1
|
Lin R, Lin Y, Wang J, Peng L. Regulation of mouse digestive function, intestinal mucosal barrier function, and inflammatory reaction by lycium barbarum polysaccharide pathway through myosin light chain kinase. Heliyon 2024; 10:e29795. [PMID: 38765174 PMCID: PMC11098784 DOI: 10.1016/j.heliyon.2024.e29795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/21/2024] Open
Abstract
This research investigated the impacts of lycium barbarum polysaccharide (LBP) on the digestive function, intestinal mucosal barrier function, inflammatory response, and myosin light chain kinase (MLCK) signaling pathway in immunosuppressed mice. 70 mg/kg cyclophosphamide was injected into abdomen for the preparation of immune suppression model. Healthy BALB/c mice served as control for the analysis of the differences in gastrointestinal motility and absorptive capacity, intestinal mucosal barrier function, the phagocytic ability of abdominal macrophages, serum immune factor and inflammatory factor levels, and the activation status of the MLCK signaling pathway after continuous gavage with 100 mg/kg LBP. Results revealed a decrease in d-xylose content, phagocytic rate, index of abdominal macrophages, and spleen index in the serum and urine of model mice compared to those of controls. In addition, levels of IgA, IgG, IgM, IL-6 (interleukin-6), IL-12, and interferon-γ (IFN-γ) decreased, while MLCK and myosin light chain (MLC) levels rose (P < 0.01). Versus those in Model group, urine d-xylose content, phagocytic rate, index of abdominal macrophages, spleen index, and the levels of IgA, IgG, IgM, IL-6, IL-12, and IFN-γ of mice undergoing the gavage with LBP increased, while MLCK and p-MLC levels declined (P < 0.05). In conclusion, LBP improved digestive absorption and immune function of immunosuppressed mice and regulated intestinal mucosal barrier immune system by inhibiting MLCK signaling pathway activation.
Collapse
Affiliation(s)
- Runli Lin
- Fuzhou Hushan Medical Research Institute, Hushan Lin's, Fuzhou 350001, Fujian Province, China
| | - Yuehan Lin
- Fuzhou Hushan Medical Research Institute, Hushan Lin's, Fuzhou 350001, Fujian Province, China
| | - Jinhe Wang
- Fuzhou Hushan Medical Research Institute, Hushan Lin's, Fuzhou 350001, Fujian Province, China
| | - LiJuan Peng
- Fuzhou Hushan Medical Research Institute, Hushan Lin's, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
2
|
Bamboo Shoot and Artemisia capillaris Extract Mixture Ameliorates Dextran Sodium Sulfate-Induced Colitis. Curr Issues Mol Biol 2022; 44:5086-5103. [PMID: 36286060 PMCID: PMC9600592 DOI: 10.3390/cimb44100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/28/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract and is characterized by recurrent chronic inflammation and mucosal damage of the gastrointestinal tract. Recent studies have demonstrated that bamboo shoot (BS) and Artemisia capillaris (AC) extracts enhance anti-inflammatory effects in various disease models. However, it is uncertain whether there is a synergistic protective effect of BS and AC in dextran sodium sulfate (DSS)-induced colitis. In the current study, we tested the combined effects of BS and AC extracts (BA) on colitis using in vivo and in vitro models. Compared with control mice, oral administration of DSS exacerbated colon length and increased the disease activity index (DAI) and histological damage. In DSS-induced colitis, treatment with BA significantly alleviated DSS-induced symptoms such as colon shortening, DAI, histological damage, and colonic pro-inflammatory marker expression compared to single extracts (BS or AC) treatment. Furthermore, we found BA treatment attenuated the ROS generation, F-actin formation, and RhoA activity compared with the single extract (BS or AC) treatment in DSS-treated cell lines. Collectively, these findings suggest that BA treatment has a positive synergistic protective effect on colonic inflammation compared with single extracts, it may be a highly effective complementary natural extract mixture for the prevention or treatment of IBD.
Collapse
|
3
|
Chen Y, Chen H, Ding J, Stanton C, Ross RP, Zhao J, Zhang H, Yang B, Chen W. Bifidobacterium longum Ameliorates Dextran Sulfate Sodium-Induced Colitis by Producing Conjugated Linoleic Acid, Protecting Intestinal Mechanical Barrier, Restoring Unbalanced Gut Microbiota, and Regulating the Toll-Like Receptor-4/Nuclear Factor-κB Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14593-14608. [PMID: 34843239 DOI: 10.1021/acs.jafc.1c06176] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study aimed to explore the effects and differences of conjugated linoleic acid (CLA)-producing Bifidobacterium longum on the alleviation of dextran sulfate sodium (DSS)-induced colitis and to explore its patterns. Different B. longum strains were administered at 109 cfu/day 7 days before DSS treatment. B. longum CCFM681 significantly increased goblet cells, mucin2 (MUC2), claudin-3, α-catenin1, and ZO-1, but neither B. longum CCFM760 nor B. longum CCFM642 had those protective effects. Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were downregulated, while IL-10 was upregulated by B. longum CCFM681 but neither by B. longum CCFM760 nor by B. longum CCFM642. Moreover, B. longum CCFM681 treatment inhibited the toll-like receptor-4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway. Furthermore, B. longum CCFM681 treatment rebalanced gut microbiota via regulating the diversity and key microorganisms. Colonic CLA concentrations in mice fed with B. longum CCFM681 were significantly higher than that of DSS-exposed mice, while those in B. longum CCFM760 and B. longum CCFM642 groups showed insignificant difference compared with the DSS group. Moreover, CLA showed a significantly positive correlation with the effectiveness of relieving colitis. B. longum CCFM681 alleviated colitis by protecting the intestinal mechanical barrier, modulating the gut microbiota, and inhibiting the TLR4/NF-κB pathway and associated pro-inflammatory cytokines. These results will help the clinical trials of probiotics and the development of functional products for colitis.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jiuhong Ding
- Department of Anesthesiology, Wuxi Second People's Hospital, Wuxi 214122, Jiangsu, China
| | - Catherine Stanton
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, Jiangsu, China
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12ND89, Ireland
| | - R Paul Ross
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork T12ND89, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, Jiangsu, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute, Wuxi 214122, Jiangsu, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
4
|
Brusatol-Enriched Brucea javanica Oil Ameliorated Dextran Sulfate Sodium-Induced Colitis in Mice: Involvement of NF- κB and RhoA/ROCK Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5561221. [PMID: 34414236 PMCID: PMC8370821 DOI: 10.1155/2021/5561221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/09/2021] [Accepted: 07/28/2021] [Indexed: 01/24/2023]
Abstract
Brucea javanica oil (BJO) is beneficial for the treatment of ulcerative colitis (UC), and that quassinoids in particular brusatol are bioactive components. However, it is still uncertain whether or not other components in BJO, such as oleic acid and fatty acids, have an anti-UC effect. The present study is aimed at comparing the anti-UC effects between brusatol-enriched BJO (BE-BJO) and brusatol-free BJO (BF-BJO) and at exploring the effects and mechanisms of BE-BJO on colon inflammation and intestinal epithelial barrier function. Balb/C mice received 3% (wt/vol) DSS for one week to establish the UC model. Different doses of BE-BJO, BF-BJO, or BJO were treated. The result illustrated that BE-BJO alleviated DSS-induced loss of body weight, an increase of disease activity index (DAI), and a shortening of colon, whereas BF-BJO did not have these protective effects. BE-BJO treatment improved the morphology of colon tissue, inhibited the production and release of TNF-α, IFN-γ, IL-6, and IL-1β in the colon tissue, and reversed the decreased expressions of ZO-1, occludin, claudin-1, and E-cadherin induced by DSS but augmented claudin-2 expression. Mechanistically, BE-BJO repressed phosphorylation of NF-κB subunit p65, suppressed RhoA activation, downregulated ROCK, and prevented phosphorylation of myosin light chain (MLC) in DSS-treated mice, indicating that the protective effect of BE-BJO is attributed to suppression of NF-κB and RhoA/ROCK signaling pathways. These findings confirm that brusatol is an active component from BJO in the treatment of UC.
Collapse
|
5
|
Chang D, Luong P, Li Q, LeBarron J, Anderson M, Barrett L, Lencer WI. Small-molecule modulators of INAVA cytosolic condensate and cell-cell junction assemblies. J Cell Biol 2021; 220:212462. [PMID: 34251416 PMCID: PMC8276315 DOI: 10.1083/jcb.202007177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 04/01/2021] [Accepted: 05/26/2021] [Indexed: 01/08/2023] Open
Abstract
Epithelial cells lining mucosal surfaces distinctively express the inflammatory bowel disease risk gene INAVA. We previously found that INAVA has dual and competing functions: one at lateral membranes where it affects mucosal barrier function and the other in the cytosol where INAVA enhances IL-1β signal transduction and protein ubiquitination and forms puncta. We now find that IL-1β–induced INAVA puncta are biomolecular condensates that rapidly assemble and physiologically resolve. The condensates contain ubiquitin and the E3 ligase βTrCP2, and their formation correlates with amplified ubiquitination, suggesting function in regulation of cellular proteostasis. Accordingly, a small-molecule screen identified ROS inducers, proteasome inhibitors, and inhibitors of the protein folding chaperone HSP90 as potent agonists for INAVA condensate formation. Notably, inhibitors of the p38α and mTOR pathways enhanced resolution of the condensates, and inhibitors of the Rho–ROCK pathway induced INAVA’s competing function by recruiting INAVA to newly assembled intercellular junctions in cells where none existed before.
Collapse
Affiliation(s)
- Denis Chang
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Boston Children's Hospital, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Phi Luong
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Boston Children's Hospital, Boston, MA.,Harvard Digestive Disease Center, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Qian Li
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Boston Children's Hospital, Boston, MA.,Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jamie LeBarron
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Boston Children's Hospital, Boston, MA
| | - Michael Anderson
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Boston Children's Hospital, Boston, MA.,Harvard Digestive Disease Center, Boston, MA
| | - Lee Barrett
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Wayne I Lencer
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Boston Children's Hospital, Boston, MA.,Harvard Digestive Disease Center, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Rho kinase Blockade Ameliorates DSS-Induced Ulcerative Colitis in Mice Through Dual Inhibition of the NF-κB and IL-6/STAT3 Pathways. Inflammation 2021; 43:857-867. [PMID: 31916050 DOI: 10.1007/s10753-019-01171-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel disease (IBD) has received much attention due to its increasing worldwide incidence and potential increased risk of colorectal cancer. The protective function of a Rho-associated protein kinase inhibitor (Y-27632) against 2,4,6-trinitrobenzene sulfonic acid (TNBS) induced mouse colitis has been proven in previous studies, but the concrete therapeutic mechanism of Y-27632 is still not completely illuminated. This current research is intended for further investigation of the effect and mechanism of Y-27632 in a mouse model of acute experimental ulcerative colitis induced by dextran sulfate sodium (DSS). A total of 24 male BALB/c mice were randomly separated into the following three groups (n = 8 per group) and injected intraperitoneally with the corresponding reagents for 7 days: control group (PBS), DSS group (PBS), and Y-27632 group (PBS and Y-27632; 10 mg/kg). Our data indicated that Y-27632 could significantly improve the severity of colitis, as evidenced by the disease activity index (DAI) scores, histological damage, and colon length. Additionally, Y-27632 treatment significantly decreased CD68 and proinflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-17F (IL-17F), and interleukin-6 (IL-6). Furthermore, Y-27632 potently and pleiotropically suppressed nuclear factor-κB (NF-κB) and signal transduction and transcriptional activator 3 (STAT3) activation as well as the activity of prosurvival genes that are dependent on these transcription factors. In summary, the study demonstrates that Y-27632 exerts ameliorative effects on colonic inflammation mediated through dual inhibition of the NF-κB and IL-6/STAT3 pathways and thus is likely to function as a prospective novel treatment for human ulcerative colitis (UC).
Collapse
|
7
|
Chen Y, Yang B, Stanton C, Ross RP, Zhao J, Zhang H, Chen W. Bifidobacterium pseudocatenulatum Ameliorates DSS-Induced Colitis by Maintaining Intestinal Mechanical Barrier, Blocking Proinflammatory Cytokines, Inhibiting TLR4/NF-κB Signaling, and Altering Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1496-1512. [PMID: 33512996 DOI: 10.1021/acs.jafc.0c06329] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study was designed to explore the effects and discrepancy of different CLA-producing Bifidobacterium pseudocatenulatum on relieving colitis and to investigate the potential mechanisms. B. pseudocatenulatum MY40C and CCFM680 were administered to mice with DSS-induced colitis. The content of tight junction proteins and mucin2 was significantly upregulated. TNF-α and IL-6 were downregulated, while IL-10 and PPAR-γ were upregulated. TLR4/NF-κB pathway activation was significantly inhibited. Moreover, each treated strain increased Allobaculum and decreased Sutterella, Bacteroides, and Oscillospira. The colonic conjugated linoleic acid (CLA) concentrations were significantly and positively correlated with the effectiveness of strain in relieving colitis. In conclusion, MY40C and CCFM680 supplementation alleviated DSS-induced colitis by protecting intestinal mechanical barrier, modulating gut microbiota, blocking proinflammatory cytokines, and inhibiting TLR4/NF-κB pathway. These results are conducive to promote clinical trials and product development of probiotics for colitis.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Catherine Stanton
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - R Paul Ross
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
8
|
Zhao H, Sun X, Tong J. Role of ROCK/NF‑κB/AQP8 signaling in ethanol‑induced intestinal epithelial barrier dysfunction. Mol Med Rep 2020; 22:2253-2262. [PMID: 32705263 PMCID: PMC7411333 DOI: 10.3892/mmr.2020.11318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the signaling pathways and the underlying molecular mechanisms involved in ethanol‑induced intestinal epithelial barrier (IEB) dysfunction. Therefore, an in vitro experimental model of IEB was established using an ethanol‑treated Caco‑2 intestinal epithelial cell monolayer. The results confirmed that Rho‑associated kinases (ROCKs), namely ROCK1 and ROCK2, were involved in the underlying pathway of ethanol‑induced IEB dysfunction. Ethanol exposure significantly increased the expression of both ROCK isoforms and the activity of nuclear factor κB (NF‑κB). Furthermore, ROCK1‑ and ROCK2‑specific small interfering RNAs (siRNAs), and the NF‑κB inhibitor ammonium pyrrolidine dithiocarbamate partially inhibited transepithelial electrical resistance in Caco‑2 cells in an in vitro IEB model. In addition, ROCK1‑ and ROCK2‑specific siRNAs inhibited the activity of NF‑κB, thereby downregulating the expression of aquaporin 8 (AQP8). Taken together, the results of the present study suggested that ROCK1/ROCK2‑mediated activation of NF‑κB and upregulation of AQP8 expression levels may represent a novel mechanism of ethanol‑induced impairment of IEB function.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaonan Sun
- Department of Ophthalmology, The 4th People's Hospital of Shenyang, Shenyang, Liaoning 110031, P.R. China
| | - Jing Tong
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
9
|
Jin Y, Blikslager AT. The Regulation of Intestinal Mucosal Barrier by Myosin Light Chain Kinase/Rho Kinases. Int J Mol Sci 2020; 21:ijms21103550. [PMID: 32443411 PMCID: PMC7278945 DOI: 10.3390/ijms21103550] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022] Open
Abstract
The intestinal epithelial apical junctional complex, which includes tight and adherens junctions, contributes to the intestinal barrier function via their role in regulating paracellular permeability. Myosin light chain II (MLC-2), has been shown to be a critical regulatory protein in altering paracellular permeability during gastrointestinal disorders. Previous studies have demonstrated that phosphorylation of MLC-2 is a biochemical marker for perijunctional actomyosin ring contraction, which increases paracellular permeability by regulating the apical junctional complex. The phosphorylation of MLC-2 is dominantly regulated by myosin light chain kinase- (MLCK-) and Rho-associated coiled-coil containing protein kinase- (ROCK-) mediated pathways. In this review, we aim to summarize the current state of knowledge regarding the role of MLCK- and ROCK-mediated pathways in the regulation of the intestinal barrier during normal homeostasis and digestive diseases. Additionally, we will also suggest potential therapeutic targeting of MLCK- and ROCK-associated pathways in gastrointestinal disorders that compromise the intestinal barrier.
Collapse
Affiliation(s)
- Younggeon Jin
- Department of Animal and Avian Sciences, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA;
| | - Anthony T. Blikslager
- Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Correspondence:
| |
Collapse
|
10
|
The In Vitro Protective Role of Bovine Lactoferrin on Intestinal Epithelial Barrier. Molecules 2019; 24:molecules24010148. [PMID: 30609730 PMCID: PMC6337092 DOI: 10.3390/molecules24010148] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/23/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelial barrier plays a key protective role in the gut lumen. Bovine lactoferrin (bLF) has been reported to improve the intestinal epithelial barrier function, but its impact on tight junction (TJ) proteins has been rarely described. Human intestinal epithelial crypt cells (HIECs) were more similar to those in the human small intestine, compared with the well-established Caco-2 cells. Accordingly, both HIECs and Caco-2 cells were investigated in this study to determine the effects of bioactive protein bLF on their growth promotion and intestinal barrier function. The results showed that bLF promoted cell growth and arrested cell-cycle progression at the G2/M-phase. Moreover, bLF decreased paracellular permeability and increased alkaline phosphatase activity and transepithelial electrical resistance, strengthening barrier function. Immunofluorescence, western blot and quantitative real-time polymerase chain reaction revealed that bLF significantly increased the expression of three tight junction proteins-claudin-1, occludin, and ZO-1-at both the mRNA and protein levels, and consequently strengthened the barrier function of the two cell models. bLF in general showed higher activity in Caco-2 cells, however, HIECs also exhibited desired responses to barrier function. Therefore, bLF may be incorporated into functional foods for treatment of inflammatory bowel diseases which are caused by loss of barrier integrity.
Collapse
|