1
|
Elhamipour M, Soleimanjahi H, Abdoli A, Sharifi N, Karimi H, Soleyman Jahi S, Kvistad R. Combination Therapy with Secretome of Reovirus-Infected Mesenchymal Stem Cells and Metformin Improves Anticancer Effects of Irinotecan on Colorectal Cancer Cells in vitro. Intervirology 2024; 68:1-16. [PMID: 39561737 DOI: 10.1159/000542356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
INTRODUCTION Irinotecan, a topoismorase 1 inhibitor, has been used for the treatment of colorectal cancer. It was shown that monotherapy alone is largely ineffective. The combination therapy was used for antitumor activity. The synergistic anticancer effects of oncolytic reovirus-infected secretome in combination with irinotecan and metformin are evaluated in vitro. The aim of research was to assess anticancer impacts of ReoT3D, irinotecan, metformin in combination, against murine colorectal cancer cells (CT26). METHODS The L929 and the CT26 colorectal cancerous cell lines were treated in vitro with irinotecan, metformin, the Dearing strain of reovirus serotype 3 (ReoT3D) (V), and the secretome of intact (S) or reovirus-infected murine adipose-derived mesenchymal stem cells (SV). The cell viability was measured by MTT, and the apoptosis rate was analyzed by annexin V-FITC staining and flow cytometry 48 and 72 h after treatment. RESULTS We found that cells exposed to a combination of SV+Met+I had significantly lower cell viability and higher apoptosis rates as compared to cells exposed to Met+I, 48 and 72 h. These results suggest that metformin in combination with irinotecan and reovirus produces a synergistic effect on cell death, and adding reovirus-infected secretome (SV) to a Met+I regimen induces a higher apoptosis rate compared to Met+I alone. Based on the results, the combination of SV+Met+I has induced more apoptosis than S, SV, SV+I, and SV+Met. Also, all of the combined treatments induced apoptosis significantly versus secretome alone. DISCUSSION In this in vitro study, we found that the combination of T3D reovirus (oncolytic virus) and metformin with the anticancer drug irinotecan resulted in higher rates of growth inhibition and apoptosis induction in the colorectal cancer cell line. This synergistic effect was even more pronounced when using the combination of secretome derived from reovirus-infected AD-MSCs, metformin, and irinotecan. CONCLUSION We highlight that the combination of ReoT3D-derived secretome with irinotecan and metformin showed a synergistic anticancer effect on the CT26 cell line, and this strategy may be considered as a new approach against colorectal cancer in the in vitro and in vivo in future studies.
Collapse
Affiliation(s)
- Maliheh Elhamipour
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran,
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Sharifi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hesam Karimi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Soleyman Jahi
- Division of Gastroenterology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ruth Kvistad
- Department of Biology, University of Missouri - St. Louis, St. Louis, Missouri, USA
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Fu R, Chang R, Peng A, Feng C, Zhu W, Chen Y, Tian X, Wang R, Yan H, Jia D, Li J. Efficient treatment of colon cancer with codelivery of TRAIL and imatinib by liposomes. Pharm Dev Technol 2024; 29:52-61. [PMID: 38230653 DOI: 10.1080/10837450.2024.2301763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
To solve the problem of resistance of tumor cells to TRAIL and the inevitable side effects of imatinib during treatment, we successfully prepared a kind of multifunctional liposome that encapsulated imatinib in its internal water phase and inserted TRAIL on its membrane in this study, which named ITLPs. The liposomes appeared uniform spherical and the particle size was approximately 150 nm. ITLPs showed high accumulation in TRAIL-resistance cells and HT-29 tumor-bearing mice model. In vitro cytotoxicity assay results showed that the killing activity of HT-29 cells treated with ITLPs increased by 50% and confirmed that this killing activity was mediated by the apoptosis pathway. Through mechanism studies, it was found that ITLPs arrested up to 32.3% of cells in phase M to exert anti-tumor effects. In vivo anti-tumor study showed that ITLPs achieved 61.8% tumor suppression and little toxicity in the HT-29 tumor-bearing mice model. Overall results demonstrated that codelivery of imatinib and TRAIL via liposomes may be a prospective method in the treatment of the TRAIL-resistance tumor.
Collapse
Affiliation(s)
- Rongrong Fu
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Rui Chang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Andong Peng
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Changshun Feng
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Weifan Zhu
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Yi Chen
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Xue Tian
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Rui Wang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Hui Yan
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Jun Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
López-Cortés R, Correa Pardo I, Muinelo-Romay L, Fernández-Briera A, Gil-Martín E. Core Fucosylation Mediated by the FucT-8 Enzyme Affects TRAIL-Induced Apoptosis and Sensitivity to Chemotherapy in Human SW480 and SW620 Colorectal Cancer Cells. Int J Mol Sci 2023; 24:11879. [PMID: 37569254 PMCID: PMC10418920 DOI: 10.3390/ijms241511879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Epithelial cells can undergo apoptosis by manipulating the balance between pro-survival and apoptotic signals. In this work, we show that TRAIL-induced apoptosis can be differentially regulated by the expression of α(1,6)fucosyltransferase (FucT-8), the only enzyme in mammals that transfers the α(1,6)fucose residue to the pentasaccharide core of complex N-glycans. Specifically, in the cellular model of colorectal cancer (CRC) progression formed using the human syngeneic lines SW480 and SW620, knockdown of the FucT-8-encoding FUT8 gene significantly enhanced TRAIL-induced apoptosis in SW480 cells. However, FUT8 repression did not affect SW620 cells, which suggests that core fucosylation differentiates TRAIL-sensitive premetastatic SW480 cells from TRAIL-resistant metastatic SW620 cells. In this regard, we provide evidence that phosphorylation of ERK1/2 kinases can dynamically regulate TRAIL-dependent apoptosis and that core fucosylation can control the ERK/MAPK pro-survival pathway in which SW480 and SW620 cells participate. Moreover, the depletion of core fucosylation sensitises primary tumour SW480 cells to the combination of TRAIL and low doses of 5-FU, oxaliplatin, irinotecan, or mitomycin C. In contrast, a combination of TRAIL and oxaliplatin, irinotecan, or bevacizumab reinforces resistance of FUT8-knockdown metastatic SW620 cells to apoptosis. Consequently, FucT-8 could be a plausible target for increasing apoptosis and drug response in early CRC.
Collapse
Affiliation(s)
- Rubén López-Cortés
- Doctoral Program in Methods and Applications in Life Sciences, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, ES36310 Vigo, Spain;
| | - Isabel Correa Pardo
- Master Program in Advanced Biotechnology, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, ES36310 Vigo, Spain;
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), CIBERONC, Travesía da Choupana, ES15706 Santiago de Compostela, Spain;
| | - Almudena Fernández-Briera
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, ES36310 Vigo, Spain;
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, ES36310 Vigo, Spain;
| |
Collapse
|
4
|
Wang BT, Kothambawala T, Wang L, Matthew TJ, Calhoun SE, Saini AK, Kotturi MF, Hernandez G, Humke EW, Peterson MS, Sinclair AM, Keyt BA. Multimeric Anti-DR5 IgM Agonist Antibody IGM-8444 Is a Potent Inducer of Cancer Cell Apoptosis and Synergizes with Chemotherapy and BCL-2 Inhibitor ABT-199. Mol Cancer Ther 2021; 20:2483-2494. [PMID: 34711645 PMCID: PMC9398157 DOI: 10.1158/1535-7163.mct-20-1132] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/07/2021] [Accepted: 09/15/2021] [Indexed: 01/07/2023]
Abstract
Death receptor 5 (DR5) is an attractive target for cancer therapy due to its broad upregulated expression in multiple cancers and ability to directly induce apoptosis. Though anti-DR5 IgG antibodies have been evaluated in clinical trials, limited efficacy has been attributed to insufficient receptor crosslinking. IGM-8444 is an engineered, multivalent agonistic IgM antibody with 10 binding sites to DR5 that induces cancer cell apoptosis through efficient DR5 multimerization. IGM-8444 bound to DR5 with high avidity and was substantially more potent than an IgG with the same binding domains. IGM-8444 induced cytotoxicity in a broad panel of solid and hematologic cancer cell lines but did not kill primary human hepatocytes in vitro, a potential toxicity of DR5 agonists. In multiple xenograft tumor models, IGM-8444 monotherapy inhibited tumor growth, with strong and sustained tumor regression observed in a gastric PDX model. When combined with chemotherapy or the BCL-2 inhibitor ABT-199, IGM-8444 exhibited synergistic in vitro tumor cytotoxicity and enhanced in vivo efficacy, without augmenting in vitro hepatotoxicity. These results support the clinical development of IGM-8444 in solid and hematologic malignancies as a monotherapy and in combination with chemotherapy or BCL-2 inhibition.
Collapse
Affiliation(s)
| | | | - Ling Wang
- IGM Biosciences Inc., Mountain View, California
| | | | | | | | | | | | | | | | | | - Bruce A Keyt
- IGM Biosciences Inc., Mountain View, California.
| |
Collapse
|
5
|
Antimicrobial Peptides as New Combination Agents in Cancer Therapeutics: A Promising Protocol against HT-29 Tumoral Spheroids. Int J Mol Sci 2020; 21:ijms21186964. [PMID: 32971958 PMCID: PMC7555805 DOI: 10.3390/ijms21186964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides are molecules synthetized by a large variety of organisms as an innate defense against pathogens. These natural compounds have been identified as promising alternatives to widely used molecules to treat infections and cancer cells. Antimicrobial peptides could be viewed as future chemotherapeutic alternatives, having the advantage of low propensity to drug resistance. In this study, we evaluated the efficiency of the antimicrobial peptide gramicidin A (GA) and the anticancer drug, doxorubicin (Doxo) against the spheroids from colorectal cancer cells (HT-29). The two drugs were applied separately against HT-29 spheroids as well as together to determine if they can act synergistically. The spheroid evolution, cell viability, and ATP levels were monitored at 24 and 48 h after the applied treatments. The results show significant drops in cell viability and cellular ATP levels for all the experimental treatments. The simultaneous use of the two compounds (GA and Doxo) seems to cause a synergistic effect against the spheroids.
Collapse
|
6
|
Sun T, Zhu T, Liang X, Yang S, Zhao R. Effects of Recombinant Circularly Permuted Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) (Recombinant Mutant Human TRAIL) in Combination with 5-Fluorouracil in Human Colorectal Cancer Cell Lines HCT116 and SW480. Med Sci Monit 2018; 24:2550-2561. [PMID: 29695684 PMCID: PMC5939707 DOI: 10.12659/msm.909390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Circularly permuted tumor necrosis factor-related apoptosis-inducing ligand, a mutant form of tumor necrosis factor-related apoptosis-inducing ligand, is an effective antitumor cytokine. However, its antitumor effect in colorectal cancer is unclear. This study assessed the antitumor effect of circularly permuted tumor necrosis factor-related apoptosis-inducing ligand alone or with 5-fluorouracil in colorectal cancer cells in vitro and explored the underlying mechanisms. Material/Methods We used the (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay to analyze cell proliferation inhibition. The apoptotic effects of circularly permuted tumor necrosis factor-related apoptosis-inducing ligand, 5-fluorouracil, or both in human colorectal cancer cells were evaluated using flow cytometry. Furthermore, the levels of apoptosis-related proteins were examined by Western blotting. Results Compared to either agent alone, cotreatment with 5-fluorouracil and circularly permuted tumor necrosis factor-related apoptosis-inducing ligand showed obvious antitumor effects and induced significant apoptosis of colorectal cancer cells. 5-Fluorouracil enhanced circularly permuted tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by increasing death receptor 4 and 5 levels in HCT116 cells, but only of death receptor 4 in SW480 cells. Moreover, 5-fluorouracil plus circularly permuted tumor necrosis factor-related apoptosis-inducing ligand increased apoptosis-related protein levels such as cleaved caspase-3, caspase-8, and poly-ADP-ribose polymerase and downregulated that of the survival protein B-cell lymphoma-extra-large. Pretreatment with the pan-caspase inhibitor, z-VAD-FMK, attenuated the caspase-dependent apoptosis induced by circularly permuted tumor necrosis factor-related apoptosis-inducing ligand alone or combined with 5-fluorouracil. Conclusions Cotreatment with 5-fluorouracil and circularly permuted tumor necrosis factor-related apoptosis-inducing ligand showed enhanced antitumor effects on colorectal cancer cells.
Collapse
Affiliation(s)
- Tongyou Sun
- Department of Oncology, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Tienian Zhu
- Key Laboratory of Immune Mechanism and Intervention of Serious Diseases in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Xiujun Liang
- Basic Medical Institute, Chengde Medical University, Chengde, Hebei, China (mainland)
| | - Shifang Yang
- Beijing Sunbio Biotech Co., Ltd., Beijing, China (mainland)
| | - Ruijing Zhao
- Key Laboratory of Immune Mechanism and Intervention of Serious Diseases in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
7
|
Zhu H, Yan J, Xu Q, Wei L, Huang X, Chen S, Yi C. TRAIL mutant membrane penetrating peptide alike (TMPPA) TRAIL-Mu3 enhances the antitumor effects of TRAIL in vitro and in vivo. Mol Med Rep 2017; 16:9607-9612. [DOI: 10.3892/mmr.2017.7791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 09/06/2017] [Indexed: 11/06/2022] Open
|
8
|
Co-delivery of chemotherapeutics and proteins for synergistic therapy. Adv Drug Deliv Rev 2016; 98:64-76. [PMID: 26546464 DOI: 10.1016/j.addr.2015.10.021] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/15/2023]
Abstract
Combination therapy with chemotherapeutics and protein therapeutics, typically cytokines and antibodies, has been a type of crucial approaches for synergistic cancer treatment. However, conventional approaches by simultaneous administration of free chemotherapeutic drugs and proteins lead to limitations for further optimizing the synergistic effects, due to the distinct in vivo pharmacokinetics and distribution of small drugs and proteins, insufficient tumor selectivity and tumor accumulation, unpredictable drug/protein ratios at tumor sites, short half-lives, and serious systemic adverse effects. Consequently, to obtain optimal synergistic anti-tumor efficacy, considerable efforts have been devoted to develop the co-delivery systems for co-incorporating chemotherapeutics and proteins into a single carrier system and subsequently releasing the dual or multiple payloads at desired target sites in a more controllable manner. The co-delivery systems result in markedly enhanced blood stability and in vivo half-lives of the small drugs and proteins, elevated tumor accumulation, as well as the capability of delivering the multiple agents to the same target sites with rational drug/protein ratios, which may facilitate maximizing the synergistic effects and therefore lead to optimal antitumor efficacy. This review emphasizes the recent advances in the co-delivery systems for chemotherapeutics and proteins, typically cytokines and antibodies, for systemic or localized synergistic cancer treatment. Moreover, the proposed mechanisms responsible for the synergy of chemotherapeutic drugs and proteins are discussed.
Collapse
|
9
|
Prasad S, Kim JH, Gupta SC, Aggarwal BB. Targeting death receptors for TRAIL by agents designed by Mother Nature. Trends Pharmacol Sci 2014; 35:520-36. [PMID: 25128958 DOI: 10.1016/j.tips.2014.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/01/2014] [Accepted: 07/11/2014] [Indexed: 12/17/2022]
Abstract
Selective killing of cancer cells is one of the major goals of cancer therapy. Although chemotherapeutic agents are being used for cancer treatment, they lack selectivity toward tumor cells. Among the six different death receptors (DRs) identified to date, DR4 and DR5 are selectively expressed on cancer cells. Therefore, unlike chemotherapeutic agents, these receptors can potentially mediate selective killing of tumor cells. In this review we outline various nutraceuticals derived from 'Mother Nature' that can upregulate DRs and thus potentiate apoptosis. These nutraceuticals increase tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of cancer cells through different mechanisms. First, nutraceuticals have been found to induce DRs through the upregulation of various signaling molecules. Second, nutraceuticals can downregulate tumor cell-survival pathways. Third, nutraceuticals alone have been found to activate cell-death pathways. Although both TRAIL and agonistic antibodies against DR4 and DR5 are in clinical trials, combination with nutraceuticals is likely to boost their anticancer potential.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ji Hye Kim
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
10
|
The synergistic effects of low dose fluorouracil and TRAIL on TRAIL-resistant human gastric adenocarcinoma AGS cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:293874. [PMID: 24324958 PMCID: PMC3845848 DOI: 10.1155/2013/293874] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/30/2013] [Indexed: 02/05/2023]
Abstract
The TNF-related apoptosis-inducing ligand (TRAIL) is a TNF family member which has been under intense focus because of its remarkable ability to induce apoptosis in malignant human cells while leaving normal cells unscathed. However, many cancer cells remain resistant to TRAIL. In this study, we had investigated the synergistic effects of low dose fluorouracil (5-Fu) and TRAIL on TRAIL-resistant human gastric adenocarcinoma AGS cells and explored the potential mechanisms. Cell viability was analyzed by sulforhodamine B (SRB) assay and the synergistic effects were evaluated by Jin's formula and confirmed by both morphological changes under inverted microscope and flow cytometry. The expression of TRAIL-R1 (death receptor 4, DR4), TRAIL-R2 (DR5), TRAIL-R3 (decoy receptor, DcR1), TRAIL-R4 (DcR2), procaspase-3, procaspase-8, and procaspase-9 was detected by western blotting. Our results showed that there were significant synergistic effects of low dose 5-Fu and TRAIL on TRAIL-resistant AGS cells, and this effect was supposed to be mediated by decreasing DcR2 expression and increasing DR5 expression. The extrinsic and intrinsic apoptosis pathways were both activated. The data suggest that combined treatment of low dose 5-Fu and TRAIL can be an effective therapeutic approach for gastric adenocarcinoma.
Collapse
|
11
|
He T, Haapa-Paananen S, Kaminskyy VO, Kohonen P, Fey V, Zhivotovsky B, Kallioniemi O, Perälä M. Inhibition of the mitochondrial pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase by doxorubicin and brequinar sensitizes cancer cells to TRAIL-induced apoptosis. Oncogene 2013; 33:3538-49. [PMID: 24013224 DOI: 10.1038/onc.2013.313] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 06/13/2013] [Accepted: 06/13/2013] [Indexed: 01/09/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent in selectively killing tumor cells. However, TRAIL monotherapy has not been successful as many cancer cells are resistant to TRAIL. Chemotherapeutic agents, such as doxorubicin have been shown to act synergistically with TRAIL, but the exact mechanisms of actions are poorly understood. In this study, we performed high-throughput small interfering RNA screening and genome-wide gene expression profiling on doxorubicin-treated U1690 cells to explore novel mechanisms underlying doxorubicin-TRAIL synergy. The screening and expression profiling results were integrated and dihydroorotate dehydrogenase (DHODH) was identified as a potential candidate. DHODH is the rate-limiting enzyme in the pyrimidine synthesis pathway, and its expression was downregulated by doxorubicin. We demonstrated that silencing of DHODH or inhibition of DHODH activity by brequinar dramatically increased the sensitivity of U1690 cells to TRAIL-induced apoptosis both in 2D and 3D cultures, and was accompanied by downregulation of c-FLIPL as well as by mitochondrial depolarization. In addition, uridine, an end product of the pyrimidine synthesis pathway was able to rescue the sensitization effects initiated by both brequinar and doxorubicin. Furthermore, several other cancer cell lines, LNCaP, MCF-7 and HT-29 were also shown to be sensitized to TRAIL by brequinar. Taken together, our findings have identified a novel protein target and its inhibitor, brequinar, as a potential agent in TRAIL-based combinatorial cancer therapy and highlighted for the first time the importance of mitochondrial DHODH enzyme and pyrimidine pathway in mediating TRAIL sensitization in cancer cells.
Collapse
Affiliation(s)
- T He
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland
| | - S Haapa-Paananen
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland
| | - V O Kaminskyy
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - P Kohonen
- 1] Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland [2] Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - V Fey
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland
| | - B Zhivotovsky
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - O Kallioniemi
- 1] Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland [2] FIMM-Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - M Perälä
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland
| |
Collapse
|