1
|
Xu S, Yang Z, Li L, Cui Y, Chen Z. MiR-497-5p Ameliorates Deep Venous Thrombosis by Facilitating Endothelial Progenitor Cell Migration and Angiogenesis by Regulating LITAF. Biochem Genet 2024:10.1007/s10528-024-10927-x. [PMID: 39432130 DOI: 10.1007/s10528-024-10927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024]
Abstract
Deep vein thrombosis (DVT) is a clinical manifestation of venous thromboembolism and a major global burden of cardiovascular disease. In recent years, the crucial role of microRNAs (miRNAs) in cardiovascular disease has been confirmed. Here, we aimed to investigate the specific effect of miR-497-5p on DVT. The endothelial progenitor cells (EPCs) were obtained from the bone marrow of newborn rats and transfected with miR-497-5p mimics or/and pcDNA3.1/lipopolysaccharide-induced TNF factor (LITAF). The proliferation and migration abilities of EPCs were detected using CCK-8 assay and transwell assay, respectively. Angiogenesis was evaluated using tube formation assay. The interaction of miR-497-5p and LITAF was confirmed by luciferase reporter experiment. DVT rat model in vivo was established by inferior vena cava (IVC) ligation in Sprague-Dawley rats. Histological analysis of IVC tissue was conducted by hematoxylin-eosin staining. We found that enhancing miR-497-5p expression facilitated the abilities of proliferation and migration of EPCs. Additionally, overexpression of miR-497-5p increased the capacity of EPCs to form capillary tubes on Matrigel. LITAF was found to be targeted by miR-497-5p and negatively regulated by miR-497-5p. Overexpression of LITAF counteracted the miR-497-5p overexpression's effect on the proliferation, migration, and angiogenesis abilities of EPCs. Moreover, the injection of agomir-miR-497-5p alleviated thrombus formation, reduced thrombus weight, and reduced the serum level of D-dimer in DVT rat model by reducing LITAF expression. This study suggests that miR-497-5p alleviates DVT by facilitating EPCs proliferation, migration, and angiogenesis by targeting LITAF.
Collapse
Affiliation(s)
- Shuguo Xu
- Interventional and Vascular Surgery Department, Ningde Municipal Hospital of Ningde Normal University, No.7 Jiaocheng North Road, Jiaocheng District, Ningde, 352100, Fujian, China
| | - Zhihong Yang
- Interventional and Vascular Surgery Department, Ningde Municipal Hospital of Ningde Normal University, No.7 Jiaocheng North Road, Jiaocheng District, Ningde, 352100, Fujian, China
| | - Longbiao Li
- Interventional and Vascular Surgery Department, Ningde Municipal Hospital of Ningde Normal University, No.7 Jiaocheng North Road, Jiaocheng District, Ningde, 352100, Fujian, China
| | - Yuansheng Cui
- Interventional and Vascular Surgery Department, Ningde Municipal Hospital of Ningde Normal University, No.7 Jiaocheng North Road, Jiaocheng District, Ningde, 352100, Fujian, China.
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No.26 Shengli Street, Jiang'an District, Wuhan, 430014, China.
| |
Collapse
|
2
|
Sun LL, Liu Z, Ran F, Huang D, Zhang M, Li XQ, Li WD. Non-coding RNAs regulating endothelial progenitor cells for venous thrombosis: promising therapy and innovation. Stem Cell Res Ther 2024; 15:7. [PMID: 38169418 PMCID: PMC10762949 DOI: 10.1186/s13287-023-03621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Venous thromboembolism, which includes deep venous thrombosis (DVT) and pulmonary embolism, is the third most common vascular disease in the world and seriously threatens the lives of patients. Currently, the effect of conventional treatments on DVT is limited. Endothelial progenitor cells (EPCs) play an important role in the resolution and recanalization of DVT, but an unfavorable microenvironment reduces EPC function. Non-coding RNAs, especially long non-coding RNAs and microRNAs, play a crucial role in improving the biological function of EPCs. Non-coding RNAs have become clinical biomarkers of diseases and are expected to serve as new targets for disease intervention. A theoretical and experimental basis for the development of new methods for preventing and treating DVT in the clinic will be provided by studies on the role and molecular mechanism of non-coding RNAs regulating EPC function in the occurrence and development of DVT. To summarize, the characteristics of venous thrombosis, the regulatory role of EPCs in venous thrombosis, and the effect of non-coding RNAs regulating EPCs on venous thrombosis are reviewed. This summary serves as a useful reference and theoretical basis for research into the diagnosis, prevention, treatment, and prognosis of venous thrombosis.
Collapse
Affiliation(s)
- Li-Li Sun
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Zhao Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Feng Ran
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Dian Huang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Ming Zhang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Wen-Dong Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
3
|
Han J, Hao W, Ma Y, Hou Y. MiR-128-3p promotes the progression of deep venous thrombosis through binding SIRT1. Phlebology 2023; 38:540-549. [PMID: 37465926 DOI: 10.1177/02683555231190268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
OBJECTIVES This research aimed to study the effect of microRNA-128-3p (miR-128-3p) on deep venous thrombosis (DVT). METHOD The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Transwell chamber method, and flow cytometry technique were used in the cell experiments. Potential interconnection between miR-128-3p and silent information regulator sirtuin 1 (SIRT1) was revealed by luciferase activity. The concentration of miR-128-3p and mRNA SIRT1 was assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The receiver operating characteristic (ROC) curve was used to test the predictive effect of miR-128-3p in DVT. RESULTS Decreased miR-128-3p expression was beneficial to cell proliferation and migration and inhibited inflammation, apoptosis, and adhesion of human umbilical vein endothelial cells (HUVECs). The impacts of miR-128-3p on HUVECs were achieved by targeting SIRT1. MiR-128-3p was upregulated in patients with DVT, and it was of great significance in differentiating patients with DVT. CONCLUSION Overexpression of miR-128-3p might become a biomarker for patients with DVT.
Collapse
Affiliation(s)
- Jinan Han
- Department of Vascular Surgery, Hulunbuir People's Hospital, Hulunbuir, China
| | - Wanjiang Hao
- Department of Intensive Medicine, Hulunbuir People's Hospital, Hulunbuir, China
| | - Yanping Ma
- Department of General Surgery, Hulunbuir People's Hospital, Hulunbuir, China
| | - Yanqiu Hou
- Department of Hematology, Hulunbuir People's Hospital, Hulunbuir, China
| |
Collapse
|
4
|
Liao Y, Xie J, Qu B. Apolipoprotein L Domain Containing 1 Inhibits Tissue Factor to Impede Thrombus Formation in a Rat Model of Deep Vein Thrombosis via Activating PI3K/Akt Pathway. Ann Vasc Surg 2023; 89:312-321. [PMID: 36272664 DOI: 10.1016/j.avsg.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Deep venous thrombosis (DVT) is one of the major health problems worldwide. Apolipoprotein L domain containing 1 (APOLD1) was reported to be downregulated in DVT. The present study intended to investigate whether APOLD1 affects thrombus formation in a rat model of DVT. METHODS The rat model of DVT was established by inferior vena cava (IVC) stenosis. At 6 hr, 12 hr, 24 hr, and 48 hr after IVC stenosis, the gross IVC with thrombus was dissected and observed. Then, the rats were preinjected with the lentiviral overexpression vector, APOLD1-LVs, 1 hr before IVC stenosis, to evaluate the influence of APOLD1 on thrombosis in rats. The serum levels of D-dimer and TAT as well as the content of TF in IVC tissues were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS IVC stenosis resulted in thrombus formation in rats, increased serum levels of D-dimer and TAT, and decreased APOLD1 expression. APOLD1 overexpression inhibited in vivo thrombosis, reduced serum levels of D-dimer, and downregulated tissue factor (TF) activity and level. APOLD1 overexpression also increased p-PI3K and p-Akt protein levels. CONCLUSIONS APOLD1 suppresses thrombus formation in a rat model of DVT via downregulating TF expression by activating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yonggui Liao
- Department of Vascular Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinfeng Xie
- Department of Vascular Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bihui Qu
- Department of Vascular Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Ni X, Yan J, Hu S, Wang X. MiR-199a target regulates TAB2 to promote the migration of endodermal progenitor cells and inhibit deep vein thrombosis in rats. Minerva Pediatr (Torino) 2023; 75:150-152. [PMID: 36322021 DOI: 10.23736/s2724-5276.22.07092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaolong Ni
- Department of Vascular Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jin Yan
- Department of Vascular Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Sipin Hu
- Department of Vascular Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xiaodong Wang
- Department of Vascular Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China -
| |
Collapse
|
6
|
Wang S, Wang F, Ren J, Yang H. LncRNA NEAT1 Promotes Vascular Endothelial Cell Dysfunction via miR-218-5p/GAB2 and Serves as a Diagnostic Biomarker for Deep Vein Thrombosis. Clin Appl Thromb Hemost 2023; 29:10760296231179447. [PMID: 37321605 DOI: 10.1177/10760296231179447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
OBJECTIVE Deep vein thrombosis (DVT) is a common peripheral disease. This study aimed to elucidate the diagnostic biomarker of lncRNA nuclear-enriched abundant transcript 1 (NEAT1) in the DVT, and explore possible mechanisms in Human umbilical vein endothelial cells (HUVECs). METHODS 101 patients with lower extremity DVT and 82 healthy controls were enrolled. RT-qPCR was designed to resolve the mRNA levels of NEAT1, miR-218-5p, and GAB2. ROC was applied for the diagnosis of DVT. Systemic inflammation (IL-1β, IL-6, and TNF-α) and adhesion factor (SELP, VCAM-1, and ICAM-1) were examined by the ELISA. And cell proliferation, migration, and apoptosis were conducted by the CCK-8, Transwell, flow cytometry assay. The targeting relationship was validated by Dual luciferase reporter and RIP analysis. RESULTS NEAT1 and GAB2 were upregulated in patients with DVT, while miR-218-5p was decreased (P < .01). Serum NEAT1 can identify DVT patients from healthy individuals. NEAT1 was positively correalted with fibrinolysis factors, coagulation factors, and vasoconstrictors. NEAT1 inhibited the proliferation, migration, and promoted apoptosis as well as inflammation and adhesion factors secretion of HUVECs (P < .05), but all were impaired by overexpression of miR-218-5p (P < .05). NEAT1 promoted GAB2 expression in DVT by acting as a sponge for miR-218-5p. CONCLUSION Elevated NEAT1 is a possible DVT diagnostic biomarker, and is implicated in vascular endothelial cell dysfunction via miR-218-5p/GAB2 axis.
Collapse
Affiliation(s)
- Shuping Wang
- Department of Clinical Laboratory, Affiliated Hospital of PanZhiHua University, Panzhihua, China
| | - Fei Wang
- Department of Clinical Laboratory, Affiliated Hospital of PanZhiHua University, Panzhihua, China
| | - Juan Ren
- Department of Clinical Laboratory, Affiliated Hospital of PanZhiHua University, Panzhihua, China
| | - Hongyu Yang
- Department of Clinical Laboratory, Affiliated Hospital of PanZhiHua University, Panzhihua, China
| |
Collapse
|
7
|
Huang J, Wu X, Zhang Q, Yang L, Wan G, Zhang X, Wang Y, Zhao G. Depleted miR-125a-5p Causes Vascular Endothelial Cell Dysfunction in Deep Vein Thrombosis by Targeting Angiopoietin 2. Indian J Hematol Blood Transfus 2023; 39:116-122. [PMID: 36699421 PMCID: PMC9868214 DOI: 10.1007/s12288-022-01572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
Deep vein thrombosis (DVT) is a common and fatal disease with a pathology involving endothelial dysfunction. The present research aimed to address the potential clinical significance of miR-125a-5p in DVT and its effect on the dysfunction of Human umbilical vein endothelial cells (HUVECs). Serum miR-125a-5p levels were measured using RT-qPCR in 88 patients with DVT and 76 healthy controls. ROC was plotted to evaluate the diagnostic potential of miR-125a-5p. Spearman's correlation coefficient was performed to calculate the correlation between miR-125a-5p and clinical indicators. CCK-8, Transwell, and ELISA were employed to verify the effects of cell proliferation, migration, and inflammatory and adhesion molecules. Dual-luciferase reporter assay to analyze potential target for miR-125a-5p. Serum miR-125a-5p was reduced in patients with DVT compared with healthy controls (P < 0.001). ROC showed that miR-125a-5p significantly identified patients with DVT from the healthy controls (AUC = 0.834). Furthermore, serum miR-125a-5p was negatively correlated with inflammatory factors and coagulation factors. In in vitro studies, proliferation and migration of HUVECs were inhibited by suppressed miR-125a-5p, whereas inflammation and adhesion factors were considerably promoted (P < 0.05). Moreover, miR-125-5p directly targeted the 3'UTR of angiopoietin 2 (ANGPT2) and was negatively regulated. Finally, serum ANGPT2 was elevated in patients with DVT and was negatively correlated with serum miR-125a-5p. The current research demonstrated that decreased miR-125a-5p was a novel potential diagnostic biomarker for DVT and that it may be involved in DVT progression by targeting ANGPT2 to regulate endothelial dysfunction.
Collapse
Affiliation(s)
- Jianyuan Huang
- General Surgery (Thyroid Gland/Blood Vessel), The First People’s Hospital of Neijiang, Neijiang, 641099 China
| | - Xinning Wu
- Department of Cardiovascular Medicine, People’s Hospital of Rizhao, Rizhao, 276827 China
| | - Quan Zhang
- Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College, No. 296, Kongtong East Road, Kongtong District, Pingliang, 744000 Gansu China
| | - Lixia Yang
- Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College, No. 296, Kongtong East Road, Kongtong District, Pingliang, 744000 Gansu China
| | - Guozhen Wan
- Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College, No. 296, Kongtong East Road, Kongtong District, Pingliang, 744000 Gansu China
| | - Xiaoqiang Zhang
- Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College, No. 296, Kongtong East Road, Kongtong District, Pingliang, 744000 Gansu China
| | - Ying Wang
- Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College, No. 296, Kongtong East Road, Kongtong District, Pingliang, 744000 Gansu China
| | - Guannan Zhao
- Department of Dermatological, Pingliang Traditional Chinese Medicine Hospital, Pingliang, 744000 Gansu China
| |
Collapse
|
8
|
Integrated bioinformatics analysis identifies microRNA-200a-5p as a new plasma marker in patient with venous thromboembolism. Ann Vasc Surg 2022; 84:354-370. [PMID: 35276351 DOI: 10.1016/j.avsg.2022.02.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/22/2022]
Abstract
AIMS Venous thromboembolism (VTE) is a major global health problem with high incidence and mortality. Vein endothelial cell (VEC) dysfunction is the primary cause of VTE. MicroRNAs (miRNAs) assist in the regulation of VEC functional pathways. Our objective was to identify potential miRNA target genes associated with VTE. MATERIALS AND METHODS To explore the association between mRNAs and miRNAs in VTE, we performed mRNA or miRNA microarray analysis and experiments in vitro. In addition, five online bioinformatics tools identified the target genes of differentially expressed miRNAs, and miRNA-gene network was constructed. As a result, hub miRNA and mRNA were confirmed. Finally, wound healing assay and transwell migration assay were performed to elucidate the effect of hub miRNA in VEC. Luciferase reporter assay and real-time quantitative polymerase chain reaction (RT-qPCR) were performed to decide the role of miRNA in the expression of hub mRNA. RESULTS Screening identified eight overlapping dysregulated genes in patients with VTE, three of which demonstrated significantly decreased expression of miR-200a-5p. Low expression miR-200a-5p in VTE patients is confirmed by ROC analysis (AUC=0.800, P=0.023) and binary logistic regression (OR=0.359, 95% confidence interval: 0.605-0.995). RT-qPCR results showed that miR-200a-5p level was decreased in hypoxia VEC (P=0.038). MiR-200a-5p significantly promoted the migration ability of VEC. The result of Dual-luciferase reporter assay showed that cytochrome coxidaseⅦc(COX7C) directly inhibit the miR-200a-5p expression by binding 5'UTR of miR-200a-5p (P=0.011). CONCLUSIONS We anticipate that miR-200a-5p-COX7C pair might be involved in the progression of VTE. Moreover, miR-200a-5p might be a therapeutic target for VTE.
Collapse
|
9
|
Ding M, Chi G, Li F, Wang B, Shao C, Song W. Up-regulated miR-204-5p promoted the migration, invasion, and angiogenesis of endothelial progenitor cells to enhance the thrombolysis of rats with deep venous thrombosis by targeting SPRED1. Exp Cell Res 2021; 411:112985. [PMID: 34942190 DOI: 10.1016/j.yexcr.2021.112985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 11/28/2022]
Abstract
Deep venous thrombosis (DVT) endangers human health. Endothelial progenitor cells (EPCs) were proven to promote thrombolysis and miR-204-5p was discovered to be low-expressed in DVT patients. This study concentrated on exploring whether miR-204-5p had a regulatory effect on EPCs and DVT. Concretely, the expression of miR-204-5p in DVT patients' blood was detected by qRT-PCR. The target of miR-204-5p was predicted by bioinformatics and verified by dual-luciferase reporter assay. After rat EPCs were isolated, identified, and transfected with miR-204-5p agomiR, antagomiR, or SPRED1 plasmids, the viability, migration, invasion, and tube formation of EPCs were detected by MTT, wound healing, Transwell, and tube formation assays, respectively. MiR-204-5p, SPRED1, p-PI3K, PI3K, p-AKT, AKT, VEGFA, and Ang1 expressions in EPCs were measured by qRT-PCR or Western blot. EPCs transfected with miR-204-5p overexpression lentivirus plasmid were injected into the DVT rat model. The histopathology of the thrombus and the homing of EPCs to thrombus in the DVT rats were observed by hematoxylin-eosin staining and confocal microscopy, respectively. We found that miR-204-5p was low-expressed in DVT patients and SPRED1 was a target gene of miR-204-5p. MiR-204-5p agomiR promoted the viability, migration, invasion, and tube formation of EPCs, the levels of VEGFA and Ang1 and the activation of PI3K/AKT pathway in EPCs, while miR-204-5p antagomiR and SPRED1 worked oppositely. SPRED1 reversed the effect of miR-204-5p agomiR on EPCs. Up-regulated miR-204-5p inhibited thrombosis and promoted EPCs homing to thrombus in DVT rats. Collectively, up-regulated miR-204-5p enhanced the angiogenesis of EPCs and thrombolysis in DVT rats by targeting SPRED1.
Collapse
Affiliation(s)
- Mingchao Ding
- Peripheral Vascular Intervention, Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Haidian District, Beijing, 100049, China.
| | - Guoqing Chi
- Peripheral Vascular Intervention, Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Haidian District, Beijing, 100049, China
| | - Fang Li
- Interventional Operating Room, Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Haidian District, Beijing, 100049, China
| | - Bin Wang
- Peripheral Vascular Intervention, Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Haidian District, Beijing, 100049, China
| | - Changgang Shao
- Peripheral Vascular Intervention, Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Haidian District, Beijing, 100049, China
| | - Wenjie Song
- Peripheral Vascular Intervention, Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Haidian District, Beijing, 100049, China
| |
Collapse
|
10
|
Wen C, Ying Y, Zhao H, Jiang Q, Gan X, Wei Y, Wei J, Huang X. Resistance exercise affects catheter-related thrombosis in rats through miR-92a-3p, oxidative stress and the MAPK/NF-κB pathway. BMC Cardiovasc Disord 2021; 21:440. [PMID: 34530722 PMCID: PMC8444419 DOI: 10.1186/s12872-021-02233-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MiR-92a-3p and oxidative stress are associated with catheter-related thrombosis (CRT). As a kind of physical intervention, resistance exercise can effectively promote blood circulation. In this study, we investigated the roles of miR-92a-3p, oxidative stress and the P38 mitogen-activated protein kinase/nuclear factor-κB (MAPK/NF-κB) pathway in CRT during resistance exercise. METHODS The rat CRT model was used for resistance exercise intervention. Moreover, pathological changes from the right jugular vein to the right auricle were observed under an electron microscope. In addition, reactive oxygen species (ROS) production, malondialdehyde (MDA) activity and heme oxygenase (HO-1) level in rat serum were detected via ELISA. The expression levels of miR-92A-3p and HO-1 in the vascular tissues of the rats were determined via real-time quantitative PCR. Additionally, the expression levels of HO-1, NF-κB P65, p38MAPK and IκBa in the venous tissues of the rats were analysed by Western blot analysis. RESULTS The pathological results showed that the thrombosis incidence rate in the CRT + RE group was lower than that in the CRT group. In the CRT group, the expression levels of ROS and MDA, which are markers related to oxidative stress in serum, significantly increased whilst the expression of HO-1 decreased. In the venous tissue, the expression of miR-92a-3p increased, the level of HO-1 decreased, the levels of p38MAPK and NF-κB p65 significantly increased but that of P-IκBa and IκBa significantly decreased. In the CRT + RE group, after administering the resistance exercise intervention, ROS production and MDA activity in serum significantly decreased, the expression level of HO-1 increased and the expression level of miR-92a-3p in the venous tissues significantly decreased and was negatively correlated with that of HO-1. The levels of p38MAPK and NF-κB p65 significantly decreased but that of P- IκBa and IκBa significantly increased. CONCLUSION Resistance exercise intervention downregulated miR-92a-3p expression, repaired oxidative stress injury and prevented CRT formation.
Collapse
Affiliation(s)
- Cui Wen
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yanping Ying
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Huihan Zhao
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qingjuan Jiang
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiao Gan
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yan Wei
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jiani Wei
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xinxin Huang
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| |
Collapse
|
11
|
Lin Y, Wang L, Ge W, Hui Y, Zhou Z, Hu L, Pan H, Huang Y, Shen B. Multi-omics network characterization reveals novel microRNA biomarkers and mechanisms for diagnosis and subtyping of kidney transplant rejection. J Transl Med 2021; 19:346. [PMID: 34389032 PMCID: PMC8361655 DOI: 10.1186/s12967-021-03025-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Kidney transplantation is an optimal method for treatment of end-stage kidney failure. However, kidney transplant rejection (KTR) is commonly observed to have negative effects on allograft function. MicroRNAs (miRNAs) are small non-coding RNAs with regulatory role in KTR genesis, the identification of miRNA biomarkers for accurate diagnosis and subtyping of KTR is therefore of clinical significance for active intervention and personalized therapy. METHODS In this study, an integrative bioinformatics model was developed based on multi-omics network characterization for miRNA biomarker discovery in KTR. Compared with existed methods, the topological importance of miRNA targets was prioritized based on cross-level miRNA-mRNA and protein-protein interaction network analyses. The biomarker potential of identified miRNAs was computationally validated and explored by receiver-operating characteristic (ROC) evaluation and integrated "miRNA-gene-pathway" pathogenic survey. RESULTS Three miRNAs, i.e., miR-145-5p, miR-155-5p, and miR-23b-3p, were screened as putative biomarkers for KTR monitoring. Among them, miR-155-5p was a previously reported signature in KTR, whereas the remaining two were novel candidates both for KTR diagnosis and subtyping. The ROC analysis convinced the power of identified miRNAs as single and combined biomarkers for KTR prediction in kidney tissue and blood samples. Functional analyses, including the latent crosstalk among HLA-related genes, immune signaling pathways and identified miRNAs, provided new insights of these miRNAs in KTR pathogenesis. CONCLUSIONS A network-based bioinformatics approach was proposed and applied to identify candidate miRNA biomarkers for KTR study. Biological and clinical validations are further needed for translational applications of the findings.
Collapse
Affiliation(s)
- Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Liangliang Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Wenqing Ge
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Yu Hui
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Zheng Zhou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Linkun Hu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Hao Pan
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212 China
| |
Collapse
|
12
|
Su Y, Li Q, Zheng Z, Wei X, Hou P. Identification of genes, pathways and transcription factor-miRNA-target gene networks and experimental verification in venous thromboembolism. Sci Rep 2021; 11:16352. [PMID: 34381164 PMCID: PMC8357955 DOI: 10.1038/s41598-021-95909-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Venous thromboembolism (VTE) is a complex, multifactorial life-threatening disease that involves vascular endothelial cell (VEC) dysfunction. However, the exact pathogenesis and underlying mechanisms of VTE are not completely clear. The aim of this study was to identify the core genes and pathways in VECs that are involved in the development and progression of unprovoked VTE (uVTE). The microarray dataset GSE118259 was downloaded from the Gene Expression Omnibus database, and 341 up-regulated and 8 down-regulated genes were identified in the VTE patients relative to the healthy controls, including CREB1, HIF1α, CBL, ILK, ESM1 and the ribosomal protein family genes. The protein-protein interaction (PPI) network and the transcription factor (TF)-miRNA-target gene network were constructed with these differentially expressed genes (DEGs), and visualized using Cytoscape software 3.6.1. Eighty-nine miRNAs were predicted as the targeting miRNAs of the DEGs, and 197 TFs were predicted as regulators of these miRNAs. In addition, 237 node genes and 4 modules were identified in the PPI network. The significantly enriched pathways included metabolic, cell adhesion, cell proliferation and cellular response to growth factor stimulus pathways. CREB1 was a differentially expressed TF in the TF-miRNA-target gene network, which regulated six miRNA-target gene pairs. The up-regulation of ESM1, HIF1α and CREB1 was confirmed at the mRNA and protein level in the plasma of uVTE patients. Taken together, ESM1, HIF1α and the CREB1-miRNA-target genes axis play potential mechanistic roles in uVTE development.
Collapse
Affiliation(s)
- Yiming Su
- Department of Vascular Surgery, LiuzhouWorker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi Province, China
| | - Qiyi Li
- Department of Vascular Surgery, LiuzhouWorker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi Province, China
| | - Zhiyong Zheng
- Department of Vascular Surgery, LiuzhouWorker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi Province, China
| | - Xiaomin Wei
- Department of Vascular Surgery, LiuzhouWorker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi Province, China
| | - Peiyong Hou
- Department of Vascular Surgery, LiuzhouWorker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi Province, China.
| |
Collapse
|
13
|
Fazzalari A, Basadonna G, Kucukural A, Tanriverdi K, Koupenova M, Pozzi N, Kakuturu J, Friedrich AKU, Korstanje R, Fowler N, Belant JL, Beyer DE, Brooks MB, Dickson EW, Blackwood M, Mueller C, Palesty JA, Freedman JE, Cahan MA. A Translational Model for Venous Thromboembolism: MicroRNA Expression in Hibernating Black Bears. J Surg Res 2021; 257:203-212. [PMID: 32858321 PMCID: PMC11026106 DOI: 10.1016/j.jss.2020.06.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/17/2020] [Accepted: 06/16/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Hibernating American black bears have significantly different clotting parameters than their summer active counterparts, affording them protection against venous thromboembolism during prolonged periods of immobility. We sought to evaluate if significant differences exist between the expression of microRNAs in the plasma of hibernating black bears compared with their summer active counterparts, potentially contributing to differences in hemostasis during hibernation. MATERIALS AND METHODS MicroRNA sequencing was assessed in plasma from 21 American black bears in summer active (n = 11) and hibernating states (n = 10), and microRNA signatures during hibernating and active state were established using both bear and human genome. MicroRNA targets were predicted using messenger RNA (mRNA) transcripts from black bear kidney cells. In vitro studies were performed to confirm the relationship between identified microRNAs and mRNA expression, using artificial microRNA and human liver cells. RESULTS Using the bear genome, we identified 15 microRNAs differentially expressed in the plasma of hibernating black bears. Of these microRNAs, three were significantly downregulated (miR-141-3p, miR-200a-3p, and miR-200c-3p), were predicted to target SERPINC1, the gene for antithrombin, and demonstrated regulatory control of the gene mRNA expression in cell studies. CONCLUSIONS Our findings suggest that the hibernating black bears' ability to maintain hemostasis and achieve protection from venous thromboembolism during prolonged periods of immobility may be due to changes in microRNA signatures and possible upregulation of antithrombin expression.
Collapse
Affiliation(s)
- Amanda Fazzalari
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts; The Stanley J. Dudrick Department of Surgery, Saint Mary's Hospital, Waterbury, Connecticut
| | - Giacomo Basadonna
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Alper Kucukural
- Bioinformatics Core, University of Massachusetts Medical School, Worcester, Massachusetts; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Kahraman Tanriverdi
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Milka Koupenova
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Natalie Pozzi
- The Stanley J. Dudrick Department of Surgery, Saint Mary's Hospital, Waterbury, Connecticut
| | - Jahnavi Kakuturu
- The Stanley J. Dudrick Department of Surgery, Saint Mary's Hospital, Waterbury, Connecticut
| | | | - Ron Korstanje
- The Korstanje Lab, The Jackson Laboratory, Bar Harbor, Maine
| | - Nicholas Fowler
- Camp Fire Program in Wildlife Conservation, State University of New York College of Environmental Science and Forestry, Syracuse, New York
| | - Jerrold L Belant
- Camp Fire Program in Wildlife Conservation, State University of New York College of Environmental Science and Forestry, Syracuse, New York
| | - Dean E Beyer
- Department of Fisheries and Wildlife, College of Agriculture & Natural Resources, Michigan State University, East Lansing, Michigan; Michigan Department of Natural Resources, Marquette, Michigan
| | - Marjory B Brooks
- Comparative Coagulation Section, Cornell University Animal Health Diagnostic Center, Ithaca, New York
| | - Eric W Dickson
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Meghan Blackwood
- Mueller Lab for Gene Therapy, Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Chris Mueller
- Mueller Lab for Gene Therapy, Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - J Alexander Palesty
- The Stanley J. Dudrick Department of Surgery, Saint Mary's Hospital, Waterbury, Connecticut
| | - Jane E Freedman
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Mitchell A Cahan
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
14
|
MiR-143-3p targets ATG2B to inhibit autophagy and promote endothelial progenitor cells tube formation in deep vein thrombosis. Tissue Cell 2020; 67:101453. [PMID: 33130456 DOI: 10.1016/j.tice.2020.101453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 11/23/2022]
Abstract
Deep vein thrombosis (DVT) is a common disease in vascular surgery. In recent study, microRNA (miRNA) plays a regulatory role in function of Endothelial progenitor cells (EPCs), which showed promising therapeutic choice for DVT. However, the function of miR-143-3p in EPCs remains incomplete. Flow cytometry was used to identify EPCs surface markers. Cell viability, migration, invasion and tube formation of EPCs were detected by 3-[4,5-dimethylthylthiazol-2-yl]-2,5 diphenyltetrazolium broide (MTT), wound healing, transwell and tube formation assay, respectively. TargetScan was used to predict miR-143-3p targeting genes. Dual-luciferase report assay was used to verify the interactions between miR-143-3p and autophagy-related 2B (ATG2B). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to examine the mRNA expression levels of ATG2B and miR-143-3p. Western blot was used to examine the protein expression levels of ATG2B, LC3 and p62. The cultured EPCs showed cobblestone morphology and were identified by cell surface markers. Overexpression of miR-143-3p enhanced the viability, migration, invasion and tube formation of EPCs, but low expression of miR-143-3p obtained the reverse results. ATG2B directly bound to miR-143-3p. Overexpression of miR-143-3p reduced the expression of ATG2B, but low expression of miR-143-3p increased. Overexpression of miR-143-3p decreased the expression of LC3I/II, but increased the expression of p62. Overexpression of ATG2B reversed the above-mentioned effects of EPCs which regulated by overexpression of miR-143-3p. MiR-143-3p targets ATG2B to modulate the function of EPCs and recanalization and resolution of DVT.
Collapse
|
15
|
Liu H, Lu Z, Lin B, Zhan JY, Gui S, Chen W, Tang P, Li P, Yang W, Lin B. Inferior vena cava stenosis-induced deep vein thrombosis is influenced by multiple factors in rats. Biomed Pharmacother 2020; 128:110270. [DOI: 10.1016/j.biopha.2020.110270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 01/04/2023] Open
|
16
|
Zhang Y, Miao X, Zhang Z, Wei R, Sun S, Liang G, Li H, Chu C, Zhao L, Zhu X, Guo Q, Wang B, Li X. miR-374b-5p is increased in deep vein thrombosis and negatively targets IL-10. J Mol Cell Cardiol 2020; 144:97-108. [DOI: 10.1016/j.yjmcc.2020.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023]
|
17
|
Jankowska KI, Sauna ZE, Atreya CD. Role of microRNAs in Hemophilia and Thrombosis in Humans. Int J Mol Sci 2020; 21:ijms21103598. [PMID: 32443696 PMCID: PMC7279366 DOI: 10.3390/ijms21103598] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNA) play an important role in gene expression at the posttranscriptional level by targeting the untranslated regions of messenger RNA (mRNAs). These small RNAs have been shown to control cellular physiological processes including cell differentiation and proliferation. Dysregulation of miRNAs have been associated with numerous diseases. In the past few years miRNAs have emerged as potential biopharmaceuticals and the first miRNA-based therapies have entered clinical trials. Our recent studies suggest that miRNAs may also play an important role in the pathology of genetic diseases that are currently considered to be solely due to mutations in the coding sequence. For instance, among hemophilia A patients there exist a small subset, with normal wildtype genes; i.e., lacking in mutations in the coding and non-coding regions of the F8 gene. Similarly, in many patients with missense mutations in the F8 gene, the genetic defect does not fully explain the severity of the disease. Dysregulation of miRNAs that target mRNAs encoding coagulation factors have been shown to disturb gene expression. Alterations in protein levels involved in the coagulation cascade mediated by miRNAs could lead to bleeding disorders or thrombosis. This review summarizes current knowledge on the role of miRNAs in hemophilia and thrombosis. Recognizing and understanding the functions of miRNAs by identifying their targets is important in identifying their roles in health and diseases. Successful basic research may result in the development and improvement of tools for diagnosis, risk evaluation or even new treatment strategies.
Collapse
Affiliation(s)
- Katarzyna I. Jankowska
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Zuben E. Sauna
- OTAT/DPPT/HB in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Chintamani D. Atreya
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
- Correspondence:
| |
Collapse
|
18
|
Ou M, Zhang Y, Cui S, Zhao S, Tu J. Upregulated MiR-9-5p Protects Against Inflammatory Response in Rats with Deep Vein Thrombosis via Inhibition of NF-κB p50. Inflammation 2020; 42:1925-1938. [PMID: 31463646 DOI: 10.1007/s10753-019-01031-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recently, microRNAs (miRNAs) have been demonstrated to play important roles in the cardiovascular system, including heart, blood vessels, plasma, and vascular diseases. Deep vein thrombosis (DVT) refers to the formation of blood clot in the deep veins of the human body and is a common peripheral vascular disease. Herein, we explored the mechanism of miR-9-5p in DVT through nuclear factor-κB (NF-κB). The expression of miR-9-5p in DVT rats was measured through the establishment of DVT rat models, followed by the alteration of miR-9-5p and NF-κB p50 in rats through the injection of constructed lentiviral vectors so as to explore the role of miR-9-5p and NF-κB p50 expression in rats. Next, the expression of NF-κB p50 and levels of inflammation-related factors plasminogen activator inhibitor-1 (PAI-1), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and interleukin-8 (IL-8) were measured after the injection with lentiviral vectors, followed by the assessment of platelet aggregation and TXB2 content. MiR-9-5p was found to be downregulated in DVT rats. Through dual luciferase reporter gene assay, NF-κB p50 was verified as the target gene of miR-9-5p and miR-9-5p could negatively regulate NF-κB p50. MiR-9-5p over-expression decreased the levels of PAI-1, TNF-α, IL-6, and IL-8 and platelet aggregation as well as TXB2 content, thus inhibiting thrombosis. Meanwhile, over-expressed NF-κB p50 could reverse the anti-inflammatory or anti-thrombotic effect of miR-9-5p. In summary, miR-9-5p over-expression can suppress the NF-κB signaling pathway through p50 downregulation, thus alleviating inflammation and thrombosis in DVT rats. MiR-9-5p could serve as a potential therapeutic target for DVT.
Collapse
Affiliation(s)
- Minghui Ou
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao, 266011, People's Republic of China
| | - Yunfeng Zhang
- Department of Orthopedics, Qingdao Municipal Hospital, Qingdao, 266011, People's Republic of China
| | - Shichao Cui
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao, 266011, People's Republic of China
| | - Shibo Zhao
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao, 266011, People's Republic of China
| | - Jie Tu
- Science and Education Department, Qingdao Municipal Hospital, No. 1, Jiaozhou Road Shandong Province, Qingdao, 266011, People's Republic of China.
| |
Collapse
|
19
|
Gan X, Zhao H, Wei Y, Jiang Q, Wen C, Ying Y. Role of miR-92a-3p, oxidative stress, and p38MAPK/NF-κB pathway in rats with central venous catheter related thrombosis. BMC Cardiovasc Disord 2020; 20:150. [PMID: 32228467 PMCID: PMC7106664 DOI: 10.1186/s12872-020-01436-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND miR-92a-3p and oxidative stress are reportedly associated with venous thrombosis. However, the role of miR-92a-3p and oxidative stress in catheter-related thrombosis (CRT) remains ambiguous. Herein, we studied the roles of miR-92a-3p, oxidative stress, and p38-mitogen-activated protein kinase/nuclear factor kappa-B (MAPK/NF-κB) pathway in CRT. METHODS Forty-five male rats were randomly and equally divided into control, sham operation, and CRT groups. The rats were sacrificed after 10 days. Reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) levels in the serum were determined by enzyme-linked immunosorbent assay (ELISA). The expression levels of miR-92a-3p, heme oxygenase-1 (HO-1), NF-κB p65, and p38 MAPK in the venous tissues were detected with quantitative polymerase chain reaction (qPCR) and Western blot. RESULTS Thrombosis was observed only in the CRT group. Compared with the levels in the control and sham operation groups, ROS and MDA significantly increased in the CRT group, but SOD significantly decreased. qPCR and Western blot results showed that miR-92a-3p, HO-1, p38 MAPK, and NF-κB p65 expression was significantly upregulated in the venous tissues of the CRT group. Moreover, miR-92a-3p was positively correlated with HO-1, which was positively correlated with p38 MAPK and NF-κB p65. CONCLUSION miR-92a-3p was correlated with oxidative stress in CRT. miR-92a-3p and oxidative stress contributed to endothelial dysfunction and simultaneously was associated with CRT.
Collapse
Affiliation(s)
- Xiao Gan
- Department of Cardiothoracic surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China
| | - Huihan Zhao
- Department of Cardiothoracic surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China
| | - Yan Wei
- Department of Cardiothoracic surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China
| | - Qingjuan Jiang
- Department of Cardiothoracic surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China
| | - Cui Wen
- Department of Cardiothoracic surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China
| | - Yanping Ying
- Department of Cardiothoracic surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China.
| |
Collapse
|
20
|
Rodriguez-Rius A, Lopez S, Martinez-Perez A, Souto JC, Soria JM. Identification of a Plasma MicroRNA Profile Associated With Venous Thrombosis. Arterioscler Thromb Vasc Biol 2020; 40:1392-1399. [PMID: 32160777 DOI: 10.1161/atvbaha.120.314092] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Venous thrombosis (VT) is a complex condition with a highly heritable genetic component that predisposes one to its development. Certain microRNAs (miRNAs) might be used as biomarkers of VT, but few studies have examined miRNA expression in this respect. The aim of the present work was to identify a plasma miRNA profile associated with VT. Approach and Results: miRNAs were analyzed by quantitative polymerase chain reaction in plasma samples from members of the GAIT-2 (Genetic Analysis of Idiopathic Thrombophilia 2) population (n=935). A discovery phase involving the screening of 752 miRNAs from a subset of 104 GAIT-2 subjects was followed by an internal validation phase in which the selected miRNAs were quantified in the whole GAIT-2 population. In the discovery phase, 16 miRNAs were selected, including 9 associated with VT and 7 that correlated with an intermediate phenotype of VT. In the next phase, 4 miRNAs were validated as differentially expressed (false discovery rate, <0.1) in VT: hsa-miR-126-3p, hsa-miR-885-5p, hsa-miR-194-5p, and hsa-miR-192-5p. The 4 miRNAs each returned a significant (P<0.05) odds ratio for VT (range of 1.3-1.8). A risk model including the 4 miRNAs, age, and sex returned an area under the receiver operating characteristic curve of 0.77. Moreover, all 4 miRNAs showed significant correlations with intermediate phenotypes of VT (eg, protein S and factor VII). The targets of the miRNAs in the blood coagulation pathway and their interactions are also discussed. CONCLUSIONS The present results suggest a 4-miRNA plasma profile associated with VT is of potential use in predicting the risk of this condition.
Collapse
Affiliation(s)
- Alba Rodriguez-Rius
- From the Genomics of Complex Diseases Group, Research Institute Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (A.R.-R., S.L., A.M.-P., J.M.S.)
| | - Sonia Lopez
- From the Genomics of Complex Diseases Group, Research Institute Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (A.R.-R., S.L., A.M.-P., J.M.S.)
| | - Angel Martinez-Perez
- From the Genomics of Complex Diseases Group, Research Institute Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (A.R.-R., S.L., A.M.-P., J.M.S.)
| | - Juan Carlos Souto
- Unit of Thrombosis and Hemostasis, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (J.C.S.)
| | - Jose Manuel Soria
- From the Genomics of Complex Diseases Group, Research Institute Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (A.R.-R., S.L., A.M.-P., J.M.S.)
| |
Collapse
|
21
|
Sun S, Chai S, Zhang F, Lu L. Overexpressed microRNA-103a-3p inhibits acute lower-extremity deep venous thrombosis via inhibition of CXCL12. IUBMB Life 2019; 72:492-504. [PMID: 31613419 DOI: 10.1002/iub.2168] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/30/2019] [Indexed: 01/02/2023]
Abstract
Studies have shown that microRNAs (miRNAs) participate in almost all pathological and physiological processes including acute lower-extremity deep venous thrombosis (LEDVT). Here, this study was designed to elucidate the possible function of miR-103a-3p in acute LEDVT. Expression of miR-103a-3p and chemokine C-X-C motif ligand 12 (CXCL12) was initially quantified in plasma collected from 81 LEDVT patients. Then LEDVT mouse models were established by injection with 3% sodium pentobarbital. The interaction between miR-103a-3p and CXCL12 was identified by dual-luciferase reporter gene assay. After gain- and loss-of-function studies, interleukin-6 (IL-6) and IL-8 and tissue factor (TF) levels, and expression of plasminogen activator inhibitors (PAIs), von Willebrand factor (vWF), thromboxane A2 (TH-A2), F4/80, IL-12, Arginase-1 (Arg-1) and CD206 were determined using enzyme-linked immunosorbent assay (ELISA), reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, respectively. miR-103a-3p was downregulated, while CXCL12 was upregulated in patients and mice with LEDVT. miR-103a-3p targets CXCL12 and inhibited its expression. Overexpressed miR-103a-3p or downregulated CXCL12 decreased expression of IL-6, IL-8, TF, PAIs, vWF, TH-A2, M1 markers (IL-6 and IL-12), yet increased expression of M2 markers (Arg-1 and CD206) in LEDVT mice. Additionally, upregulated miR-103a-3p or silencing CXCL12 suppressed thrombosis in LEDVT mice. However, overexpression of CXCL12 reversed the tendency mentioned above. Altogether, miR-103a-3p can potentially downregulate CXCL12 expression to disrupt inflammatory response and thrombosis, ultimately preventing the development of LEDVT. Our findings underscore a possible alternative therapeutic strategy to limit LEDVT.
Collapse
Affiliation(s)
- Shaoliang Sun
- Department of Vascular Surgery, Liaocheng People's Hospital, Liaocheng, People's Republic of China
| | - Shanyi Chai
- Department of General Surgery, Liaocheng Dongchangfu People's Hospital, Liaocheng, People's Republic of China
| | - Feng Zhang
- Department of Vascular Surgery, Liaocheng People's Hospital, Liaocheng, People's Republic of China
| | - Lu Lu
- Department of Chest Cardiovascular Surgery, Liaocheng Gaotang People's Hospital, Liaocheng, People's Republic of China
| |
Collapse
|
22
|
Kim JO, Kim HW, An HJ, Kim OJ, Oh J, Chong SY, Choi WI, Oh D, Kim NK. Association study of miR-146a, miR-149, miR-196a2, and miR-499 polymorphisms with venous thromboembolism in a Korean population. J Thromb Thrombolysis 2019; 47:255-262. [PMID: 30637557 DOI: 10.1007/s11239-018-1778-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Despite much progress in microRNA (miRNA) research, information regarding the association between miRNAs and venous thromboembolism (VTE), especially in Asian patients, remains limited. This case-control study sought to determine the correlation between the presence of polymorphisms in the genes encoding the miRNAs miR-146a, miR-149, miR-196a2, miR-499, and VTE in Korean patients. We observed no statistically significant differences in the genotype frequency of miRNA polymorphisms between 300 control individuals and 203 VTE patients. However, we observed a significant association between three allelic combinations of miRNA polymorphisms and VTE risk. Overall, our findings suggest that specific miRNA polymorphisms are associated with the risk of VTE in a Korean population.
Collapse
Affiliation(s)
- Jung Oh Kim
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, South Korea
| | - Hyun Woo Kim
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, South Korea
| | - Hui Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, South Korea
| | - Ok Joon Kim
- Department of Neurology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam, 13496, South Korea
| | - Jisu Oh
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, South Korea
| | - So Young Chong
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, South Korea
| | - Won-Il Choi
- Department of Internal Medicine, Keimyung University School of Medicine, Keimyung University Dongsan Medical Center, Daegu, South Korea
| | - Doyeun Oh
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, South Korea
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, South Korea.
| |
Collapse
|
23
|
Effect of miR-495 on lower extremity deep vein thrombosis through the TLR4 signaling pathway by regulation of IL1R1. Biosci Rep 2018; 38:BSR20180598. [PMID: 30287499 PMCID: PMC6435557 DOI: 10.1042/bsr20180598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/30/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Lower extremity deep vein thrombosis (LEDVT), a common peripheral vascular disease caused by a blood clot in a deep vein is usually accompanied by swelling of the lower limbs. MicroRNAs (miRs) have been reported to play roles in LEDVT. We aimed to investigate the effect of miR-495 on LEDVT via toll-like receptor 4 (TLR4) signaling pathway through interleukin 1 receptor type 1 (IL1R1). LEDVT mouse model was established, and the femoral vein (FV) tissues were collected to detect expressions of miR-495, IL1R1, and TLR4 signaling-related genes. The expressions of both CD31 and CD34 (markers for endothelial progenitor cells) in the FV endothelial cells as well as the proportion of CD31+/CD34+ cells in peripheral blood were measured in order to evaluate thrombosis. The effect of miR-495 on cell viability, cell cycle, and apoptosis was analyzed. IL1R1 was confirmed as the target gene of miR-495. Besides, inhibiting the miR-495 expression could increase IL1R1 expression along with activating the TLR4 signaling pathway. The total number of the leukocytes along with the ratio of weight to length of thrombus in the FV tissue showed an increase. The overexpression of miR-495 could promote FV endothelial cell viability. By injecting agomiR-495 and antagomiR-495 in vivo, the number of leukocytes in the FV tissues and the ratio of weight to length of thrombus were significantly decreased in the mice injected with the overexpressed miR-495, and the IL1R1/TLR4 signaling pathway was inhibited. Collectively, overexpressed miR-495 directly promotes proliferation while simultaneously inhibiting apoptosis of FV endothelial cells, alleviating FV thrombosis by inhibiting IL1R1 via suppression of TLR4 signaling pathway.
Collapse
|
24
|
Comparison of the serum metabolic signatures based on 1H NMR between patients and a rat model of deep vein thrombosis. Sci Rep 2018; 8:7837. [PMID: 29777128 PMCID: PMC5959905 DOI: 10.1038/s41598-018-26124-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/03/2018] [Indexed: 01/22/2023] Open
Abstract
Deep vein thrombosis (DVT) and pulmonary embolism (PE) have high morbidity, reduce quality of life, and can cause death. Biomarkers or genetic risk factors have not been identified in patients with DVT. In present study, serum of 61 patients suffering from DVT and a rat DVT model (n = 10) were assayed by a proton nuclear magnetic resonance (1H NMR) metabolomics technique combing with multivariate statistical analysis to identify the metabolites. The MetPA platform was used to identify differences in the metabolic pathways between the rat model and patients. The metabolomics results discovered that 11 different metabolites in rats and 20 different metabolites in DVT patients. Seven metabolites both altered in the rats and patients. Moreover, we observed changes in the metabolic pathways, including carbohydrate metabolism, lipid metabolism, and amino acid metabolism that were induced immediately by the thrombosis. Pathway of aminoacyl-tRNA biosynthesis perturbed only in the patients which was associated with the genetic risk factor of DVT. The study demonstrated that serum 1H NMR metabolomics can be used to diagnose DVT in the clinic. The altered pathways related to thrombosis and genetics will provide a foundation and new strategies for understanding the pathological mechanism and pharmacological targets of DVT.
Collapse
|