1
|
Zarandi PK, Ghiasi M, Heiat M. The role and function of lncRNA in ageing-associated liver diseases. RNA Biol 2025; 22:1-8. [PMID: 39697114 PMCID: PMC11660375 DOI: 10.1080/15476286.2024.2440678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/09/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
Liver diseases are a significant global health issue, characterized by elevated levels of disorder and death. The substantial impact of ageing on liver diseases and their prognosis is evident. Multiple processes are involved in the ageing process, which ultimately leads to functional deterioration of this organ. The process of liver ageing not only renders the liver more susceptible to diseases but also compromises the integrity of other organs due to the liver's critical function in metabolism regulation. A growing body of research suggests that long non-coding RNAs (lncRNAs) play a significant role in the majority of pathophysiological pathways. They regulate gene expression through a variety of interactions with microRNAs (miRNAs), messenger RNAs (mRNAs), DNA, or proteins. LncRNAs exert a major influence on the progression of age-related liver diseases through the regulation of cell proliferation, necrosis, apoptosis, senescence, and metabolic reprogramming. A concise overview of the current understanding of lncRNAs and their potential impact on the development of age-related liver diseases will be provided in this mini-review.
Collapse
Affiliation(s)
- Peyman Kheirandish Zarandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Aoyagi T, Goya T, Imoto K, Azuma Y, Hioki T, Kohjima M, Tanaka M, Oda Y, Ogawa Y. Two types of regenerative cell populations appear in acute liver injury. Stem Cell Reports 2025:102503. [PMID: 40345206 DOI: 10.1016/j.stemcr.2025.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 05/11/2025] Open
Abstract
The liver has a robust regenerative capacity. However, the mechanisms underlying this process remain unclear. Numerous studies on liver regeneration have been previously conducted using partial hepatectomy models, which may not fully represent acute liver injury with inflammation and necrosis. This is commonly observed in the majority of clinical cases. In this study, we conducted a single-cell RNA sequencing (RNA-seq) analysis of liver regeneration in acetaminophen-treated mice using publicly available data. We found that two distinct populations of regenerative cells simultaneously appeared within the same regenerative process. The two populations significantly differed in terms of cell morphology, differentiation, localization, proliferation rate, and signal response. Moreover, one of the populations was induced by contact with necrotic tissue and demonstrated a higher proliferative capacity with a dedifferentiated feature. These findings provide new insights into liver regeneration and therapeutic strategies for liver failure.
Collapse
Affiliation(s)
- Tomomi Aoyagi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Goya
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Imoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Azuma
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomonobu Hioki
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motoyuki Kohjima
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Gastroenterology, NHO Kyushu Medical Center, Fukuoka, Japan
| | - Masatake Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Hu Y, Fan Y, Li N, Xu C, Wang J. Expression of LncRNAs in anterior capsule of lens in patients with pathologic myopia complicated with cataract. Int Ophthalmol 2024; 45:10. [PMID: 39680214 DOI: 10.1007/s10792-024-03366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE To explore the expressions and functions of lncRNAs in the pathogenesis of pathologic myopia complicated with cataract (PMC). METHODS The anterior capsular tissues were collected from patients with age-related cataract (ARC) and PMC. One group of the samples was used to detected by whole-transcriptome sequencing (LC-Bio, Hangzhou, China) and investigated by GO and KEGG enrichment analysis. We selected the Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1), predicted the miRNAs with gene binding sites to it and the downstream mRNAs with gene binding sites to miRNAs through the Starbase and Targetscan websites. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed on the other group to further preliminarily validate the prediction. RESULTS A total of 471 lncRNAs were significantly differential expressed in PMC group compared with ARC group, in which 231 lncRNAs were up-regulated, including MALAT1, and 240 lncRNAs were down-regulated. GO and KEGG enrichment analysis showed that lncRNAs targeted differential mRNAs were involved in various biological functions, cell components, molecular functions and signaling pathways. Taking MALAT1 as an example, we predicted that it had binding sites with 113 miRNAs such as hsa-miR-20a-5p, has-miR-20b-5p, hsa-miR-26a-5p, has-miR-106-5p and hsa-miR-204-5p, which were lower in PMC group than these in ARC group. Inversely, the downstream mRNAs of the above miRNAs, such as MMP9, TNF-α, TGF-β2, NF-KB, IL6 and Smad4 were higher. CONCLUSION The differentially expressed lncRNAs, especially MALAT1, may act as ceRNA via sponging miRNAs and to regulate the targeting downstream mRNAs in development of PMC and participate in numerous biological processes through interconnected signaling pathways.
Collapse
Affiliation(s)
- Yaru Hu
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
- Department of Ophthalmology, Fuyang People's Hospital, Fuyang, 236000, Anhui, China
| | - Yuchen Fan
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Na Li
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Che Xu
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Jianfeng Wang
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China.
| |
Collapse
|
4
|
Li Z, Sun X. Epigenetic regulation in liver regeneration. Life Sci 2024; 353:122924. [PMID: 39038511 DOI: 10.1016/j.lfs.2024.122924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
The liver is considered unique in its enormous capacity for regeneration and self-repair. In contrast to other regenerative organs (i.e., skin, skeletal muscle, and intestine), whether the adult liver contains a defined department of stem cells is still controversial. In order to compensate for the massive loss of hepatocytes following liver injury, the liver processes a precisely controlled transcriptional reprogram that can trigger cell proliferation and cell-fate switch. Epigenetic events are thought to regulate the organization of chromatin architecture and gene transcription during the liver regenerative process. In this review, we will summarize how changes to the chromatin by epigenetic modifiers are translated into cell fate transitions to restore liver homeostasis during liver regeneration.
Collapse
Affiliation(s)
- Zilong Li
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, China.
| | - Xinyue Sun
- Department of Pharmacology, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Li P, Ma X, Huang D, Gu X. Exploring the roles of non-coding RNAs in liver regeneration. Noncoding RNA Res 2024; 9:945-953. [PMID: 38680418 PMCID: PMC11046251 DOI: 10.1016/j.ncrna.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Liver regeneration (LR) is a complex process encompassing three distinct phases: priming, proliferation phase and restoration, all influenced by various regulatory factors. After liver damage or partial resection, the liver tissue demonstrates remarkable restorative capacity, driven by cellular proliferation and repair mechanisms. The essential roles of non-coding RNAs (ncRNAs), predominantly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNA (circRNA), in regulating LR have been vastly studied. Additionally, the impact of ncRNAs on LR and their abnormal expression profiles during this process have been extensively documented. Mechanistic investigations have revealed that ncRNAs interact with genes involved in proliferation to regulate hepatocyte proliferation, apoptosis and differentiation, along with liver progenitor cell proliferation and migration. Given the significant role of ncRNAs in LR, an in-depth exploration of their involvement in the liver's self-repair capacity can reveal promising therapeutic strategies for LR and liver-related diseases. Moreover, understanding the unique regenerative potential of the adult liver and the mechanisms and regulatory factors of ncRNAs in LR are crucial for improving current treatment strategies and exploring new therapeutic approaches for various liver-related diseases. This review provides a brief overview of the LR process and the ncRNA expression profiles during this process. Furthermore, we also elaborate on the specific molecular mechanisms through which multiple key ncRNAs regulate the LR process. Finally, based on the expression characteristics of ncRNAs and their interactions with proliferation-associated genes, we explore their potential clinical application, such as developing predictive indicators reflecting liver regenerative activity and manipulating LR processes for therapeutic purposes.
Collapse
Affiliation(s)
- Penghui Li
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| |
Collapse
|
6
|
Izadi M, Sadri N, Abdi A, Serajian S, Jalalei D, Tahmasebi S. Epigenetic biomarkers in aging and longevity: Current and future application. Life Sci 2024; 351:122842. [PMID: 38879158 DOI: 10.1016/j.lfs.2024.122842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
The aging process has been one of the most necessary research fields in the current century, and knowing different theories of aging and the role of different genetic, epigenetic, molecular, and environmental modulating factors in increasing the knowledge of aging mechanisms and developing appropriate diagnostic, therapeutic, and preventive ways would be helpful. One of the most conserved signs of aging is epigenetic changes, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and extracellular RNAs. Numerous biological processes and hallmarks are vital in aging development, but epigenomic alterations are especially notable because of their importance in gene regulation and cellular identity. The mounting evidence points to a possible interaction between age-related epigenomic alterations and other aging hallmarks, like genome instability. To extend a healthy lifespan and possibly reverse some facets of aging and aging-related diseases, it will be crucial to comprehend global and locus-specific epigenomic modifications and recognize corresponding regulators of health and longevity. In the current study, we will aim to discuss the role of epigenomic mechanisms in aging and the most recent developments in epigenetic diagnostic biomarkers, which have the potential to focus efforts on reversing the destructive signs of aging and extending the lifespan.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Sahar Serajian
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Dorsa Jalalei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Piórkowska K, Zygmunt K, Hunter W, Wróblewska K. MALAT1: A Long Non-Coding RNA with Multiple Functions and Its Role in Processes Associated with Fat Deposition. Genes (Basel) 2024; 15:479. [PMID: 38674413 PMCID: PMC11049917 DOI: 10.3390/genes15040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) belongs to the lncRNA molecules, which are involved in transcriptional and epigenetic regulation and the control of gene expression, including the mechanism of chromatin remodeling. MALAT1 was first discovered during carcinogenesis in lung adenocarcinoma, hence its name. In humans, 66 of its isoforms have been identified, and in pigs, only 2 are predicted, for which information is available in Ensembl databases (Ensembl Release 111). MALAT1 is expressed in numerous tissues, including adipose, adrenal gland, heart, kidney, liver, ovary, pancreas, sigmoid colon, small intestine, spleen, and testis. MALAT1, as an lncRNA, shows a wide range of functions. It is involved in the regulation of the cell cycle, where it has pro-proliferative effects and high cellular levels during the G1/S and mitotic (M) phases. Moreover, it is involved in invasion, metastasis, and angiogenesis, and it has a crucial function in alternative splicing during carcinogenesis. In addition, MALAT1 plays a significant role in the processes of fat deposition and adipogenesis. The human adipose tissue stem cells, during differentiation into adipocytes, secrete MALAT1 as one the most abundant lncRNAs in the exosomes. MALAT1 expression in fat tissue is positively correlated with adipogenic FABP4 and LPL. This lncRNA is involved in the regulation of PPARγ at the transcription stage, fatty acid metabolism, and insulin signaling. The wide range of MALAT1 functions makes it an interesting target in studies searching for drugs to prevent obesity development in humans. In turn, in farm animals, it can be a source of selection markers to control the fat tissue content.
Collapse
Affiliation(s)
- Katarzyna Piórkowska
- National Research Institute of Animal Production, Animal Molecular Biology, 31-047 Cracow, Poland; (K.Z.); (K.W.)
| | - Karolina Zygmunt
- National Research Institute of Animal Production, Animal Molecular Biology, 31-047 Cracow, Poland; (K.Z.); (K.W.)
| | - Walter Hunter
- Faculty of Biotechnology and Horticulture, University of Agriculture in Cracow, 31-120 Cracow, Poland;
| | - Ksenia Wróblewska
- National Research Institute of Animal Production, Animal Molecular Biology, 31-047 Cracow, Poland; (K.Z.); (K.W.)
| |
Collapse
|
8
|
Dai XM, Long ZT, Zhu FF, Li HJ, Xiang ZQ, Wu YC, Liang H, Wang Q, Zhu Z. Expression profiles of lncRNAs, miRNAs, and mRNAs during the proliferative phase of liver regeneration in mice with liver fibrosis. Genomics 2023; 115:110707. [PMID: 37722434 DOI: 10.1016/j.ygeno.2023.110707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/31/2023] [Accepted: 09/16/2023] [Indexed: 09/20/2023]
Abstract
The role of lncRNAs in the regeneration of fibrotic liver is unclear. To address this issue, we established a 70% hepatectomy model of liver fibrosis in mice, used high-throughput sequencing technology to obtain the expression profiles of lncRNAs, miRNAs, and mRNAs, and constructed a lncRNA-miRNA-mRNA regulatory network. A total of 1329 lncRNAs, 167 miRNAs, and 6458 mRNAs were differentially expressed. On this basis, a lncRNA-miRNA-mRNA ceRNA regulatory network consisting of 38 DE lncRNAs, 24 DE miRNAs, and 299 DE mRNAs was constructed, and a transcription factor (TF) - mRNA regulatory network composed of 20 TFs and 98 DE mRNAs was built. Through the protein network analysis, a core protein interaction network composed of 20 hub genes was derived. Furthermore, Xist/miR-144-3p/Cdc14b and Snhg3/miR-365-3p/Map3k14 axes in the ceRNA regulatory network were verified by Real-Time quantitative PCR. Therefore, we concluded that these new insights may further our understanding of liver regeneration.
Collapse
Affiliation(s)
- Xiao-Ming Dai
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhang-Tao Long
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Feng-Feng Zhu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hua-Jian Li
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhi-Qiang Xiang
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ya-Chen Wu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hao Liang
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qian Wang
- The First Affiliated Hospital, Department of Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhu Zhu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Education and Training, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
9
|
Chen L, Kang X, Meng X, Huang L, Du Y, Zeng Y, Liao C. MALAT1-mediated EZH2 Recruitment to the GFER Promoter Region Curbs Normal Hepatocyte Proliferation in Acute Liver Injury. J Clin Transl Hepatol 2023; 11:97-109. [PMID: 36406327 PMCID: PMC9647095 DOI: 10.14218/jcth.2021.00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/12/2021] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS The goal of this study was to investigate the mechanism by which the long noncoding RNA MALAT1 inhibited hepatocyte proliferation in acute liver injury (ALI). METHODS Lipopolysaccharide (LPS) was used to induce an ALI cellular model in HL7702 cells, in which lentivirus vectors containing MALAT1/EZH2/GFER overexpression or knockdown were introduced. A series of experiments were performed to determine their roles in liver injury, oxidative stress injury, and cell biological processes. The interaction of MALAT1 with EZH2 and enrichment of EZH2 and H3K27me3 in the GFER promoter region were identified. Rats were treated with MALAT1 knockdown or GFER overexpression before LPS induction to verify the results derived from the in vitro assay. RESULTS MALAT1 levels were elevated and GFER levels were reduced in ALI patients and the LPS-induced cell model. MALAT1 knockdown or GFER overexpression suppressed cell apoptosis and oxidative stress injury induced cell proliferation, and reduced ALI. Functionally, MALAT1 interacted directly with EZH2 and increased the enrichment of EZH2 and H3K27me3 in the GFER promoter region to reduce GFER expression. Moreover, MALAT1/EZH2/GFER was activated the AMPK/mTOR signaling pathway. CONCLUSION Our study highlighted the inhibitory role of reduced MALAT1 in ALI through the modulation of EZH2-mediated GFER.
Collapse
Affiliation(s)
- Li Chen
- Department of Infectious Diseases, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Correspondence to: Li Chen, Department of Infectious Diseases, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan 410013, China. ORCID: https://orcid.org/0000-0003-2385-2858. Tel: +86-13755192409, E-mail:
| | - Xintong Kang
- Department of Hepatology, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Xiujuan Meng
- Hospital-Acquired Infection Control Center, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Liang Huang
- Department of Hepatology, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Yiting Du
- Department of Emergency, Chengdu Women’s and Children’s Central Hospital, Chengdu, Sichuan, China
| | - Yilan Zeng
- Department of Hepatology, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Chunfeng Liao
- Department of Cardiovascular Medicine, The First Hospital of Changsha, Changsha, Hunan, China
| |
Collapse
|
10
|
Hao L, Wu W, Xu Y, Chen Y, Meng C, Yun J, Wang X. LncRNA-MALAT1: A Key Participant in the Occurrence and Development of Cancer. Molecules 2023; 28:molecules28052126. [PMID: 36903369 PMCID: PMC10004581 DOI: 10.3390/molecules28052126] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
LncRNAs are a group of non-coding RNA transcripts with lengths of over 200 nucleotides and can interact with DNA, RNA, and proteins to regulate gene expression of malignant tumors in human tissues. LncRNAs participate in vital processes, such as chromosomal nuclear transport in the cancerous site of human tissue, activation, and the regulation of proto-oncogenes, the differentiation of immune cells, and the regulation of the cellular immune system. The lncRNA metastasis-associated lung cancer transcript 1 (MALAT1) is reportedly involved in the occurrence and development of many cancers and serves as a biomarker and therapeutic target. These findings highlight its promising role in cancer treatment. In this article, we comprehensively summarized the structure and functions of lncRNA, notably the discoveries of lncRNA-MALAT1 in different cancers, the action mechanisms, and the ongoing research on new drug development. We believe our review would serve as a basis for further research on the pathological mechanism of lncRNA-MALAT1 in cancer and provide evidence and novel insights into its application in clinical diagnoses and treatments.
Collapse
Affiliation(s)
- Longhui Hao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenzheng Wu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yankun Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yufan Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chengzhen Meng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jingyi Yun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaoyu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence:
| |
Collapse
|
11
|
Zhao NN, Yu XD, Tian X, Xu Q, Zhang CY. Mix-and-Detection Assay with Multiple Cyclic Enzymatic Repairing Amplification for Rapid and Ultrasensitive Detection of Long Noncoding RNAs in Breast Tissues. Anal Chem 2023; 95:3082-3088. [PMID: 36692970 DOI: 10.1021/acs.analchem.2c05353] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Long noncoding RNAs (lncRNAs) are valuable biomarkers and therapeutic targets, and they play essential roles in various pathological and biological processes. So far, the reported lncRNA assays usually suffer from unsatisfactory sensitivity and time-consuming procedures. Herein, we develop a mix-and-read assay based on multiple cyclic enzymatic repairing amplification (ERA) for sensitive and rapid detection of mammalian metastasis-associated lung adenocarcinoma transcript 1 (lncRNA MALAT1). In this assay, we design two three-way junction (3WJ) probes including a 3WJ template and a 3WJ primer to specifically recognize lncRNA MALAT1, and the formation of a stable 3WJ structure induces cyclic ERA to generate triggers. The resulting triggers subsequently hybridize with a free 3WJ template and act as primers to initiate new rounds of cyclic ERA, generating abundant triggers. The hybridization of triggers with signal probes forms stable double-stranded DNA duplexes that can be specifically cleaved by apurinic/apyrimidinic endonuclease 1 to produce a high fluorescence signal. This assay can be carried out in a mix-and-read manner within 10 min under an isothermal condition (50 °C), which is the rapidest and simplest method reported so far for the lncRNA MALAT1 assay. This method can sensitively detect lncRNA MALAT1 with a limit of detection of 0.87 aM, and it can accurately measure endogenous lncRNA MALAT1 at the single-cell level. Moreover, this method can distinguish lncRNA MALAT1 expression in breast cancer patient tissues and their corresponding healthy adjacent tissues. Importantly, the extension of this assay to different RNAs detection can be achieved by simply replacing the corresponding target recognition sequences.
Collapse
Affiliation(s)
- Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiao-Di Yu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiaorui Tian
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
12
|
Roohaninasab M, Yavari SF, Babazadeh M, Hagh RA, Pazoki M, Amrovani M. Evaluating the Role of lncRNAs in the Incidence of Cardiovascular Diseases in Androgenetic Alopecia Patients. Cardiovasc Toxicol 2022; 22:603-619. [PMID: 35507254 DOI: 10.1007/s12012-022-09742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022]
Abstract
Hair loss occurs in patients with Androgenetic Alopecia (AGA). The pattern of hair loss is different between men and women. The main cause of hair loss is increased cell apoptosis and decreased regeneration, proliferation and differentiation processes in hair follicles. Long Non-Coding RNAs (lncRNAs) are one of the most important molecules that regulate the processes of apoptosis, regeneration, proliferation and differentiation in hair follicles. Since studies have shown that lncRNAs can be effective in the development of cardiotoxicity and induction of cardiovascular disease (CVD); so effective lncRNAs in the regulation of regeneration, proliferation, differentiation and apoptosis of hair follicles can be involved in the development of CVD in AGA patients with. Therefore, this study investigated the lncRNAs involved in increasing apoptosis and reducing the processes of regeneration, proliferation and differentiation of hair follicles. The aim of the current study was to evaluate the role of lncRNAs as a risk factor in the incidence of CVD in AGA patients; it will help to design treatment strategies by targeting signaling pathways without any cardiotoxicity complications.
Collapse
Affiliation(s)
- Masoumeh Roohaninasab
- Department of Dermatology, Rasool Akram Medical Complex, Iran University of Medical Sciences, Sattarkhan St, Tehran, 1445613131, Iran
| | - Shadnaz Fakhteh Yavari
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran.,Parvaz Research Ideas Supporter Institute, Tehran, Iran
| | - Motahareh Babazadeh
- Department of Dermatology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mahboubeh Pazoki
- Department of Cardiology, Rasoul Akram General Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehran Amrovani
- High Institute for Education and Research in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|
13
|
Xu W, Du X, Li J, Zhang Z, Ma X, Luo D, Xiao M, Sun Q. SiNiSan alleviates liver injury by promoting hepatic stem cell differentiation via Wnt/β-catenin signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153969. [PMID: 35183930 DOI: 10.1016/j.phymed.2022.153969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/11/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND SiNiSan, a Traditional Chinese Medicine containing Radix Bupleuri, Radix Paeoniae Alba, Fructus Aurantii Immaturus, and Radix Glycyrrhizae, has been shown to be clinically effective in treating liver damage, its underlying molecular mechanisms however remains unclear. PURPOSE The aim of the current study was to understand the molecular mechanisms of SiNiSan in the treatment of liver damage utilizing mice and cell culture models. METHODS Here, mice were gavaged with 0.2% CCl4 to obtain acute liver injury model and with alcohol to obtain chronic liver injury model. H&E staining was performed to detect liver histomorphology. HPLC-MS was performed to analyze the composition of SiNiSan decoction and SiNiSan-medicated serum (SMS). In addition, western blots were done to analyze the representative protein expression in Wnt/β-catenin signaling. Immunofluorescence staining was done to analyze the protein levels in WB-F344 cells. Finally, in an attempt to measure the influence of SiNiSan on liver regeneration in rats, we constructed a rats partial hepatectomy models. RESULTS We demonstrated that SiNiSan treatment mitigated liver damage in mice, as evidenced by the decrease in serum AST and ALT levels, as well as improved liver tissue morphology. HPLC-MS results showed that SMS contained a variety of components from the SiNiSan decoction. Next, our results showed that SMS reduced the expression of α-fetoprotein (AFP) and enhanced the expression of albumin (ALB) and cytokeratin 19 (CK19) in WB-F344 cells. Further, SMS treatment induced the accumulation of β-catenin. After 14 days of SMS treatment, β-catenin protein underwent nuclear translocation and bound to the LEF1 receptor in the nucleus, which regulated c-Myc and Cyclin D1 factors to activate Wnt/β-catenin signaling and promoted differentiation of WB-F344 cells. In addition, we demonstrated that SiNiSan increased liver regeneration in rat hepatectomy. CONCLUSION Collectively, the current study revealed that SiNiSan alleviated the acute liver injury induced by CCl4 as well as the chronic liver damage triggered by alcohol and sucrose in vitro. Concurrently, SMS treatment induced hepatic stem cell differentiation by activating Wnt/β-catenin signaling in vivo. Further study showed that SiNiSan promoted the regeneration of rats liver. The current study provides a theoretical basis for the clinical treatment of liver-related diseases with SiNiSan.
Collapse
Affiliation(s)
- Weidong Xu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China; School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; Hepatic Disease Institute, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
| | - Xia Du
- The Fourth People's Hospital of Zhenjiang, Zhenjiang 212013, China
| | - Jiayao Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhiyi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoyuan Ma
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Dan Luo
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Mingzhong Xiao
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan 430074, China.
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
14
|
Yu S, Cui Z, Zhou J, Wang K, Li Q, Sun H, Hu Z. LINC00265 maintains hepatocyte proliferation during liver regeneration by targeting miRNA-28-5p. Biosci Biotechnol Biochem 2021; 85:528-536. [PMID: 33624782 DOI: 10.1093/bbb/zbaa049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022]
Abstract
Long noncoding RNAs have been implicated in many biological processes, but their roles in liver regeneration still need to be illustrated. Therefore, we aimed to investigate the role of LINC00265 as a pivotal regulator of hepatocyte proliferation during liver regeneration. It was found that LINC00265 is significantly upregulated in rat liver tissues at various time points after 2/3 liver resection. LINC00265 knockdown inhibited hepatocyte proliferation, induced cell apoptosis and led to G2/M phase cell cycle arrestment. In rats subjected to surgery, LINC00265 knockdown decreased liver/body weight ratio, attenuated improvement from liver damage and reduced Ki67 and PCNA expression. Luciferase reporter assays confirmed that miR-28-5p was a direct target of LINC00265, and inhibition of miR-28-5p abolished the effect of LINC00265 knockdown. In summary, LINC00265 might maintain hepatocyte proliferation by targeting miR-28-5p during liver regeneration and should be considered as a promising therapeutic option for hepatocyte regeneration after liver resection.
Collapse
Affiliation(s)
- Sheng Yu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhonglin Cui
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingping Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hang Sun
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhigang Hu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Zhao J, Yu SZ, Cai Q, Ma D, Jiang L, Yang LP, Yu ZY. Identifying the Key Genes in Mouse Liver Regeneration After Partial Hepatectomy by Bioinformatics Analysis and in vitro/ vivo Experiments. Front Genet 2021; 12:670706. [PMID: 34249092 PMCID: PMC8260846 DOI: 10.3389/fgene.2021.670706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background The liver is the only organ that can completely regenerate after various injuries or tissue loss. There are still a large number of gene functions in liver regeneration that have not been explored. This study aimed to identify key genes in the early stage of liver regeneration in mice after partial hepatectomy (PH). Materials and Methods We first analyzed the expression profiles of genes in mouse liver at 48 and 72 h after PH from Gene Expression Omnibus (GEO) database. Gene ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) analysis were performed to identify key genes in liver regeneration. Finally, we validated key genes in vivo and in vitro. Results We identified 46 upregulated genes and 19 downregulated genes at 48 h after PH, and 223 upregulated genes and 40 downregulated genes at 72 h after PH, respectively. These genes were mainly involved in cell cycle, DNA replication, and p53 signaling pathway. Among of these genes, cycle-related genes (Ccna2, Cdkn1a, Chek1, and Mcm5) and Ube2c were highly expressed in the residual liver both at 48 and 72 h after PH. Furthermore, Ube2c knockdown not only caused abnormal expression of Ccna2, Cdkn1a, Chek1, and Mcm5, but also inhibited transition of hepatocytes from G1 to S phase of the cell cycle in vitro. Conclusion Mouse hepatocytes enter the proliferation phase at 48 h after PH. Ube2c may mediate cell proliferation by regulating or partially regulating Ccna2, Cdkn1a, Chek1, and Mcm5.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Shi-Zhe Yu
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Cai
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Duo Ma
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Long Jiang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Ling-Peng Yang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Zhi-Yong Yu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| |
Collapse
|
16
|
Yang Z, Zhang T, Han S, Kusumanchi P, Huda N, Jiang Y, Liangpunsakul S. Long noncoding RNA H19 - a new player in the pathogenesis of liver diseases. Transl Res 2021; 230:139-150. [PMID: 33227504 PMCID: PMC9330166 DOI: 10.1016/j.trsl.2020.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
The liver is a vital organ that controls glucose and lipid metabolism, hormone regulation, and bile secretion. Liver injury can occur from various insults such as viruses, metabolic diseases, and alcohol, which lead to acute and chronic liver diseases. Recent studies have demonstrated the implications of long noncoding RNAs (lncRNAs) in the pathogenesis of liver diseases. These newly discovered lncRNAs have various functions attributing to many cellular biological processes via distinct and diverse mechanisms. LncRNA H19, one of the first lncRNAs being identified, is highly expressed in fetal liver but not in adult normal liver. Its expression, however, is increased in liver diseases with various etiologies. In this review, we focused on the roles of H19 in the pathogenesis of liver diseases. This comprehensive review is aimed to provide useful perspectives and translational applications of H19 as a potential therapeutic target of liver diseases.
Collapse
Affiliation(s)
- Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Ting Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sen Han
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Roudebush Veterans Administration Medical Center, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
17
|
Plekhanov AN, Tovarshinov AI. [Liver regeneration: solved and problem issues]. Khirurgiia (Mosk) 2020:101-106. [PMID: 33210515 DOI: 10.17116/hirurgia2020111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is known that liver is able to restore own dimensions and functional properties in response to various injuries. Despite extensive injuries, liver can preserve functional activity. Analysis of liver regeneration mechanisms allowed us to obtain significant results in the treatment of hepatitis, cirrhosis and liver failure. Liver regeneration processes substantiate the development of hepatocellular cancer following cirrhosis. Modern experimental and clinical data on liver regeneration, as well as current methods of stimulating this process are summarized in the manuscript. Despite significant advances in this issue, there are still many questions in scientific understanding of liver regeneration.
Collapse
Affiliation(s)
- A N Plekhanov
- Buryat State University, Ulan-Ude, Russia.,Irkutsk Research Center of Surgery and Traumatology, Irkutsk, Russia
| | | |
Collapse
|
18
|
Das PK, Asha SY, Abe I, Islam F, Lam AK. Roles of Non-Coding RNAs on Anaplastic Thyroid Carcinomas. Cancers (Basel) 2020; 12:3159. [PMID: 33126409 PMCID: PMC7693255 DOI: 10.3390/cancers12113159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/18/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) remains as one of the most aggressive human carcinomas with poor survival rates in patients with the cancer despite therapeutic interventions. Novel targeted and personalized therapies could solve the puzzle of poor survival rates of patients with ATC. In this review, we discuss the role of non-coding RNAs in the regulation of gene expression in ATC as well as how the changes in their expression could potentially reshape the characteristics of ATCs. A broad range of miRNA, such as miR-205, miR-19a, miR-17-3p and miR-17-5p, miR-618, miR-20a, miR-155, etc., have abnormal expressions in ATC tissues and cells when compared to those of non-neoplastic thyroid tissues and cells. Moreover, lncRNAs, such as H19, Human leukocyte antigen (HLA) complex P5 (HCP5), Urothelial carcinoma-associated 1 (UCA1), Nuclear paraspeckle assembly transcript 1 (NEAT1), etc., participate in transcription and post-transcriptional regulation of gene expression in ATC cells. Dysregulations of these non-coding RNAs were associated with development and progression of ATC by modulating the functions of oncogenes during tumour progression. Thus, restoration of the abnormal expression of these miRNAs and lncRNAs may serve as promising ways to treat the patients with ATC. In addition, siRNA mediated inhibition of several oncogenes may act as a potential option against ATC. Thus, non-coding RNAs can be useful as prognostic biomarkers and potential therapeutic targets for the better management of patients with ATC.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
| | - Saharia Yeasmin Asha
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
| | - Ichiro Abe
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka 818-8502, Japan
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Alfred K. Lam
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
| |
Collapse
|
19
|
Zhang J, Xu L, Wang P, Zheng X, Hu Y, Luo J, Zhang M, Xu M. RNA-seq Used to Explore circRNA Expression and Identify Key circRNAs During the DNA Synthesis Phase of Mice Liver Regeneration. DNA Cell Biol 2020; 39:2059-2076. [PMID: 32960090 DOI: 10.1089/dna.2020.5750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The liver has an excellent capacity for regeneration when faced with external injury and the damage differs from that of other organs in the body. Our aim was to identify the role of circular RNA (circRNA) during the DNA synthesis phase (36 h) of mice liver regeneration. High-throughput RNA sequencing was conducted to explore circRNA and messenger RNA (mRNA) expression in three pairs of mice liver tissue at 0 and 36 h after 2/3 partial hepatectomy. One hundred differentially expressed circRNAs were detected, including 66 upregulated and 34 downregulated circRNAs. We also explored 2483 differentially expressed mRNAs, including 1422 upregulated and 1061 downregulated mRNAs. Gene ontology and Kyoto Encyclopedia of Genes and Genomes indicated that cell cycle regulation, material metabolism, and multiple classical pathways were involved in the DNA synthesis process. A competing endogenous RNA (ceRNA) network containing 5 circRNAs, 28 target genes, and 533 microRNAs (miRNAs) was constructed, and we selected the top 5 miRNAs to map it. Potential key circRNAs were validated with the quantitative real-time PCR technique and their regeneration curves, including consecutive time points, were produced. Finally, a cell counting kit-8 assay on key circRNAs of ceRNA network was performed to further confirm their roles in the DNA synthesis phase of liver regeneration. This study provides a circRNA expression profile for liver regeneration and contributes valuable information for future research.
Collapse
Affiliation(s)
- Jinfu Zhang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Liangliang Xu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Peng Wang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Xiaobo Zheng
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Yitao Hu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Jianchen Luo
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Ming Zhang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Mingqing Xu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| |
Collapse
|
20
|
Burenina OY, Zatsepin TS, Kim EF, Metelin AV, Skvortsov DA, Rubtsova MP, Dontsova OA. Comparative Analysis of Long Noncoding RNA Expression in Human Hepatocyte Cell Lines and Liver. DOKL BIOCHEM BIOPHYS 2020; 493:181-184. [PMID: 32894460 DOI: 10.1134/s1607672920040043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/29/2022]
Abstract
Long noncoding RNAs (lncRNAs) are promising biomarkers and potential targets for liver cancer therapy. Stable hepatocyte lines are used in vitro to investigate functions of lncRNAs which amount in cell fluctuates during carcinogenesis. For the first time we compared gene expression of known lncRNAs in human conditional normal liver cells HepaRG and cancer cell lines Huh7 and HepG2. We showed that relative amounts of these lncRNAs in HepaRG are close to analogous variables measured for liver samples from healthy donors. Obtained data demonstrate exclusive peculiarities of HepaRG and confirm its reasonable application as a model of normal human hepatocytes for studying functions of lncRNAs.
Collapse
Affiliation(s)
- O Y Burenina
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.
| | - T S Zatsepin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biology and Chemistry Department, Moscow State University, Moscow, Russia
| | - E F Kim
- Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - A V Metelin
- Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - D A Skvortsov
- Belozersky Institute of Physico-Chemical Biology and Chemistry Department, Moscow State University, Moscow, Russia.,Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
| | - M P Rubtsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biology and Chemistry Department, Moscow State University, Moscow, Russia
| | - O A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biology and Chemistry Department, Moscow State University, Moscow, Russia
| |
Collapse
|
21
|
Bangru S, Kalsotra A. Cellular and molecular basis of liver regeneration. Semin Cell Dev Biol 2020; 100:74-87. [PMID: 31980376 DOI: 10.1016/j.semcdb.2019.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Recent advances in genetics and genomics have reinvigorated the field of liver regeneration. It is now possible to combine lineage-tracing with genome-wide studies to genetically mark individual liver cells and their progenies and detect precise changes in their genome, transcriptome, and proteome under normal versus regenerative settings. The recent use of single-cell RNA sequencing methodologies in model organisms has, in some ways, transformed our understanding of the cellular and molecular biology of liver regeneration. Here, we review the latest strides in our knowledge of general principles that coordinate regeneration of the liver and reflect on some conflicting evidence and controversies surrounding this topic. We consider the prominent mechanisms that stimulate homeostasis-related vis-à-vis injury-driven regenerative responses, highlight the likely cellular sources/depots that reconstitute the liver following various injuries and discuss the extrinsic and intrinsic signals that direct liver cells to proliferate, de-differentiate, or trans-differentiate while the tissue recovers from acute or chronic damage.
Collapse
Affiliation(s)
- Sushant Bangru
- Departments of Biochemistry and Pathology, University of Illinois, Urbana-Champaign, IL, USA; Cancer Center@ Illinois, University of Illinois, Urbana-Champaign, IL, USA
| | - Auinash Kalsotra
- Departments of Biochemistry and Pathology, University of Illinois, Urbana-Champaign, IL, USA; Cancer Center@ Illinois, University of Illinois, Urbana-Champaign, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL, USA.
| |
Collapse
|
22
|
Zhu Y, Qiu Z, Zhang Y, Li B, Jiang X. Partial hepatectomy‑induced upregulation of SNHG12 promotes hepatocyte proliferation and liver regeneration. Mol Med Rep 2019; 21:1089-1096. [PMID: 31894329 PMCID: PMC7003022 DOI: 10.3892/mmr.2019.10904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Following partial hepatectomy (PH), the complex process of liver regeneration is initiated, which encompasses the synchronized induction of hepatocyte proliferation. Hepatocyte proliferation can be regulated by multiple stimuli, including long non-coding RNAs (lncRNAs) and Wnt/β-catenin signaling, although the underlying mechanism of lncRNA/Wnt in liver regeneration remains unclear. In the present study, a liver regeneration-associated functional lncRNA was identified, and its function was delineated in vitro and in vivo; lncRNA small nucleolar RNA host gene 12 (SNHG12) was revealed to be upregulated at various time-points after 2/3 PH. The expression of SNHG12 was also increased in normal liver cell lines treated with different concentrations of hepatocyte growth factor (HGF). Functionally, SNHG12 enhanced hepatocyte proliferation in vitro and in vivo, and the liver/body weight ratio of SNHG12-overexpressing mice was significantly higher than that of the control mice. Overexpression of SNHG12 promoted the activation of Wnt/β-catenin signaling in hepatocytes. Furthermore, specific inhibition of Wnt/β-catenin signaling significantly attenuated SNHG12-induced hepatocyte proliferation and the affected liver/body weight ratio. Collectively, the results of the present study indicated that SNHG12 contributes to liver regeneration by activating Wnt/β-catenin signaling. Therefore, drugs that regulate the SNHG12/Wnt axis may be beneficial for liver regeneration following PH.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Pathology, Changhai Hospital, Secondary Military Medicine University, Shanghai 200433, P.R. China
| | - Zhiquan Qiu
- Biliary Tract Surgery Department I, Eastern Hepatobiliary Surgery Hospital, Secondary Military Medicine University, Shanghai 200438, P.R. China
| | - Yiliang Zhang
- Department of Medical Genetics, Secondary Military Medicine University, Shanghai 200433, P.R. China
| | - Bin Li
- Biliary Tract Surgery Department I, Eastern Hepatobiliary Surgery Hospital, Secondary Military Medicine University, Shanghai 200438, P.R. China
| | - Xiaoqing Jiang
- Biliary Tract Surgery Department I, Eastern Hepatobiliary Surgery Hospital, Secondary Military Medicine University, Shanghai 200438, P.R. China
| |
Collapse
|
23
|
Shang W, Adzika GK, Li Y, Huang Q, Ding N, Chinembiri B, Rashid MSI, Machuki JO. Molecular mechanisms of circular RNAs, transforming growth factor-β, and long noncoding RNAs in hepatocellular carcinoma. Cancer Med 2019; 8:6684-6699. [PMID: 31523930 PMCID: PMC6826001 DOI: 10.1002/cam4.2553] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
At the heart of hepatocellular carcinoma (HCC) lies disruption of signaling pathways at the level of molecules, genes, and cells. Non‐coding RNAs (ncRNAs) have been implicated in the disease progression of HCC. For instance, dysregulated expression of circular RNAs (circRNAs) has been observed in patients with HCC. As such, these RNAs are potential therapeutic targets and diagnostic markers for HCC. Long non‐coding RNAs (lncRNAs), a type of ncRNA, have also been recognized to participate in the initiation and progression of HCC. Transforming growth factor‐beta (TGF‐β) is another element which is now recognized to play crucial roles in HCC. It has been implicated in many biological processes such as survival, immune surveillance, and cell proliferation. In HCC, TGF‐β promotes disease progression by two mechanisms: an intrinsic signaling pathway and the extrinsic pathway. Through these pathways, it modulates various microenvironment factors such as inflammatory mediators and fibroblasts. An interesting yet‐to‐be resolved concept is whether the HCC‐promoting role of TGF‐β pathways is limited to a subset of HCC patients or it is involved in the whole process of HCC development. This review summarizes recent advancements to highlight the roles of circRNAs, lncRNAs, and TGF‐β in HCC.
Collapse
Affiliation(s)
- Wenkang Shang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | | | - Yujie Li
- Department of Clinical Laboratory, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Qike Huang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ningding Ding
- Department of Neurophysiology and Location Diagnosis, Guangdong 39 Brain Hospital, Guangzhou, Guangdong, China
| | - Bianca Chinembiri
- Physiology Department, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | | |
Collapse
|
24
|
Long non-coding RNAs as regulators of Wnt/β catenin pathway. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Current Research Progress on Long Noncoding RNAs Associated with Hepatocellular Carcinoma. Anal Cell Pathol (Amst) 2019; 2019:1534607. [PMID: 31341758 PMCID: PMC6612982 DOI: 10.1155/2019/1534607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/20/2019] [Accepted: 03/10/2019] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of mortality among cancers. It has been found that long noncoding RNAs (lncRNAs) are involved in many human cancers, including liver cancer. It has been identified that carcinogenic and tumor-suppressing lncRNAs are associated with complex processes in liver cancer. These lncRNAs may participate in a variety of pathological and biological activities, such as cell proliferation, apoptosis, invasion, and metastasis. Here, we review the regulation and function of lncRNA in liver cancer and evaluate the potential of lncRNA as a new goal for liver cancer.
Collapse
|
26
|
Samimi H, Haghpanah V, Irani S, Arefian E, Sohi AN, Fallah P, Soleimani M. Transcript-level regulation of MALAT1-mediated cell cycle and apoptosis genes using dual MEK/Aurora kinase inhibitor "BI-847325" on anaplastic thyroid carcinoma. Daru 2019; 27:1-7. [PMID: 31077090 PMCID: PMC6592994 DOI: 10.1007/s40199-018-0231-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Anaplastic thyroid carcinoma (ATC) is the most lethal malignancy in thyroid carcinomas. Long non-coding RNAs (lncRNAs) are a member of non-coding RNAs, regulating the expression of gene. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is an onco-lncRNA that is overexpressed in several carcinomas including ATC. Evidence showed that MALAT1 has a crucial function in apoptosis, and cell cycle progression. OBJECTIVES In order to take advantage of 3D cell culture system in cancer investigation, we have used a 3D in vitro ATC model to determine the effect of dual MEK/Aurora kinase inhibitor BI-847325 anticancer drug on the fundamental molecular mechanisms of MALAT1-mediated gene regulation in ATC. METHODS In this study, ATC cell lines (C643 and SW1736) were grown in alginate scaffold. Encapsulated cells were treated by BI-847325. Changes in expression of MALAT1, Mcl1, miR-363-3p, and cyclinD1 were measured by qRT-PCR. RESULTS AND CONCLUSION MALAT1 gene expression following BI-847325 treatment was significantly downregulated in C643 and SW1736 cell lines. Reversely, miR-363-3p expression was significantly upregulated by BI-847325 in both ATC cell lines. Mcl1 expression was significantly downregulated after treatment in C643 cell lines. Moreover, the expression of this gene was not significantly reduced following BI-847325 treatment in SW1736 cell line. Additionally, cyclin D1 expression was significantly downregulated after treatment in both ATC cell lines. Altogether, the result of this study was the first report of MALAT1's molecular function in ATC and suggested that BI-847325 which inhibits both MEK and Aurora kinase family could be effective against ATC by regulating the genes involved in cell cycle and apoptosis including MALAT1and its downstream genes. Graphical abstract Schematic representation of the biological role of MALAT1 in cyclin D1, miR-363-3p and Mcl1 gene regulations. Stimulation of receptor tyrosine kinase (RTK) by growth factors (GFs) phosphorylates RAS that subsequently activates RAF. Then, RAF phosphorylates MEK. Consequently, activated MEK phosphorylates ERK downstream effector, leading to the MALAT1 gene expression. MALAT1 is a negative regulator of Mcl1 mRNA by sponging of miR-363-3p. In addition, MALAT1 leads to Axin1 and APC downregulation and Wnt/β-catenin signaling pathway activation. Stable β-catenin translocates from the cytoplasm to the nucleus and promotes cyclin D1 gene expression.
Collapse
Affiliation(s)
- Hilda Samimi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Arefian
- Molecular Virology Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Parviz Fallah
- Department of Laboratory Science, Faculty of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-111, Iran.
| |
Collapse
|
27
|
MALAT1-miR663a negative feedback loop in colon cancer cell functions through direct miRNA-lncRNA binding. Cell Death Dis 2018; 9:857. [PMID: 30154407 PMCID: PMC6113222 DOI: 10.1038/s41419-018-0925-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/03/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022]
Abstract
The lncRNA MALAT1 has multiple biological functions, including influencing RNA processing, miRNA sponging, and cancer development. It is acknowledged that miR663a and its targets are inflammation-related genes frequently deregulated in many cancers. The associations between MALAT1 and miR663a and their target genes remain unknown. In this study, it was found that in colon cancer (CC) cells, MALAT1 and miR663a were reciprocally repressed in cDNA array screening and qRT-PCR analysis. However, MALAT1 was significantly upregulated in CC tissues, and miR663a was significantly downregulated relative to the corresponding surgical margin (SM) tissues. An inverse relationship between MALAT1 and miR663a expression was detected among CC tissue samples (n = 172, r = -0.333, p < 0.0001). The RNA-pulldown results showed MALAT1 lncRNA-miR663a binding. The results of luciferase-reporter analysis further revealed that the MALAT1 7038-7059 nt fragment was the miR663a seed sequence. Both miR663a knockdown and MALAT1 activation alone significantly upregulated the expression levels of miR663a targets, including TGFB1, PIK3CD, P53, P21, and JUND, in the CC cell lines HCT116 and SW480. A positive relationship was also observed between the expression levels of MALAT1 and these miR663a targets in the above 172 CC samples and 160 CC samples in publicly available databases. In addition, reciprocal abolishment of the effects of miR663a overexpression and MALAT1 activation on the proliferation, migration, and invasion of cancer cells was also observed, while miR663a upregulation and MALAT1 activation alone inhibited and promoted the behaviors of these CC cell lines, respectively. All these suggested that, as a competing endogenous lncRNA, MALAT1 maybe a dominant protector for the degradation of miR663a targets. miR663a and MALAT1 may consist of a negative feedback loop to determine their roles in CC development.
Collapse
|
28
|
Lei L, Chen J, Huang J, Lu J, Pei S, Ding S, Kang L, Xiao R, Zeng Q. Functions and regulatory mechanisms of metastasis‐associated lung adenocarcinoma transcript 1. J Cell Physiol 2018; 234:134-151. [PMID: 30132842 DOI: 10.1002/jcp.26759] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Li Lei
- Department of Dermatology, Xiangya Hospital Central South University Changsha Hunan China
- Department of Hunan Key Laboratory of Skin Cancer and Psoriasis Xiangya Hospital, Central South University Changsha Hunan China
| | - Jing Chen
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Jinhua Huang
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Jianyun Lu
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Shiyao Pei
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Shu Ding
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Liyang Kang
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Rong Xiao
- Department of Dermatology Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Qinghai Zeng
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
29
|
Khayal LA, Grünhagen J, Provazník I, Mundlos S, Kornak U, Robinson PN, Ott CE. Transcriptional profiling of murine osteoblast differentiation based on RNA-seq expression analyses. Bone 2018; 113:29-40. [PMID: 29653293 DOI: 10.1016/j.bone.2018.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/03/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022]
Abstract
Osteoblastic differentiation is a multistep process characterized by osteogenic induction of mesenchymal stem cells, which then differentiate into proliferative pre-osteoblasts that produce copious amounts of extracellular matrix, followed by stiffening of the extracellular matrix, and matrix mineralization by hydroxylapatite deposition. Although these processes have been well characterized biologically, a detailed transcriptional analysis of murine primary calvaria osteoblast differentiation based on RNA sequencing (RNA-seq) analyses has not previously been reported. Here, we used RNA-seq to obtain expression values of 29,148 genes at four time points as murine primary calvaria osteoblasts differentiate in vitro until onset of mineralization was clearly detectable by microscopic inspection. Expression of marker genes confirmed osteogenic differentiation. We explored differential expression of 1386 protein-coding genes using unsupervised clustering and GO analyses. 100 differentially expressed lncRNAs were investigated by co-expression with protein-coding genes that are localized within the same topologically associated domain. Additionally, we monitored expression of 237 genes that are silent or active at distinct time points and compared differential exon usage. Our data represent an in-depth profiling of murine primary calvaria osteoblast differentiation by RNA-seq and contribute to our understanding of genetic regulation of this key process in osteoblast biology.
Collapse
Affiliation(s)
- Layal Abo Khayal
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Johannes Grünhagen
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ivo Provazník
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic; International Clinical Research Center, Center of Biomedical Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Stefan Mundlos
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Uwe Kornak
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Peter N Robinson
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Claus-Eric Ott
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
30
|
Hu X, Jiang J, Xu Q, Ni C, Yang L, Huang D. A Systematic Review of Long Noncoding RNAs in Hepatocellular Carcinoma: Molecular Mechanism and Clinical Implications. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8126208. [PMID: 30105249 PMCID: PMC6076971 DOI: 10.1155/2018/8126208] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) has the second highest mortality rate worldwide among all cancers. Previous studies have revealed the significant involvement of long noncoding RNAs (lncRNAs) in numerous human cancers including HCC. Both oncogenic and tumor repressive lncRNAs have been identified and implicated in the complex process of hepatocarcinogenesis. They can be further explored as prospective diagnostic, prognostic, and therapeutic markers for HCC. An in-depth understanding of lncRNAs' mechanism in HCC is therefore required to fully explore their potential role. In the current review, we will concentrate on the underlying function, molecular mechanisms, and potential clinical implications of lncRNA in HCC.
Collapse
Affiliation(s)
- Xiaoge Hu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jiahong Jiang
- Department of Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310053, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Chao Ni
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Department of General Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Dongsheng Huang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
31
|
Sookoian S, Flichman D, Garaycoechea ME, San Martino J, Castaño GO, Pirola CJ. Metastasis-associated lung adenocarcinoma transcript 1 as a common molecular driver in the pathogenesis of nonalcoholic steatohepatitis and chronic immune-mediated liver damage. Hepatol Commun 2018; 2:654-665. [PMID: 29881817 PMCID: PMC5983147 DOI: 10.1002/hep4.1184] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/17/2018] [Accepted: 03/22/2018] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are functional molecules that orchestrate gene expression. To identify lncRNAs involved in nonalcoholic fatty liver disease (NAFLD) severity, we performed a multiscale study that included: (a) systems biology modeling that indicated metastasis‐associated lung adenocarcinoma transcript 1 (MALAT1) as a candidate lncRNA for exploring disease‐related associations, (b) translational exploration in the clinical setting, and (c) mechanistic modeling. MALAT1 liver profiling was performed in three consecutive phases, including an exploratory stage (liver samples from patients with NAFLD who were morbidly obese [n = 47] and from 13 individuals with normal liver histology); a replication stage (patients with NAFLD and metabolic syndrome [n =49]); and a hypothesis‐driven stage (patients with chronic hepatitis C and autoimmune liver diseases, [n = 65]). Liver abundance of MALAT1 was associated with NAFLD severity (P = 1 × 10–6); MALAT1 expression levels were up‐regulated 1.75‐fold (P = 0.029) and 3.6‐fold (P = 0.012) in patients with nonalcoholic steatohepatitis compared to those diagnosed with simple steatosis (discovery and replication set, respectively; analysis of covariance adjusted by age, homeostasis model assessment, and body mass index). Quantification of liver vascular endothelial growth factor A messenger RNA, a target of MALAT1, revealed a significant correlation between the two RNAs (R, 0.58; P = 5 × 10–8). Increased levels of MALAT1 were also associated with autoimmune liver diseases. Interactome assessment uncovered significant biological pathways, including Janus kinase‐signal transducers and activators of transcription and response to interferon‐γ. Conclusion: Deregulated expression of MALAT1 stratifies patients into the histologic phenotypes associated with NAFLD severity. MALAT1 up‐regulation seems to be a common molecular mechanism in immune‐mediated chronic inflammatory liver damage. This suggests that convergent pathophenotypes (inflammation and fibrosis) share similar molecular mediators. (Hepatology Communications 2018;2:654‐665)
Collapse
Affiliation(s)
- Silvia Sookoian
- University of Buenos Aires, Institute of Medical Research A Lanari Buenos Aires Argentina.,National Scientific and Technical Research Council, University of Buenos Aires-Institute of Medical Research, Department of Clinical and Molecular Hepatology Buenos Aires Argentina
| | - Diego Flichman
- University of Buenos Aires, School of Pharmacy and Biochemistry, Department of Virology-National Scientific and Technical Research Council Buenos Aires Argentina
| | - Martin E Garaycoechea
- Hospital de Alta Complejidad en Red El Cruce, Department of Surgery-Centros de Medicina del Trabajo Florencio Valera Argentina
| | - Julio San Martino
- Hospital Diego Thompson, San Martin, Department of Pathology Buenos Aires Argentina
| | - Gustavo O Castaño
- Hospital Abel Zubizarreta, Department of Medicine and Surgery, Liver Unit Buenos Aires Argentina
| | - Carlos J Pirola
- University of Buenos Aires, Institute of Medical Research A Lanari Buenos Aires Argentina.,Hospital de Alta Complejidad en Red El Cruce, Department of Surgery-Centros de Medicina del Trabajo Florencio Valera Argentina.,National Scientific and Technical Research Council, University of Buenos Aires-Institute of Medical Research, Department of Molecular Genetics and Biology of Complex Diseases Buenos Aires Argentina
| |
Collapse
|
32
|
Comparative regenerative mechanisms across different mammalian tissues. NPJ Regen Med 2018; 3:6. [PMID: 29507774 PMCID: PMC5824955 DOI: 10.1038/s41536-018-0044-5] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 02/08/2023] Open
Abstract
Stimulating regeneration of complex tissues and organs after injury to effect complete structural and functional repair, is an attractive therapeutic option that would revolutionize clinical medicine. Compared to many metazoan phyla that show extraordinary regenerative capacity, which in some instances persists throughout life, regeneration in mammalians, particularly humans, is limited or absent. Here we consider recent insights in the elucidation of molecular mechanisms of regeneration that have come from studies of tissue homeostasis and injury repair in mammalian tissues that span the spectrum from little or no self-renewal, to those showing active cell turnover throughout life. These studies highlight the diversity of factors that constrain regeneration, including immune responses, extracellular matrix composition, age, injury type, physiological adaptation, and angiogenic and neurogenic capacity. Despite these constraints, much progress has been made in elucidating key molecular mechanisms that may provide therapeutic targets for the development of future regenerative therapies, as well as previously unidentified developmental paradigms and windows-of-opportunity for improved regenerative repair.
Collapse
|
33
|
El Khodiry A, Afify M, El Tayebi HM. Behind the curtain of non-coding RNAs; long non-coding RNAs regulating hepatocarcinogenesis. World J Gastroenterol 2018; 24:549-572. [PMID: 29434445 PMCID: PMC5799857 DOI: 10.3748/wjg.v24.i5.549] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers worldwide. HCC is the fifth common malignancy in the world and the second leading cause of cancer death in Asia. Long non-coding RNAs (lncRNAs) are RNAs with a length greater than 200 nucleotides that do not encode proteins. lncRNAs can regulate gene expression and protein synthesis in several ways by interacting with DNA, RNA and proteins in a sequence specific manner. They could regulate cellular and developmental processes through either gene inhibition or gene activation. Many studies have shown that dysregulation of lncRNAs is related to many human diseases such as cardiovascular diseases, genetic disorders, neurological diseases, immune mediated disorders and cancers. However, the study of lncRNAs is challenging as they are poorly conserved between species, their expression levels aren't as high as that of mRNAs and have great interpatient variations. The study of lncRNAs expression in cancers have been a breakthrough as it unveils potential biomarkers and drug targets for cancer therapy and helps understand the mechanism of pathogenesis. This review discusses many long non-coding RNAs and their contribution in HCC, their role in development, metastasis, and prognosis of HCC and how to regulate and target these lncRNAs as a therapeutic tool in HCC treatment in the future.
Collapse
Affiliation(s)
- Aya El Khodiry
- Genetic Pharmacology Research Group, Clinical Pharmacy Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Menna Afify
- Genetic Pharmacology Research Group, Clinical Pharmacy Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Hend M El Tayebi
- Genetic Pharmacology Research Group, Clinical Pharmacy Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
34
|
Salviano-Silva A, Lobo-Alves SC, Almeida RCD, Malheiros D, Petzl-Erler ML. Besides Pathology: Long Non-Coding RNA in Cell and Tissue Homeostasis. Noncoding RNA 2018; 4:ncrna4010003. [PMID: 29657300 PMCID: PMC5890390 DOI: 10.3390/ncrna4010003] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/12/2022] Open
Abstract
A significant proportion of mammalian genomes corresponds to genes that transcribe long non-coding RNAs (lncRNAs). Throughout the last decade, the number of studies concerning the roles played by lncRNAs in different biological processes has increased considerably. This intense interest in lncRNAs has produced a major shift in our understanding of gene and genome regulation and structure. It became apparent that lncRNAs regulate gene expression through several mechanisms. These RNAs function as transcriptional or post-transcriptional regulators through binding to histone-modifying complexes, to DNA, to transcription factors and other DNA binding proteins, to RNA polymerase II, to mRNA, or through the modulation of microRNA or enzyme function. Often, the lncRNA transcription itself rather than the lncRNA product appears to be regulatory. In this review, we highlight studies identifying lncRNAs in the homeostasis of various cell and tissue types or demonstrating their effects in the expression of protein-coding or other non-coding RNA genes.
Collapse
Affiliation(s)
- Amanda Salviano-Silva
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba 81531-980, Caixa Postal 19071, Brazil.
| | - Sara Cristina Lobo-Alves
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba 81531-980, Caixa Postal 19071, Brazil.
| | - Rodrigo Coutinho de Almeida
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba 81531-980, Caixa Postal 19071, Brazil.
| | - Danielle Malheiros
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba 81531-980, Caixa Postal 19071, Brazil.
| | - Maria Luiza Petzl-Erler
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba 81531-980, Caixa Postal 19071, Brazil.
| |
Collapse
|
35
|
Long non-coding RNA MT1DP shunts the cellular defense to cytotoxicity through crosstalk with MT1H and RhoC in cadmium stress. Cell Discov 2018; 4:5. [PMID: 29507753 PMCID: PMC5824791 DOI: 10.1038/s41421-017-0005-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022] Open
Abstract
Metallothioneins (MTs) are known to protect cells against oxidative stress, especially providing protection against cadmium (Cd) toxicity in hepatocytes. There are various gene variants and pseudogenes for MTs; however, there is little understanding on the functions of those non-coding MT members that are known to be expressed as long non-coding RNAs (lncRNAs) nowadays. Different from most protein-coding MT members, MT1DP was here found that remarkably induced to provoke cytotoxicity in hepatocytes in response to Cd treatment. MT1DP exerted such a pro-apoptotic function in Cd-treated hepatocytes through interacting with two partners: RhoC and MT1H. On one hand, MT1DP interacted with RhoC protein to increase the latter’s stability by preventing lysosome-dependent protein degradation. Therefore, upon Cd stress, MT1DP/RhoC complex was quickly reinforced to activate RhoC-CCN1/2-AKT signaling and potentiate Ca2+ influx, leading to enhanced Cd uptake and elevated Cd toxicity. On the other hand, MT1H, a protein-coding member of the MT family with little known function, was found to quickly respond to Cd exposure along with MT1DP. Mechanistically, MT1H and MT1DP were uncovered to mutually protect each other through a reciprocal ceRNA mechanism, building up a positive feedback loop to enforce MT1DP-conducted signaling upon Cd exposure. Moreover, MT1DP was found to contribute much more to the activation of RhoC-CCN1/2-AKT signaling than MT1H. Considered together, we here unveiled a mystery whether a pseudogene within the MT family, MT1DP, has actual biological functions in regulating Cd-induced cellular defense. Our findings unearthed an important role of pseudogene MT1DP in calibrating the cellular machinery to switch the cellular defense to cytotoxicity through crosslinking an interplay between its two partners, namely MT1H and RhoC, under cadmium stress.
Collapse
|