibrosis in cardiac fibroblasts (CFs). Mouse CFs were isolated and treated with HCY and Se. The expression of α-smooth muscle actin (α-SMA), collagen I and III was detected by western blotting to reflect CF fibrosis. Reverse transcription-quantitative PCR was performed to determine the expression levels of MEG3. Inflammation and oxidative stress responses were analyzed by measuring TNF-α, IL-1β (ELISA) and reactive oxygen species levels (using a commercial kit), respectively. Cell Counting Kit-8 was used to evaluate CF proliferation. Total and phosphorylated (p) expression of janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) was evaluated by western blotting. CFs were transfected with adenovirus expressing MEG3 short-hairpin RNA to knock down MEG3 expression. Se treatment downregulated the expression level of MEG3 in HCY-stimulated CFs, whilst inhibiting the inflammatory and oxidative stress response. Furthermore, Se inhibited the increased proliferation of CFs following HCY treatment. In addition, MEG3-knockdown in CFs could improve fibrosis caused by HCY. Furthermore, the ratios of p-JAK2/JAK2 and p-STAT3/STAT3 were decreased following treatment with Se or MEG3 silencing. Taken together, the findings from the present study suggested that Se may alleviate cardiac fibrosis by downregulating the expression of MEG3 and reducing the inflammatory and oxidative stress response in CFs. This suggests that Se may be a potential therapeutic option for treating cardiac fibrosis in the future.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuanhong Li
- Department of Cardiovascular Biology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jiayi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lijiao Tan
- Medical School of Enshi Polytechnic, Enshi, Hubei 445000, P.R. China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Changjiang Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Department of Cardiovascular Biology, Minda Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China
| |
Collapse
|