1
|
Zhang C, Chang Y, Shu L, Chen Z. Pathogenesis of thoracic ossification of the ligamentum flavum. Front Pharmacol 2024; 15:1496297. [PMID: 39545059 PMCID: PMC11560781 DOI: 10.3389/fphar.2024.1496297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is characterized by ectopic ossification of the ligamentum flavum in the thoracic spine and is considered the main cause of thoracic spinal stenosis and spinal cord disease. Osteoblast specific transcription factor Osterix (Osx) is required for bone formation, and there is no bone formation or ossification without Osx. Surgical intervention is recognized as the only effective method for TOLF treatment with set of complications. However, underlying mechanisms of TOLF are not well understood. This paper summarizes the pathogenesis of TOLF. Some relevant factors have been discussed, such as mechanical stress, genetic susceptibility genes, endocrine and trace element metabolism abnormalities, which may associate with TOLF. More recent studies using proteomics technology and RNA sequencing approach have discovered that some new factors participate in TOLF by upregulation of Osx gene expression including inflammatory factors. TOLF is a unique disease involving multiple factors. On the other hand, studies on TOLF pathogenic mechanism may provide new ideas for finding possible upstream regulatory factors of Osx and further developing novel drugs to stimulate new bone formation to treat osteoporosis.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopedics, Peking University International Hospital, Beijing, China
- Central Laboratory, Peking University International Hospital, Beijing, China
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Yanan Chang
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Li Shu
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University International Hospital, Beijing, China
| |
Collapse
|
2
|
Wang D, Yang J, Li H, Chen Y, Lin W, Lei S, You Y, Liu C, Lin Y, Guo H, Mo G, Tang Y, Yuan K, Deng W, Liu T, Gu G, Mai B, Zhang Z, Zhang S, Li Y. Identification of Risk Factors for Primary Osteoporosis: The Role of Cervical Ligament Ossification. Med Sci Monit 2024; 30:e944963. [PMID: 39205372 PMCID: PMC11370645 DOI: 10.12659/msm.944963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Long-term clinical practice has suggested a possible association between ossification of cervical ligament (OCL) and primary osteoporosis (POP). However, there is a lack of relevant research data. This study aimed to clarify the potential relationship between OCL and POP, and propose new strategies for preventing the onset of POP. MATERIAL AND METHODS The study involved 107 patients. The patients' diagnosis included OCL (ossification of the posterior longitudinal ligament, ossification of the ligamentum flavum, and ossification of the nuchal ligament) and POP. Bone mineral density (BMD), types of OCL, types of ossification of posterior longitudinal ligament, age, sex, serum calcium, serum phosphorus, alkaline phosphatase, type I collagen amino-terminal extension peptide, type I collagen degradation products, osteocalcin N-terminal molecular fragments, 25-hydroxyvitamin D, and history of taking steroid drugs were collected. SPSS24.0 and GraphPad Prism 8 were used to obtain the risk factors for POP. RESULTS One-way analysis of variance found that OCL, ossification of posterior longitudinal ligament, alkaline phosphatase, and osteocalcin N-terminal molecular fragments had statistical significance on BMD of the femoral neck (P<0.05). The independent sample t test showed that patient sex had statistical significant effect on BMD (femoral neck) (P=0.036). Incorporating the above factors into multiple linear regression analysis, it was found that OCL, alkaline phosphatase, and osteocalcin N-terminal molecular fragments were risk factors affecting BMD of femoral neck (P<0.05). CONCLUSIONS OCL, osteocalcin N-terminal molecular fragments, and alkaline phosphatase are risk factors for POP.
Collapse
Affiliation(s)
- Dongping Wang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Jiamin Yang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Haishan Li
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yuxian Chen
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Wei Lin
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Shenglin Lei
- The Shenzhen Clinical College of Medicine of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, PR China
| | - Yawen You
- The Fifth Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Chang Liu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yuewei Lin
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Huizhi Guo
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Guoye Mo
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yongchao Tang
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Kai Yuan
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Wei Deng
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Teng Liu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Guoning Gu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Bin Mai
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Zhen Zhang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Shuncong Zhang
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yongxian Li
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong, PR China
| |
Collapse
|
3
|
Rujeedawa T, Mowforth OD, Davies BM, Yang C, Nouri A, Francis JJ, Aarabi B, Kwon BK, Harrop J, Wilson JR, Martin AR, Rahimi-Movaghar V, Guest JD, Fehlings MG, Kotter MR. Degenerative Thoracic Myelopathy: A Scoping Review of Epidemiology, Genetics, and Pathogenesis. Global Spine J 2024; 14:1664-1677. [PMID: 38146739 PMCID: PMC11394495 DOI: 10.1177/21925682231224768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2023] Open
Abstract
STUDY DESIGN Literature Review. OBJECTIVE Myelopathy affecting the thoracic spinal cord can arise secondary to several aetiologies which have similar presentation and management. Consequently, there are many uncertainties in this area, including optimal terminology and definitions. Recent collaborative cervical spinal research has led to the proposal and subsequent community adoption of the name degenerative cervical myelopathy(DCM), which has facilitated the establishment of internationally-agreed research priorities for DCM. We put forward the case for the introduction of the term degenerative thoracic myelopathy(DTM) and degenerative spinal myelopathy(DSM) as an umbrella term for both DCM and DTM. METHODS Following PRISMA guidelines, a systematic literature search was performed to identify degenerative thoracic myelopathy literature in Embase and MEDLINE. RESULTS Conditions encompassed within DTM include thoracic spondylotic myelopathy, ossification of the posterior longitudinal ligament, ossification of the ligamentum flavum, calcification of ligaments, hypertrophy of ligaments, degenerative disc disease, thoracic osteoarthritis, intervertebral disc herniation, and posterior osteophytosis. The classic presentation includes girdle pain, gait disturbance, leg weakness, sensory disturbance, and bladder or bowel dysfunction, often with associated back pain. Surgical management is typically favoured with post-surgical outcomes dependent on many factors, including the causative pathology, and presence of additional stenosis. CONCLUSION The clinical entities encompassed by the term DTM are interrelated, can manifest concurrently, and present similarly. Building on the consensus adoption of DCM in the cervical spine and the recent proposal of degenerative cervical radiculopathy(DCR), extending this common nomenclature framework to the terms degenerative spinal myelopathy and degenerative thoracic myelopathy will help improve recognition and communication.
Collapse
Affiliation(s)
- Tanzil Rujeedawa
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Oliver D. Mowforth
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Benjamin M. Davies
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Cylene Yang
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Aria Nouri
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Jibin J. Francis
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Brian K. Kwon
- Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - James Harrop
- Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | | | - Allan R. Martin
- Department of Neurosurgery, University of California Davis, Sacramento, CA, USA
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - James D. Guest
- Department of Neurosurgery and The Miami Project to Cure Paralysis, The Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Michael G. Fehlings
- Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Mark R. Kotter
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Nishikawa M, Yoshimura M, Naito K, Yamagata T, Goto H, Hara M, Ikuno H, Goto T. The Symptomatic Calcification and Ossification of the Ligamentum Flavum in the Spine: Our Experience and Review of the Literature. J Clin Med 2023; 13:105. [PMID: 38202112 PMCID: PMC10780021 DOI: 10.3390/jcm13010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION We report our experience regarding the clinical features and pathological findings of the calcification of the ligamentum flavum (CLF) and ossification of the ligamentum flavum (OLF) in the spine. In addition, we reviewed the previous studies on CLF and OLF to enhance the understanding of these conditions. MATERIALS AND METHODS We compared the clinical, radiological, and histopathological features of CLF and OLF. RESULTS In CLF, a computed tomography (CT) scan showed egg-shaped or speck-like calcification in the ligamentum flavum. Magnetic resonance (MR) imaging demonstrated spinal cord compression due to a thickened ligamentum flavum, which appeared as a low-intensity mass. Pathological findings demonstrated fused islands of calcification resembling sand-like calcification. In OLF, CT showed beak-like ossification extending into the intervertebral foramen. MR imaging demonstrated spinal cord compression by a low-intensity mass. Pathological findings revealed laminar ossification of LF with chondrocytes near the calcification and laminar hyaline cartilage. CONCLUSIONS CLF and OLF appear to be distinct entities based on their clinical, neuroradiological, histopathological, and pathogenetic features. We suggest that the causes of CLF include both metabolic and dystrophic factors, while the pathogenesis of OLF is characterized by enchondral ossification induced by a genetic cascade triggered by shearing/tension stress.
Collapse
Affiliation(s)
- Misao Nishikawa
- Department of Neurosurgery, Moriguchi-Ikuno Memorial Hospital, 6-17-33 Satanakamachi, Moriguchi City 570-0002, Osaka, Japan; (T.Y.); (M.H.)
- Department of Neurosurgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City 545-8595, Osaka, Japan; (K.N.); (T.G.)
| | - Masaki Yoshimura
- Department of Neuropathology, Yao Tokusyukai General Hospital, 1-17, Wakakusacho, Yao City 581-0011, Osaka, Japan;
| | - Kentaro Naito
- Department of Neurosurgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City 545-8595, Osaka, Japan; (K.N.); (T.G.)
| | - Toru Yamagata
- Department of Neurosurgery, Moriguchi-Ikuno Memorial Hospital, 6-17-33 Satanakamachi, Moriguchi City 570-0002, Osaka, Japan; (T.Y.); (M.H.)
| | - Hiroyuki Goto
- Department of Neurosurgery, Osaka Saiseikai Nakatsu Hospital, 2-10-39, Kita-ku, Osaka City 530-0012, Osaka, Japan;
| | - Mitsuhiro Hara
- Department of Neurosurgery, Moriguchi-Ikuno Memorial Hospital, 6-17-33 Satanakamachi, Moriguchi City 570-0002, Osaka, Japan; (T.Y.); (M.H.)
- Department of Neurosurgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City 545-8595, Osaka, Japan; (K.N.); (T.G.)
| | - Hiromichi Ikuno
- Department of Radiology, Moriguchi-Ikuno Memorial Hospital, 6-17-33 Satanakamachi, Moriguchi City 570-0002, Osaka, Japan;
| | - Takeo Goto
- Department of Neurosurgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City 545-8595, Osaka, Japan; (K.N.); (T.G.)
| |
Collapse
|
5
|
Liu K, Shu L, Huang AY, Chang Y, Chen Z, Zhang C. PTGR1 is involved in cell proliferation in thoracic ossification of the ligamentum flavum. PLoS One 2023; 18:e0292821. [PMID: 37910537 PMCID: PMC10619815 DOI: 10.1371/journal.pone.0292821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is a heterotopic ossification of spinal ligaments, leading to serious myelopathy. TOLF underlying mechanisms are not well understood. Our iTRAQ analysis have identified ten inflammatory factors related to TOLF, including l. We found that PTGR1 expressions increased in TOLF by RT-PCR and western blot in this study. Both cell proliferation and differentiation are important for the process of bone formation. In our previous study, we demonstrated that TOLF primary cells grew faster than control cells. It was reported that knockdown of PTGR1 inhibited cell proliferation. We hypothesize that PTGR1 may participate in cell proliferation in TOLF. To test this hypothesis, TOLF primary cells were treated for 24h with PTGR1. We observed that PTGR1 increased cell proliferation. The effect of PTGR1 on cell proliferation related genes was examined in TOLF primary cells. Our results showed that PTGR1 was able to activate expressions of c-Myc and CyclinD1. Moreover, blocking JNK pathway by selective JNK inhibitor SP600125 eliminated the positive effect of PTGR1 on c-Myc expression, indicating that PTGR1 activated the expression of c-Myc via JNK pathway. Our new findings suggest that PTGR1 is involved in cell proliferation of TOLF.
Collapse
Affiliation(s)
- Kuankuan Liu
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Li Shu
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Ann Yehong Huang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yanan Chang
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University International Hospital, Beijing, China
| | - Chi Zhang
- Central Laboratory, Peking University International Hospital, Beijing, China
- Department of Orthopedics, Peking University International Hospital, Beijing, China
- Biomedical Engineering Department, Peking University, Beijing, China
| |
Collapse
|
6
|
Clinical progression of ossification of the ligamentum flavum in thoracic spine: a 10- to 11-year follow-up study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:495-504. [PMID: 36422717 DOI: 10.1007/s00586-022-07468-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Thoracic ossification of ligamentum flavum (TOLF) can be asymptomatic and progress insidiously. But, long-term follow-up results of clinical progression of TOLF are still unknown. METHODS The clinical progression of 81 patients with TOLF at our center, followed for 10 to 11 (mean, 10.3) years from May 2010 to November 2021, were analyzed. Among them, 51 patients with thoracic myelopathy were caused by single- or multi-segment TOLF, and received partial TOLF resection (30 patients) or total TOLF resection (21 patients). The remaining 30 patients showed TOLF on imaging examinations, but TOLF was not the responsible compressing factor causing myelopathy and with no TOLF resection. The mJOA score (total 11 scores) and spinal operation were used to evaluate the clinical progression at follow-up. RESULTS During the 10- to 11-year follow-up of 81 TOLF patients, 71 (87.7%) had no deterioration of neurological function, and 10 (12.3%) patients had deterioration of neurological function and had another spinal operation, including only 4 (4.9%) suffered thoracic myelopathy caused by the progression of TOLF; 6 (7.4%) for other spinal diseases: 2 (2.5%) had fall damage and acute spinal cord injury at the TOLF level; 2 (2.5%) had thoracic myelopathy caused by ossification of posterior longitudinal ligament (OPLL); 2 (2.5%) had cervical spondylosis and received cervical operation. CONCLUSIONS Most TOLF (87.7%) patients had no clinical progression and received no reoperations for TOLF in the ten-year dimension (mean, 10.3 years). Narrow spinal canal for TOLF increases the risk of traumatic paraplegia.
Collapse
|
7
|
Dou X, Mao T, Ma Y, Jia F, Liu Y, Liu X. Fibrotic and inflammatory characteristics of epidural fat adjacent to the ossification area in patients with ossification of the ligament flavum. JOR Spine 2022; 5:e1229. [PMID: 36601380 PMCID: PMC9799088 DOI: 10.1002/jsp2.1229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Objectives To observe histological and inflammatory characteristics of epidural fat (EF) adjacent to the ossification area in patients with ossification of the thoracic ligament flavum (TOLF) and provide a preliminary research basis for investigating the impact of the EF on OLF. Methods Samples of EF and autologous subcutaneous adipose tissue (SCAT) from TOLF patients (n = 26) and non-TOLF patients (n = 23) were harvested during posterior thoracic spine surgery. Adipocyte size and fibrosis were measured by histology. Vascularization and inflammatory cell infiltration were evaluated by immunohistochemical staining. Adipogenesis-related genes were assessed by real-time quantitative PCR. Conditioned media from cultured EF were evaluated via enzyme-linked immunosorbent assay to detect the secretion of inflammatory cytokines, including interleukin-6 (IL-6), tumor necrosis factor (TNF-α), and leptin. The phosphorylated STAT3 protein level in ligament flavum (LF) was examined using Western blot. Results Adipocytes size in EF was similar between in the TOLF and non-TOLF groups, but significantly smaller than that from autologous SCAT. Adipogenesis-related mRNA expression in EF was lower than that in SCAT. More fibrosis and vascularization were found in TOLF than in non-TOLF. EF in the TOLF group exhibited more macrophages and B lymphocytes infiltrated. The levels of cytokines such as IL-6, TNF-α, and leptin secreted by EF were significantly higher in the TOLF group than non-TOLF. The level of phosphorylated STAT3 in LF was significantly upregulated in the TOLF group. Conclusions Morphologically, EF adjacent to the ossification area is smaller and more uniform than autologous SCAT, exhibiting a characteristic similarity to visceral fat. EF in the TOLF group shows a more fibrotic, vascularized, and inflammatory phenotype, which secretes multiple cytokines. The phosphorylated STAT3 protein was significantly upregulated in the TOLF group. Whether these properties of EF directly affect the process of OLF needs to be further explored.
Collapse
Affiliation(s)
- Xinyu Dou
- Department of OrthopedicsPeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Spinal DiseasesBeijingChina
- Engineering Research Center of Bone and Joint Precision MedicineBeijingChina
| | - Tianli Mao
- Department of OrthopedicsPeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Spinal DiseasesBeijingChina
- Engineering Research Center of Bone and Joint Precision MedicineBeijingChina
| | - Yunlong Ma
- Pain Medicine CenterPeking University Third HospitalBeijingChina
| | - Fei Jia
- Department of OrthopedicsPeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Spinal DiseasesBeijingChina
- Engineering Research Center of Bone and Joint Precision MedicineBeijingChina
| | - Yu Liu
- Department of OrthopedicsPeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Spinal DiseasesBeijingChina
- Engineering Research Center of Bone and Joint Precision MedicineBeijingChina
| | - Xiaoguang Liu
- Department of OrthopedicsPeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Spinal DiseasesBeijingChina
- Engineering Research Center of Bone and Joint Precision MedicineBeijingChina
| |
Collapse
|
8
|
Qu X, Xu G, Hou X, Chen G, Fan T, Yang X, Chen Z. M1 Macrophage-Derived Interleukin-6 Promotes the Osteogenic Differentiation of Ligamentum Flavum Cells. Spine (Phila Pa 1976) 2022; 47:E527-E535. [PMID: 35044344 DOI: 10.1097/brs.0000000000004319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/17/2021] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Basic experimental study. OBJECTIVE The aim of this study was to clarify the role of macrophages (Mφs) in the osteogenic differentiation of ligamentum flavum (LF) cells. SUMMARY OF BACKGROUND DATA Mφs and secreted factors are involved in the regulation of cell osteogenic differentiation, and play an important role in the process of heterotopic ossification. Whether Mφs are involved in the development of ossification of the ligamentum flavum (OLF) have not been reported. METHODS The expression of CD68+ Mφs in ossified LF tissue was identified by immunohistochemical staining. THP-1 cells were polarized to M1 and M2, and identified by flow cytometry and immunofluorescence. The alkaline phosphatase activity and osteogenic differentiation-related gene expression in LF cells were evaluated following incubation with each Mφs conditioned medium (CM). Enzyme-linked immunosorbent assay was used to detect the pro-inflammatory cytokines in the supernatants, and qPCR was used to detect the expression of the corresponding receptors in the LF cells after incubation with the CM. LF cells were induced with CM-M1 in the presence of neutralizing antibodies to further test whether cytokines secreted by M1 Mφs impacted their osteogenic differentiation. RESULTS CD68+ Mφs were found on the OLF samples. THP-1 cells were polarized into M1 and M2, and both M1 and M2 Mφs promoted the osteogenic differentiation of LF cells. The concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-1 β, and IL-6 in M1 Mφ supernatants were greater than those in M2, and greater levels of these cytokine receptors were observed in LF cells induced with CM-M1 than those with CM-M2. Osteogenic differentiation of LF cells induced by CM-M1 decreased after IL-6 was neutralized; however, not after IL-1β and TNF-α were neutralized. CONCLUSION M1 Mφ-derived IL-6 promotes the osteogenic differentiation of LF cells, which may be a pathway in which Mφs regulate the osteogenic differentiation of LF cells.
Collapse
Affiliation(s)
- Xiaochen Qu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopadic Diseases, Liaoning Province, Dalian, PR China
- Department of Orthopedics, Peking University Third Hospital, Beijing, PR China
| | - Gang Xu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopadic Diseases, Liaoning Province, Dalian, PR China
| | - Xiaofei Hou
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, Beijing, PR China
| | - Guanghui Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, PR China
| | - Tianqi Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, PR China
| | - Xiaoxi Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing, PR China
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, PR China
| |
Collapse
|
9
|
IL-6 is involved in thoracic ossification of the ligamentum flavum. PLoS One 2022; 17:e0272357. [PMID: 35905126 PMCID: PMC9337630 DOI: 10.1371/journal.pone.0272357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is a heterotopic ossification of spinal ligaments. TOLF is the major cause of thoracic spinal canal stenosis and myelopathy, and its underlying mechanisms are not clear. Bone formation is a complex developmental process involving the differentiation of mesenchymal stem cells to osteoblasts, and regulated by BMP2, RUNX2, Osterix (OSX), etc. In this study, we continue to further characterize properties of TOLF. Our immunohistochemistry experiments showed that expressions of osteoblastic factors such as BMP2 and RUNX2 increased in TOLF. According to flow cytometry analysis the proportion of S phase of cell cycle in primary TOLF cells was 9% higher than the control. Alizarin red staining and ALP staining observations were consistent with immunohistochemistry results. It was also observed that inflammatory cytokine IL-6 level dramatically increased in the culture supernatant of primary TOLF cells. We propose the hypothesis that IL-6 is involved in TOLF. To testify the hypothesis, we examined the effect of IL-6. Our results showed that IL-6 was able to activate expressions of osteoblastic factors such as BMP2, RUNX2, OSX, OCN and ALP, and that expressions of cell proliferation factors cyclin D1 and cyclin C increased in the presence of IL-6. Moreover, IL-6-induced BMP2 expression was inhibited by p38 inhibitor SB203580, indicating that IL-6 regulated the osteogenic BMP2 activation through p38 MAPK pathway. These data suggest that IL-6 is involved in TOLF.
Collapse
|
10
|
Yang X, Sun C, Meng X, Chen G, Fan T, Zhang C, Chen Z. LGR5 regulates osteogenic differentiation of human thoracic ligamentum flavum cells by Wnt signalling pathway. J Cell Mol Med 2022; 26:3862-3872. [PMID: 35668632 PMCID: PMC9279595 DOI: 10.1111/jcmm.17420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/02/2021] [Accepted: 06/19/2021] [Indexed: 01/13/2023] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is ectopic ossification of the spinal ligaments. Histologically, the development of TOLF can be described as the process of endochondral ossification. However, the underlying aetiology has not been completely clarified. In this investigation, the gene expression profile associated with leucine‐rich repeat‐containing G‐protein‐coupled receptors (LGR) and Wnt signalling pathway in the thoracic ligamentum flavum cells (TLFCs) of different ossification stages was analysed via RNA sequencing. We further confirmed the significant differences in the related gene expression profile by Gene Ontology (GO) enrichment analysis. LGR5 was first identified in primary human TLFCs during osteogenic differentiation. To evaluate the effect of LGR5 on osteogenic differentiation, LGR5 has been knocked down and overexpressed in human TLFCs. We observed that the knockdown of LGR5 inhibited the activity of Wnt signalling and attenuated the potential osteogenic differentiation of TLFCs, while overexpression of LGR5 activated the Wnt signalling pathway and increased osteogenic differentiation. Our results provide important evidence for the potent positive mediatory effects of LGR5 on osteogenesis by enhancing the Wnt signalling pathway in TOLF.
Collapse
Affiliation(s)
- Xiaoxi Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Chuiguo Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Xiangyu Meng
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Guanghui Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Tianqi Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Chi Zhang
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
11
|
Comparative Effectiveness and Functional Outcome of C2 Dome-like Expansive Versus C2 Expansive Open-door Laminoplasty for Upper Cervical Ossification of the Posterior Longitudinal Ligament: A Retrospective Cohort Study. Spine (Phila Pa 1976) 2022; 47:E448-E455. [PMID: 34524271 DOI: 10.1097/brs.0000000000004221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Retrospective Cohort Study. OBJECTIVES This study compared the function and radiographical outcomes of the patients who underwent C2 dome-like expansive laminoplasty to those C2 expansive open-door laminoplasty for the treatment of OPLL with C2 involved. SUMMARY OF BACKGROUND DATA There are few comparative studies of these two surgical methods. C2 dome-like and C2 expansive open-door laminoplasty are posterior approaches for posterior longitudinal ligament ossification with C2 level and above. METHODS This study performed a retrospective cohort analysis of 59 patients with OPLL up to C2 which cause compression symptoms. 31 patients underwent C2 dome-like expansive laminoplasty with C3-7 expansive open-door laminoplasty (Group Dom) and 28 underwent C2-7 expansive open-door laminoplasty (Group Exp). The preoperative and postoperative space available for cord (SAC) of C2 segment, cervical curvature index of C2-7, C2-7 range of motion, Japanese orthopedic association (JOA) score, visual analog scale (VAS) score, and neck disability index (NDI) were used to assess clinical out-comes and statistically analyzed. RESULTS The cervical curvature index, JOA score, and NDI significantly changed at the final follow-up in two groups with no significant intergroup differences. There were no significant differences in preoperative SAC and VAS between the two groups. At the final follow-up, the SAC of C2/3 in Group Exp was significantly larger than Group Dom, while the VAS and range of motion of Group Dom became significantly better than Group Exp. CONCLUSION The C2 dome-like expansive laminoplasty can reduce postoperative neck pain more obviously and achieve better cervical curvature. C2 expansive open-door laminoplasty can get more adequate decompression in the spinal canal, which may be recommend to the patients with OPLL occupying more than 50% of the vertebral canal at C2/3, or with developmental spinal stenosis. LEVEL OF EVIDENCE 3.
Collapse
|
12
|
Cyclic Tensile Stress to Rat Thoracolumbar Ligamentum Flavum Inducing the Ossification of Ligamentum Flavum: An In Vivo Experimental Study. Spine (Phila Pa 1976) 2021; 46:1129-1138. [PMID: 34384088 DOI: 10.1097/brs.0000000000004087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Western blot, reverse transcription-polymerase chain reaction (RT-PCR), radiological, and histological analyses of the rat ossification of ligamentum flavum (OLF) induced by cyclic tensile stress. OBJECTIVE The aim of this study was to induce the OLF using cyclic tensile stress to rat thoracolumbar ligamentum flavum, and to investigate the possible molecular mechanism of tension-induced OLF. SUMMARY OF BACKGROUND DATA Tensile stress has been considered as an important factor leading to the OLF. So far, however, no OLF induced by tension has been reported. METHODS Forty rats were randomly divided into five equal groups. For control groups, the blank and anesthesia groups were not subjected to tension. For experimental groups, the 4-, 8-, and 12-week groups were subjected to cyclic tensile stress of ligamentum flavum after abdominal anesthesia for 4 weeks, 8 weeks, and 12 weeks, respectively, using an original stress apparatus for rats. The radiological and morphological changes of rat spine, as well as the protein and mRNA expressions of CD44, bone morphogenetic protein-2 (BMP-2), integrin β3, collagen protein type I (COL1), osteopontin (OPN), runt-related transcription factor 2 (RUNX-2), and vascular endothelial growth factor (VEGF), were concerned. RESULTS The micro-CT showed OLF in the 4-, 8-, and 12-week group. The axial maximum occupied area of ossifications was 1.42 mm2, 3.35 mm2, and 7.28 mm2, respectively. In histopathology, chondrocytes proliferated in the experimental model; woven bone arose in the 8- and 12-week groups, and was more noticeable in the 12-week group. According to western blot and RT-PCR, the expressions of seven osteogenesis-related molecules were all increased in three experimental groups. CONCLUSION Cyclic tensile stress to the ligamentum flavum in rats can induce the OLF, and the longer the duration, the more visible the osteogenesis. The upregulation and synergism of osteogenesis-related molecules may contribute to the OLF induced by tensile stress.Level of Evidence: N/A.
Collapse
|
13
|
Zhang B, Chen G, Chen X, Yang X, Fan T, Sun C, Chen Z. Integrating Bioinformatic Strategies with Real-World Data to Infer Distinctive Immunocyte Infiltration Landscape and Immunologically Relevant Transcriptome Fingerprints in Ossification of Ligamentum Flavum. J Inflamm Res 2021; 14:3665-3685. [PMID: 34354364 PMCID: PMC8331123 DOI: 10.2147/jir.s318009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose Ossification of the ligamentum flavum (OLF) is a multifactorial disease characterized by an insidious and debilitating process of abnormal bone formation in ligamentum tissues. However, its definite pathogenesis has not been fully elucidated. Potential links between the immune system and various forms of heterotopic ossification have been discussed for many years, whereas no research investigated the immune effects on the initiation and development of OLF. Therefore, we attempt to shed light on this issue. Methods A series of bioinformatic algorithms were integrated to evaluate the immune score and the immunocyte infiltration patterns between OLF and normal samples, screen OLF-related and immune-related differentially expressed genes (OIDEGs), and analyze their biological functions. Correlation analysis inferred OIDEGs-related differentially expressed lncRNAs (OIDELs) and infiltrating immune cells (OIICs) to construct an immunoregulatory network. Results Differential immune score and immune cell infiltration were determined between two groups, and 10 OIDEGs with diverse biological function annotations were identified and verified. A lncRNA-gene-immunocyte regulatory network further revealed 10 OIDEGs, 41 OIDELs and 7 OIICs that were highly correlated. Among them, CD1E and STAT3 were predicted as hub genes whether at the expression level or interaction level. cDCs emerged as having the most prominent differences and the highest degree of connectivity. FO393414.3, AC096734.1, LINC01137 and DLX6-AS1 with the greatest number of OIDEGs were thought to be more likely to participate in immunoregulation of OLF. Conclusion This is the first research to preliminarily elucidate OLF-related immunocyte infiltration landscape and immune-associated transcriptome signatures based on bioinformatic strategies and real-world data, which may provide compelling insights into the pathogenesis and therapeutic targets of OLF.
Collapse
Affiliation(s)
- Baoliang Zhang
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Guanghui Chen
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Xi Chen
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Xiaoxi Yang
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Tianqi Fan
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Chuiguo Sun
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Zhongqiang Chen
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| |
Collapse
|
14
|
Qu X, Hou X, Chen Z, Chen G, Fan T, Yang X. Association analysis and functional study of COL6A1 single nucleotide polymorphisms in thoracic ossification of the ligamentum flavum in the Chinese Han population. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:2782-2790. [PMID: 34287704 DOI: 10.1007/s00586-021-06932-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/09/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Genetic factors play a crucial role in thoracic ossification of the ligamentum flavum (TOLF). This study aimed to better understand the association between single nucleotide polymorphisms (SNP) in functional regions of the collagen VI, alpha 1 gene (COL6A1) and TOLF, and to confirm COL6A1 as a TOLF susceptibility gene. METHODS Ten tag SNPs in COL6A1 were genotyped using the SNaPshot assay, and allele and genotype frequencies were compared between TOLF patients and control individuals. The function of SNPs associated with disease was studied. For COL6A1 promoter SNPs, the transcriptional activity of each haplotype was determined by luciferase reporter assays. For COL6A1 exonic SNPs, the effect of nucleotide substitutions on COL6A1 expression was determined by western blotting. COL6A1 mRNA expression in ligamentum flavum tissues from TOLF patients with different genotypes was examined using reverse transcription real-time PCR. RESULTS Four SNPs were associated or possibly associated with TOLF, with higher pathogenic allele and genotype frequencies seen in TOLF patients compared with controls. The rs17551710/rs7671-GG/GG genotype appeared to be related to disease severity. Nucleotide substitutions at rs17551710 and rs7671 increased COL6A1 transcriptional activity and nucleotide substitutions at rs1053312 and rs13051496 increased COL6A1 protein expression. COL6A1 mRNA expression was significantly up-regulated in individuals with rs17551710/rs7671-GG/GG and rs1053312/rs13051496-AA+AG/CC genotypes compared with other genotypes. CONCLUSION SNPs in the COL6A1 promoter and exonic regions are associated with TOLF in the Chinese Han population, and lead to up-regulated COL6A1 expression. We confirmed COL6A1 as a TOLF susceptibility gene that may be involved in TOLF pathology.
Collapse
Affiliation(s)
- Xiaochen Qu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China. .,Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, 116011, Liaoning, People's Republic of China. .,Department of Orthopaedics, Peking University Third Hospital, Beijing, People's Republic of China.
| | - Xiaofei Hou
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, People's Republic of China.
| | - Guanghui Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Tianqi Fan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Xiaoxi Yang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, People's Republic of China
| |
Collapse
|
15
|
Lin YP, Lin R, Chen S, Rao SY, Zhao S, Wen T, Wang HS, Hu WX, Liu BX, Li XY, Li YJ, Chen BL. Thoracic full-endoscopic unilateral laminotomy with bilateral decompression for treating ossification of the ligamentum flavum with myelopathy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:977. [PMID: 34277777 PMCID: PMC8267270 DOI: 10.21037/atm-21-2181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/15/2021] [Indexed: 11/06/2022]
Abstract
Background The aim of the present study was to evaluate the curative effect and safety of thoracic full-endoscopic unilateral laminotomy with bilateral decompression (TE-ULBD) for treating ossification of the ligamentum flavum (OLF) with myelopathy. Methods Between January 2015 and December 2018, 23 consecutive patients with symptomatic thoracic OLF were treated with TE-ULBD. Of these, 21 (13 women and 8 men, aged 49-75 years) were included in the study and followed up for a minimum of 1 year. The mean blood loss was 15.48 mL (10-30 mL), operative duration was 78.86 min (55-115 min), and hospitalization was 5.05 days (3-15 days). The Japanese Orthopaedic Association (JOA) was used to evaluate spinal cord function, and the curative effect was defined by the JOA improvement rate. The area of OLF (AOLF), the maximum spinal cord compression (MSCC), and the area of spinal cord (ASC) were used to evaluate OLF clearance and spinal cord decompression status. Results At the final follow up,the JOA score was 8.33 points (5-11 points), which was a significant improvement from the preoperative 5.33 points (3-9 points, P<0.01). The excellent and good rate was 76.19% (16/21). The average preoperative AOLF and AOLF ratio were 85.27±23.66 mm2 and 57.86%±11.86%, respectively, and the postoperative AOLF and AOLF ratio were 16.27±11.75 mm2 and 8.13%±5.38%, respectively. The MSCC increased from 27.99%±13.51% preoperatively to 48.02%±6.66% postoperatively. The ASC was 42.90±10.60 mm2 preoperatively and 64.54±21.36 mm2 postoperatively. There were statistically significant differences in all parameters preoperatively and postoperatively (P<0.01). One case had postoperative hematoma, and the symptoms gradually eased after 3 weeks of conservative treatment. There were no other complications. No recurrence of OLF was detected during the follow-up period. Conclusions TE-ULBD is safe and effective for thoracic OLF with the advantages of reduced trauma and bleeding, and faster recovery.
Collapse
Affiliation(s)
- Yong-Peng Lin
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Division of Spine Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Rui Lin
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Song Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si-Yuan Rao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuai Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Division of Spine Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Tao Wen
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Division of Spine Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hong-Shen Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Division of Spine Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wei-Xiong Hu
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Division of Spine Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Bing-Xin Liu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin-Yi Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong-Jin Li
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Division of Spine Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Bo-Lai Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Division of Spine Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Gao R, Shi C, Yang C, Zhao Y, Chen X, Zhou X. Cyclic stretch promotes the ossification of ligamentum flavum by modulating the Indian hedgehog signaling pathway. Mol Med Rep 2020; 22:1119-1128. [PMID: 32626952 PMCID: PMC7339599 DOI: 10.3892/mmr.2020.11200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 01/29/2020] [Indexed: 11/06/2022] Open
Abstract
The Indian hedgehog (IHH) signaling pathway is an important pathway for bone growth and development. The aim of the present study was to examine the role of the IHH signaling pathway in the development of the ossification of ligamentum flavum (OLF) at the cellular and tissue levels. The expression levels and localization of the osteogenic genes Runt-related transcription factor 2 (RUNX2), Osterix, alkaline phosphatase (ALP), osteocalcin (OCN) and IHH were evaluated in OLF tissues by reverse transcription-quantitative PCR (RT-qPCR) and immunohistochemistry. Non-ossified ligamentum flavum (LF) sections were used as control samples. The tissue explant method was used to obtain cultured LF cells. In addition, OLF cells were subjected to cyclic stretch application for 0, 6, 12 or 24 h. The expression levels of osteogenic genes, and the IHH signaling pathway genes IHH, Smoothened (SMO), GLI family zinc finger 1 (GLI1), GLI2 and GLI3 were evaluated with RT-qPCR and western blotting. Osteogenic differentiation was further evaluated by assessing ALP activity and staining. Moreover, the effect of cyclopamine (Cpn), an IHH signaling inhibitor, on osteogenic differentiation was examined. The RT-qPCR and immunohistochemical results indicated that the mRNA and protein expression levels of RUNX2, Osterix, ALP, OCN and IHH were significantly higher in the OLF group compared with the LF group. Furthermore, application of cyclic stretch to OLF cells resulted in greater ALP activity, and significant increases in mRNA and protein expression levels of RUNX2, Osterix, ALP and OCN in a time-d00ependent manner. Cyclic stretch application also led to significant increases in IHH signaling pathway genes, including IHH, SMO, GLI1 and GLI2, while no significant effect was found on GLI3 expression level. In addition, it was found that Cpn significantly reversed the effect of cyclic stretch on the ALP activity, and the expression levels of RUNX2, Osterix, ALP, OCN, GLI1 and GLI2. Collectively, the present results suggested that the IHH signaling pathway may mediate the effect of cyclic stretch on the OLF cells.
Collapse
Affiliation(s)
- Rui Gao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Changgui Shi
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Chengwei Yang
- Department of Orthopedics, Lanzhou General Hospital of PLA, Lanzhou, Gansu 730050, P.R. China
| | - Yin Zhao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xiongsheng Chen
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
17
|
Fan T, Meng X, Sun C, Yang X, Chen G, Li W, Chen Z. Genome-wide DNA methylation profile analysis in thoracic ossification of the ligamentum flavum. J Cell Mol Med 2020; 24:8753-8762. [PMID: 32583558 PMCID: PMC7412700 DOI: 10.1111/jcmm.15509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/12/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) causes serious spinal canal stenosis. The underlying aetiology may relate to genetic and inflammatory factors. DNA methylation plays a critical role in osteogenesis and inflammation, whereas there is no genome‐wide DNA methylation analysis about TOLF. The two subtypes of TOLF (single‐level and multiple‐level) have distinct clinical features. Using micro‐computed tomography (micro‐CT), we showed the ossification arose from the joint between two vertebrae at one/both sides of ligament flavum. With Illumina Infinium Human Methylation 850 BeadChip arrays, genome‐wide DNA methylation profile was measured in ligament flavum of eight healthy and eight TOLF samples. Only 65 of the differentially methylated cytosine‐phosphate‐guanine dinucleotides were found in both subtype groups. Principal component analysis and heat map analysis showed a different methylation pattern in TOLF samples, and methylation patterns of two subtypes are also distinct. The Gene Ontology enrichment analysis was significantly enriched in differentiation and inflammation. Pyrosequencing analysis and quantitative real‐time polymerase chain reaction were performed to validate the arrays results and expression levels, to test six differentially methylated genes (SLC7A11, HOXA10, HOXA11AS, TNIK, homeobox transcript antisense RNA, IFITM1), using another independent samples (P < 0.05). Our findings first demonstrated an altered Genome‐wide DNA methylation profile in TOLF, and implied distinct methylated features in two subtypes.
Collapse
Affiliation(s)
- Tianqi Fan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Xiangyu Meng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Xiaoxi Yang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Guanghui Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
18
|
Wang Y, Yang L, Lei T, Lin YS, Qi XB, Wang ZH, Cao JM. Benefits and Risks of Subsection Laminectomy with Pedicle Screw Fixation for Ossification of the Ligamentum Flavum of the Thoracic Spine: A Retrospective Study of 30 Patients. Med Sci Monit 2019; 25:6341-6350. [PMID: 31442214 PMCID: PMC6717439 DOI: 10.12659/msm.915318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/22/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the effectiveness of subsection laminectomy with pedicle screw fixation (SLPF) for the treatment of ossification of the ligamentum flavum of the thoracic spine. MATERIAL AND METHODS Thirty patients (age, 40-71 years) with ossification of the ligamentum flavum of the thoracic spine underwent SLPF (13 men, 17 women). Operative time, intraoperative blood loss, preoperative and postoperative change in thoracic kyphosis, and perioperative complications were recorded. The Japanese Orthopedic Association (JOA) score for severity of myelopathy and the American Spinal Injury Association (ASIA) motor and sensory impairment scale were used before and after surgery. RESULTS Mean operative time for SLPF was 208.4±38.3 min and mean intraoperative blood loss was 689.3±171.7 ml. The mean JOA score significantly increased from 5.7±1.9 before surgery to 8.8±2.2 at one month after surgery and 9.3±2.7 at the last follow-up (P<0.01). Postoperative improvement in neurological function increased by 68.3±14.4%. The postoperative ASIA grades significantly improved compared with the preoperative grades (P<0.01). The mean local Cobb angle significantly decreased from 17.8±4.3° before surgery to 15.4±3.6° at one month after surgery and 15.8±3.8° at the last follow-up (P<0.01). Three patients (10%) had operative cerebrospinal fluid (CSF) leak. Postoperatively, one patient had neurological deterioration, two patients had deep venous thrombosis (DVT), and one patient developed a wound infection. CONCLUSIONS SLPF was an effective procedure for the treatment of ossification of the ligamentum flavum of the thoracic spine.
Collapse
|
19
|
Kong D, Zhao Q, Liu W, Wang F. Identification of crucial miRNAs and lncRNAs for ossification of ligamentum flavum. Mol Med Rep 2019; 20:1683-1699. [PMID: 31257472 PMCID: PMC6625436 DOI: 10.3892/mmr.2019.10377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to screen crucial micro (mi)RNAs and long non-coding (lnc)RNAs involved in the development of ossification of ligamentum flavum (OLF) based on the miRNA-mRNA and lncRNA-miRNA-mRNA competing endogenous (ce)RNA regulatory network analyses, which are rarely reported. The differentially expressed genes (DEGs), differentially expressed lncRNAs (DELs) and differentially expressed miRNAs (DEMs) between 4 OLF and 4 healthy controls were identified using two microarray datasets GSE106253 and GSE106256 collected from the Gene Expression Omnibus database. A protein-protein interaction (PPI) network was constructed, followed by calculation of topological characteristics and sub-module analysis in order to obtain hub DEGs. The miRNA-mRNA and lncRNA-miRNA networks that were established based on their interaction pairs, obtained from miRwalk and starBase databases, respectively, were integrated to form the ceRNA network. The underlying functions of mRNAs were predicted using the Database for Annotation, Visualization and Integrated Discovery (DAVID). The present study screened 828 DEGs, 119 DELs and 81 DEMs between OLF and controls. PPI network and module analyses identified interleukin (IL)10, adenylate cyclase (ADCY)5, suppressor of cytokine signaling (SOCS)3, G protein subunit gamma (GNG) 4, collagen type II α 1 chain (COL2A1) and collagen type XIII α 1 chain (COL13A1) as hub genes. The miRNA-mRNA network analysis demonstrated IL10 could be regulated by miR-210-3p, while COL13A1 and COL2A1 could be modulated by miR-329-3p and miR-222-5p, respectively. lncRNA-miRNA-mRNA ceRNA network analysis identified that small nucleolar RNA host gene 16-hsa-miR-196a-5p-SOCS3, ankyrin repeat and SOCS box containing 16-AS1-hsa-miR-379-5p-GNG4, nuclear enriched abundant transcript 1-has-miR-181b-5p-ADCY5, rhophilin 1-AS1-hsa-miR-299-3p-WNT7B interaction axes may be crucial. DAVID analysis predicted IL10, ADCY5, GNG4 and SOCS3 were involved in ‘adaptive immune response’, ‘Chemokine signaling pathway’ and ‘regulation of apoptosis’ processes, while COL2A1, COL13A1 and WNT7B may be ossification related. In conclusion, the identification of these crucial miRNAs and lncRNAs may be conducive for explaining the pathogenesis of OLF and provide certain natural, endogenous and nontoxic drug targets for the treatment of OLF.
Collapse
Affiliation(s)
- Daliang Kong
- Department of Orthopedics, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Qiheng Zhao
- Department of Orthopedics, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Wenping Liu
- Department of Neurology, Second Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Fei Wang
- Department of Orthopedics, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
20
|
Yang X, Chen Z, Meng X, Sun C, Li M, Shu L, Fan D, Fan T, Huang AY, Zhang C. Angiopoietin-2 promotes osteogenic differentiation of thoracic ligamentum flavum cells via modulating the Notch signaling pathway. PLoS One 2018; 13:e0209300. [PMID: 30557327 PMCID: PMC6296551 DOI: 10.1371/journal.pone.0209300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is heterotopic ossification of spinal ligaments, which may cause serious thoracic spinal canal stenosis and myelopathy. However, the underlying etiology remains inadequately understood. In this study, the ossification patterns of TOLF were analyzed by micro-computer tomography (micro-CT). The expression profile of genes associated with angiogenesis was analyzed in thoracic ligamentum flavum cells at sites of different patterns of ossification using RNA sequencing. Significant differences in the expression profile of several genes were identified from Gene Ontology (GO) analysis. Angiopoietin-2 (ANGPT2) was significantly up-regulated in primary thoracic ligamentum flavum cells during osteogenic differentiation. To address the effect of ANGPT2 on Notch signaling and osteogenesis, ANGPT2 stimulation increased the expression of Notch2 and osteogenic markers of primary thoracic ligamentum flavum cells of immature ossification, while inhibition of ANGPT2 exhibited opposite effect on Notch pathway and osteogenesis of cells of mature ossification. These findings provide the first evidence for positive regulation of ANGPT2 on osteogenic differentiation in human thoracic ligamentum flavum cells via modulating the Notch signaling pathway.
Collapse
Affiliation(s)
- Xiaoxi Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Xiangyu Meng
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Chuiguo Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Mengtao Li
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Li Shu
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Dongwei Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Tianqi Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Ann Y Huang
- Daobio, Inc. Dallas, Texas, United States of America
| | - Chi Zhang
- Central Laboratory, Peking University International Hospital, Beijing, China
- Department of Orthopedics, Peking University International Hospital, Beijing, China
- Bone Research Laboratory, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
21
|
Han Y, Hong Y, Li L, Li T, Zhang Z, Wang J, Xia H, Tang Y, Shi Z, Han X, Chen T, Liu Q, Zhang M, Zhang K, Hong W, Xue Y. A Transcriptome-Level Study Identifies Changing Expression Profiles for Ossification of the Ligamentum Flavum of the Spine. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:872-883. [PMID: 30161026 PMCID: PMC6120750 DOI: 10.1016/j.omtn.2018.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/10/2018] [Accepted: 07/31/2018] [Indexed: 01/09/2023]
Abstract
Ossification of the ligamentum flavum (OLF) is a common spinal disorder that causes myelopathy and radiculopathy. Non-coding RNAs (ncRNAs) are involved in numerous pathological processes; however, very few ncRNAs have been identified to be correlated with OLF. Here we compared the expression of lncRNA, mRNA, circRNA, and microRNA in OLF tissues from OLF patients and healthy volunteers through mRNA, lncRNA, and circRNA microarrays and microRNA sequencing. A total of 2,054 mRNAs, 2,567 lncRNAs, 627 circRNAs, and 28 microRNAs (miRNAs) were altered during the process of OLF. qPCR confirmed the differential expression of selected mRNAs and ncRNAs. An lncRNA-mRNA co-expression network, miRNA-mRNA target prediction network, and competing endogenous RNA (ceRNA) network of circRNA-miRNA-mRNA were constructed based on a correlation analysis of the differentially expressed RNA transcripts. Subsequently, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for the differentially expressed mRNAs and the predicted miRNAs target genes were performed. In addition, a deregulated miRNA-19b-3p-based miRNA-circRNA-lncRNA-mRNA network was confirmed, by gain-of-function and loss-of-function experiments, to function in the process of ossification. Taken together, this study provides a systematic perspective on the potential function of ncRNAs in the pathogenesis of OLF.
Collapse
Affiliation(s)
- Yawei Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuheng Hong
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Liandong Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Tengshuai Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhen Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingzhao Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Han Xia
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yutao Tang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhemin Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohui Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ting Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qi Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mengxia Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Yuan Xue
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
22
|
Yang X, Qu X, Meng X, Li M, Fan D, Fan T, Huang AY, Chen Z, Zhang C. MiR-490-3p inhibits osteogenic differentiation in thoracic ligamentum flavum cells by targeting FOXO1. Int J Biol Sci 2018; 14:1457-1465. [PMID: 30262997 PMCID: PMC6158729 DOI: 10.7150/ijbs.26686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/16/2018] [Indexed: 01/13/2023] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is a rare heterotopic ossification of spinal ligaments, which is the major cause of thoracic spinal canal stenosis and myelopathy. In this study, the roles of miR-490-3p and forkhead box O1 (FOXO1) in osteogenesis of human thoracic ligamentum flavum cells were investigated. MiR-490-3p was found to be down-regulated during osteogenic differentiation of thoracic ligamentum flavum cells, while their overexpression inhibited osteogenic differentiation. In addition, the analysis of target prediction and dual luciferase reporter assays supported that miR-490-3p directly targeted FOXO1 and suppressed the expression of FOXO1. Moreover, FOXO1 knockdown was displayed to attenuate the effect of miR-490-3p inhibition. ChIP assays showed that miR-490-3p negatively regulated the interaction of FOXO1 and RUNX2. These findings suggest that miR-490-3p performs an inhibitory role in osteogenic differentiation of thoracic ligamentum flavum cells by potentially targeting FOXO1.
Collapse
Affiliation(s)
- Xiaoxi Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Xiaochen Qu
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyu Meng
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Mengtao Li
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Dongwei Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Tianqi Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Ann Y Huang
- Bone Research Laboratory, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Chi Zhang
- Central Laboratory, Peking University International Hospital, Beijing, China.,Bone Research Laboratory, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Orthopedics, Peking University International Hospital, Beijing, China
| |
Collapse
|
23
|
Overexpression of miR-182 inhibits ossification of ligamentum flavum cells by targeting NAMPT. Exp Cell Res 2018; 367:119-131. [DOI: 10.1016/j.yexcr.2018.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 12/31/2022]
|
24
|
Wang B, Chen Z, Meng X, Li M, Yang X, Zhang C. iTRAQ quantitative proteomic study in patients with thoracic ossification of the ligamentum flavum. Biochem Biophys Res Commun 2017; 487:834-839. [PMID: 28455229 DOI: 10.1016/j.bbrc.2017.04.136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 01/26/2023]
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is a unique disease with ectopic ossification, and is a major cause of thoracic spinal stenosis and myelopathy. However, the underlying etiology remains largely unknown. In this study, the ligamentum flavum was systematically analyzed in TOLF patients by using comprehensive iTRAQ labeled quantitative proteomics. Among 1285 detected proteins, there were 282 proteins identified to be differentially expressed. The Gene Ontology (GO) analysis regarding functional annotation of proteins consists of the following three aspects: the biological process, the molecular function, and the cellular components. The function clustering analysis revealed that ten of the above proteins are related to inflammation, such as tumor necrosis factor (TNF). This finding was subsequently validated by ELISA, which indicated that serum TNF-α of TOLF patients was significantly higher compared with the control group. To address the effect of TNF-α on ossification-related gene expression, we purified and cultured primary cells from thoracic ligamentum flavum of patients with TOLF. TNF-α was then used to stimulate cells. RNA was isolated and analyzed by RT-PCR. Our results showed that TNF-α was able to induce the expressions of osteoblast-specific transcription factor Osterix (Osx) in ligamentum flavum cells, suggesting that it can promote osteoblast differentiation. In addition, as the Osx downstream osteoblast genes OCN and ALP were also activated by TNF-α. This is the first proteomic study to identify inflammation factors such as TNF-α involved in ossified ligamentum flavum in TOLF, which may contribute to a better understanding of the cause of TOLF.
Collapse
Affiliation(s)
- Bingxiang Wang
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Xiangyu Meng
- Central Laboratory, Peking University International Hospital, Beijing 102206, China
| | - Mengtao Li
- Central Laboratory, Peking University International Hospital, Beijing 102206, China
| | - Xiaoxi Yang
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Chi Zhang
- Central Laboratory, Peking University International Hospital, Beijing 102206, China; Bone Research Laboratory, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
25
|
Zhang C, Chen Z, Meng X, Li M, Zhang L, Huang A. The involvement and possible mechanism of pro-inflammatory tumor necrosis factor alpha (TNF-α) in thoracic ossification of the ligamentum flavum. PLoS One 2017; 12:e0178986. [PMID: 28575129 PMCID: PMC5456390 DOI: 10.1371/journal.pone.0178986] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/22/2017] [Indexed: 12/31/2022] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is characterized by ectopic bone formation in the ligamentum flavum and is considered to be a leading cause of thoracic spinal canal stenosis and myelopathy. However, the underlying etiology is not well understood. An iTRAQ proteomics was used to reveal the involvement of inflammation factors in TOLF. TNF-α is a pro-inflammatory cytokine implicated in the pathogenesis of many human diseases. Protein profiling analysis showed that the protein level of TNF-α increased in the ossified ligamentum flavum of TOLF, which was confirmed by western blot. The effects of TNF-α on primary ligamentum flavum cells was examined. Cell proliferation assay demonstrated that primary cells from the ossified ligamentum flavum of TOLF grew faster than the control. Flow cytometry assay indicated that the proportions of cells in S phase of cell cycle of primary cells increased after TNF-α stimulation. To address the effect of TNF-α on gene expression, primary cells were derived from ligamentum flavum of TOLF patients. Culture cells were stimulated by TNF-α. RNA was isolated and analyzed by quantitative RT-PCR. G1/S-specific proteins cyclin D1 and c-Myc were upregulated after TNF-α stimulation. On the other hand, osteoblast differentiation related genes such as Bmp2 and Osterix (Osx) were upregulated in the presence of TNF-α. TNF-α activated Osx expression in a dose-dependent manner. Interestingly, a specific mitogen-activated protein kinase ERK inhibitor U0126, but not JNK kinase inhibitor SP600125, abrogated TNF-α activation of Osx expression. This suggests that TNF-α activates Osx expression through the mitogen-activated protein kinase ERK pathway. Taken together, we provide the evidence to support that TNF-α involves in TOLF probably through regulating cell proliferation via cyclin D1 and c-Myc, and promoting osteoblast differentiation via Osx.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopedics, Peking University International Hospital, Beijing, China
- Central Laboratory, Peking University International Hospital, Beijing, China
- Bone Research Laboratory, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (CZ); (ZC)
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University Third Hospital, Haidian District, Beijing, China
- * E-mail: (CZ); (ZC)
| | - Xiangyu Meng
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Mengtao Li
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Li Zhang
- Department of Research, Daobio Inc., Dallas, Texas, United States of America
| | - Ann Huang
- Department of Research, Daobio Inc., Dallas, Texas, United States of America
| |
Collapse
|