1
|
Liu S, Yan X, Guo J, An H, Li X, Yang L, Yu X, Li S. Periodontal ligament-associated protein-1 knockout mice regulate the differentiation of osteoclasts and osteoblasts through TGF-β1/Smad signaling pathway. J Cell Physiol 2024; 239:e31062. [PMID: 37357387 DOI: 10.1002/jcp.31062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/27/2023]
Abstract
It has been known that periodontal ligament-associated protein-1 (PLAP-1/Asporin) not only inhibits cartilage formation in osteoarthritis, but it also influences the healing of skull defect. However, the effect and mechanism of PLAP-1/Asporin on the mutual regulation of osteoclasts and osteoblasts in periodontitis are not clear. In this study, we utilized a PLAP-1/Asporin gene knockout (KO) mouse model to research this unknown issue. We cultured mouse bone marrow mesenchymal stem cells with Porphyromonas gingivalis lipopolysaccharide (P.g. LPS) for osteogenic induction in vitro. The molecular mechanism of PLAP-1/Asporin in the regulation of osteoblasts was detected by immunoprecipitation, immunofluorescence, and inhibitors of signaling pathways. The results showed that the KO of PLAP-1/Asporin promoted osteogenic differentiation through transforming growth factor beta 1 (TGF-β1)/Smad3 in inflammatory environments. We further found the KO of PLAP-1/Asporin inhibited osteoclast differentiation and promoted osteogenic differentiation through the TGF-β1/Smad signaling pathway in an inflammatory coculture system. The experimental periodontitis model was established by silk ligation and the alveolar bone formation in PLAP-1/Asporin KO mice was promoted through TGF-β1/Smad3 signaling pathway. The subcutaneous osteogenesis model in nude mice also confirmed that the KO of PLAP-1/Asporin promoted bone formation by the histochemical staining. In conclusion, PLAP-1/Asporin regulated the differentiation of osteoclasts and osteoblasts through TGF-β1/Smad signaling pathway. The results of this study lay a theoretical foundation for the further study of the pathological mechanism underlying alveolar bone resorption, and the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xiao Yan
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
- Department of Stomatology, the Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jing Guo
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Hong An
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xingrui Li
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Liying Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xijiao Yu
- Department of Endodontics, Central Laboratory, Jinan Stamotological Hospital, Jinan Key Laboratory of oral tissue regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Jinan, Shandong, China
| | - Shu Li
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| |
Collapse
|
2
|
Sengul F, Vatansev H, Ozturk B. Investigation the effects of bee venom and H-dental-derived mesenchymal stem cells on non-small cell lung cancer cells (A549). Mol Biol Rep 2023; 51:2. [PMID: 38057592 DOI: 10.1007/s11033-023-09002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/13/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Lung cancer, one of the most common oncological diseases worldwide, continues to be the leading cause of cancer-related deaths. The development of new approaches for lung cancer, which still has a low survival rate despite medical advances, is of great importance. METHODS AND RESULTS In this study, bee venom (BV), conditioned medium of MSCs isolated from dental follicles (MSC-CM) and cisplatin were applied at different doses and their effects on A549 cell line were evaluated. Dental follicles were used as a source of MSCs source and differentiation kits, and characterization studies (flow cytometry) were performed. Cell viability was measured by the MTT method and apoptosis was measured by an Annexin V-FITC/PI kit on flow cytometer. IC50 dose values were determined according to the 24th hour and were determined as 15.8 µg/mL for BV, 10.78% for MSC-CM and 5.77 µg/mL for cisplatin. IC50 values found for BV and MSC-CM were also given in combination and the effects were observed. It was found that the applied substances caused BV to decrease in cell viability and induced apoptosis in cells. In addition to the induction of apoptosis in BV, MSC-CM, and combined use, all three applications led to an increase in Bax protein expression and a decrease in Bcl-2 protein expression. The molecular mechanism of anticancer activity through inhibition of Bax and Bcl-2 proteins and the NF-κB signaling pathway may be suggested. CONCLUSION Isolated MSCs in our study showed anticancer activity and BV and MSC-CM showed synergistic antiproliferative and apoptotic effects.
Collapse
Affiliation(s)
- Fatma Sengul
- Department of Biochemistry, Faculty of Pharmacy, University of Adiyaman, Central Classroom C Block Floor:3, 02040, Adiyaman, Turkey.
| | - Husamettin Vatansev
- Department of Medical Biochemistry, Faculty of Medicine, University of Selçuk, Alaeddin Keykubat Campus, 42131, Konya, Turkey
| | - Bahadir Ozturk
- Department of Medical Biochemistry, Faculty of Medicine, University of Selçuk, Alaeddin Keykubat Campus, 42131, Konya, Turkey
| |
Collapse
|
3
|
Xiong R, Geng B, Jiang W, Hu Y, Hu Z, Hao B, Li N, Geng Q. Histone deacetylase 3 deletion in alveolar type 2 epithelial cells prevents bleomycin-induced pulmonary fibrosis. Clin Epigenetics 2023; 15:182. [PMID: 37951958 PMCID: PMC10640740 DOI: 10.1186/s13148-023-01588-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Epithelial mesenchymal transformation (EMT) in alveolar type 2 epithelial cells (AT2) is closely associated with pulmonary fibrosis (PF). Histone deacetylase 3 (HDAC3) is an important enzyme that regulates protein stability by modulating the acetylation level of non-histones. Here, we aimed to explore the potential role and regulatory mechanisms associated with HDAC3 in PF. METHODS We quantified HDAC3 expression both in lung tissues from patients with PF and from bleomycin (BLM)-treated mice. HDAC3 was also detected in TGF-β1-treated AT2. The mechanistic activity of HDAC3 in pulmonary fibrosis and EMT was also explored. RESULTS HDAC3 was highly expressed in lung tissues from patients with PF and bleomycin (BLM)-treated mice, especially in AT2. Lung tissues from AT2-specific HDAC3-deficient mice stimulated with BLM showed alleviative fibrosis and EMT. Upstream of HDAC3, TGF-β1/SMAD3 directly promoted HDAC3 transcription. Downstream of HDAC3, we also found that genetic or pharmacologic inhibition of HDAC3 inhibited GATA3 expression at the protein level rather than mRNA. Finally, we found that intraperitoneal administration of RGFP966, a selective inhibitor of HDAC3, could prevent mice from BLM-induced pulmonary fibrosis and EMT. CONCLUSION TGF-β1/SMAD3 directly promoted the transcription of HDAC3, which aggravated EMT in AT2 and pulmonary fibrosis in mice via deacetylation of GATA3 and inhibition of its degradation. Our results suggest that targeting HDAC3 in AT2 may provide a new therapeutic target for the prevention of PF.
Collapse
Affiliation(s)
- Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Boxin Geng
- Army Medical University, Chongqing, 430038, China
| | - Wenyang Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Yong Hu
- Wuhan Rhegen Biotechnology Co., Ltd., Wuhan, 430073, China
| | - Zhaoyu Hu
- Wuhan Rhegen Biotechnology Co., Ltd., Wuhan, 430073, China
| | - Bo Hao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
4
|
Filidou E, Kandilogiannakis L, Tarapatzi G, Spathakis M, Steiropoulos P, Mikroulis D, Arvanitidis K, Paspaliaris V, Kolios G. Anti-Inflammatory and Anti-Fibrotic Effect of Immortalized Mesenchymal-Stem-Cell-Derived Conditioned Medium on Human Lung Myofibroblasts and Epithelial Cells. Int J Mol Sci 2022; 23:ijms23094570. [PMID: 35562961 PMCID: PMC9102072 DOI: 10.3390/ijms23094570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is caused by progressive lung tissue impairment due to extended chronic fibrosis, and it has no known effective treatment. The use of conditioned media (CM) from an immortalized human adipose mesenchymal stem cell line could be a promising therapeutic strategy, as it can reduce both fibrotic and inflammatory responses. We aimed to investigate the anti-inflammatory and anti-fibrotic effect of CM on human pulmonary subepithelial myofibroblasts (hPSM) and on A549 pulmonary epithelial cells, treated with pro-inflammatory or pro-fibrotic mediators. CM inhibited the proinflammatory cytokine-induced mRNA and protein production of various chemokines in both hPSMs and A549 cells. It also downregulated the mRNA expression of IL-1α, but upregulated IL-1β and IL-6 mRNA production in both cell types. CM downregulated the pro-fibrotic-induced mRNA expression of collagen Type III and the migration rate of hPSMs, but upregulated fibronectin mRNA production and the total protein collagen secretion. CM's direct effect on the chemotaxis and cell recruitment of immune-associated cells, and its indirect effect on fibrosis through the significant decrease in the migration capacity of hPSMs, makes it a plausible candidate for further development towards a therapeutic treatment for IPF.
Collapse
Affiliation(s)
- Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (L.K.); (G.T.); (M.S.); (K.A.); (G.K.)
| | - Leonidas Kandilogiannakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (L.K.); (G.T.); (M.S.); (K.A.); (G.K.)
| | - Gesthimani Tarapatzi
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (L.K.); (G.T.); (M.S.); (K.A.); (G.K.)
| | - Michail Spathakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (L.K.); (G.T.); (M.S.); (K.A.); (G.K.)
| | - Paschalis Steiropoulos
- Department of Pneumonology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Dimitrios Mikroulis
- Department of Cardiac Surgery, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece;
| | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (L.K.); (G.T.); (M.S.); (K.A.); (G.K.)
| | - Vasilis Paspaliaris
- Vasilis Paspaliaris, Tithon Biotech Inc., 11440 West Bernardo Court, Suite 300, San Diego, CA 92127, USA
- Correspondence: ; Tel./Fax: +1-88-8780-2639
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (L.K.); (G.T.); (M.S.); (K.A.); (G.K.)
| |
Collapse
|
5
|
Xie L, Zeng Y. Therapeutic Potential of Exosomes in Pulmonary Fibrosis. Front Pharmacol 2020; 11:590972. [PMID: 33343360 PMCID: PMC7746877 DOI: 10.3389/fphar.2020.590972] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Pulmonary fibrosis is closely associated with the recruitment of fibroblasts from capillary vessels with damaged endothelial cells, the epithelial mesenchymal transition (EMT) of type II alveolar epithelial cells, and the transformation of fibroblasts to myofibroblasts. Recent studies suggest that EMT is a key factor in the pathogenesis of pulmonary fibrosis, as the disruption of EMT-related effector molecules can inhibit the occurrence and development of PF. With the numerous advancements made in molecular biology in recent years, researchers have discovered that exosomes and their cargos, such as miRNAs, lncRNAs, and proteins, can promote or inhibit the EMT, modulate the transformation of fibroblasts into myofibroblasts, contribute to the proliferation of fibroblasts and promote immunoregulatory and mitochondrial damage during pulmonary fibrosis. Exosomes are key factors regulating the differentiation of bone marrow mesenchymal stem cells (BMSCs) into myofibroblasts. Interestingly, exosomes derived from BMSCs under pathological and physiological conditions may promote or inhibit the EMT of type II alveolar epithelial cells and the transformation of fibroblasts into myofibroblasts to regulate pulmonary fibrosis. Thus, exosomes may become a new direction in the study of drugs for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Zhang Z, Zheng Q, Liu Y, Sun L, Han P, Wang R, Zhao J, Hu S, Zhao X. Human CD133-positive hematopoietic progenitor cells enhance the malignancy of breast cancer cells. BMC Cancer 2020; 20:1158. [PMID: 33243165 PMCID: PMC7690192 DOI: 10.1186/s12885-020-07633-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/12/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Human CD133+ hematopoietic progenitor cells (HPCs) are a specific subset of cells that can regulate tumor malignancy. However, the mechanism by which CD133+ HPCs affect the malignancy of human breast cancer has not been reported. METHODS CD133+ HPCs were isolated and purified from human umbilical cord blood (UCB). We used in vitro culture of MCF-7 and MDA-MB-231 cell lines, and MCF-7 and MDA-MB-231 cells in nude mice to evaluate whether CD133+ HPCs affected the apoptosis, proliferation, invasion and epithelial mesenchymal transition EMT of breast cancer cells. RESULTS Co-culture with CD133+ HPCs, but not UCB CD133- cells, promoted the proliferation of human breast cancer MCF-7 and MDA-MB-231 cells, accompanied by reducing in vitro spontaneous apoptosis. Co-administration of these two lines with CD133+ HPCs significantly enhanced the growth of implanted breast cancer in vivo. Furthermore, co-culture with CD133+ HPCs, enhanced the invasion of breast cancer cells, N-cadherin and Vimentin expression, but reduced E-cadherin expression in breast cancer cells. CONCLUSIONS Our study demonstrated that CD133+ HPCs enhance the malignancy of breast cancer cells by attenuating spontaneous apoptosis and promoting the process of epithelial mesenchymal transition. These findings may provide new insights into the role of human CD133+ HPCs in breast cancer pathogenesis. Therefore, CD133+ HPCs may be a new therapeutic target for inhibiting the progression of breast cancer.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Qinglian Zheng
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yonghui Liu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Lianqing Sun
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Pingping Han
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Rui Wang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jiao Zhao
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Shan Hu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xinhan Zhao
- Department of Medical Oncology, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
7
|
Qiu J, Wang Y, Guo W, Xu L, Mou Y, Cui L, Han F, Sun Y. Role of TGF-β1-mediated epithelial-mesenchymal transition in the pathogenesis of tympanosclerosis. Exp Ther Med 2020; 21:6. [PMID: 33235615 PMCID: PMC7678609 DOI: 10.3892/etm.2020.9438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to explore the role of TGF-β1-mediated epithelial-mesenchymal transition (EMT) in the pathogenesis of tympanosclerosis. Sprague Dawley rats were injected with inactivated Streptococcus pneumoniae suspension to establish a rat model of tympanosclerosis. The rats were sacrificed 8 weeks after the model was established. H&E and von Kossa staining was used to observe the morphological changes of middle ear mucosa. Western blotting was used to detect the expression of TGF-β1 and EMT-associated proteins in the mucosa samples. Middle ear mucosal epithelial cells of rats were collected to establish a primary culture. The cultured cells were stimulated with TGF-β1 and the expression of EMT-associated proteins was detected by western blotting and immunofluorescence. In addition, the cells were treated with TGF-β receptor type I/II inhibitor and the expression level of EMT-associated proteins was detected by western blotting. Sclerotic lesions appeared on 72.4% of tympanic membranes, and marked inflammation, inflammatory cell infiltration and fibrosis were found in the middle ear mucosa of rat models of tympanosclerosis. In middle ear mucosa of rats with tympanosclerosis, the expression of mesenchymal cell markers increased and that of epithelial cell markers decreased compared with the control group. TGF-β1 stimulated the activation of the EMT pathway in middle ear mucosal epithelial cells, resulting in an increased expression of fibronectin and N-cadherin. In addition, a decreased expression level of EMT-associated proteins was observed when TGF-β1 was inhibited. In conclusion, the present study indicated that TGF-β1-mediated EMT may play an important role in the pathogenesis of tympanosclerosis.
Collapse
Affiliation(s)
- Jingjing Qiu
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yanmei Wang
- Department of Blood Purification, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Wentao Guo
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Ling Xu
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yakui Mou
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Limei Cui
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Fengchan Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yan Sun
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
8
|
Functional analysis of miRNAs combined with TGF-β1/Smad3 inhibitor in an intrauterine rat adhesion cell model. Mol Cell Biochem 2020; 470:15-28. [PMID: 32447720 DOI: 10.1007/s11010-020-03741-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023]
Abstract
In this study, we aimed to study the role of miRNAs in intrauterine adhesion (IUA) disease. An IUA cell model was constructed by TGF-β1. Smad3 inhibitor (SIS3) can inhibit the Smad3 signaling pathway and affect the role of TGF-β1; thus, it was used to identify the role of Smad3 and related miRNAs in IUA. Cell number significantly increased in the TGF-β1 group after 72 h and 96 h, respectively, compared with that in the control group (P < 0.05). However, cell proliferation was significantly decreased in the TGF-β1 + SIS3 group (P < 0.0001). Cell apoptosis was increased in the TGF-β1 + SIS3 group compared with that in the TGF-β1 group. Western Blot (WB) analysis suggested that TGF-β1 treatment could effectively increase the expression of α-SMA, COL1, Smad3, and p-Smad3, which could be inhibited by SIS3 treatment. A total of 235 and 530 differentially expressed miRNAs in the TGF-β1 + SIS3 group were significantly up- and downregulated compared with those in the TGF-β1 group, respectively. These differentially expressed miRNAs were enriched in the MAPK and PI3K-AKT pathways. The ten most differentially expressed miRNAs were selected to verify their expressions using quantitative real-time polymerase chain reaction (qPCR). Furthermore, overexpression of rno-miR-3586-3p and rno-miR-455-5p can promote cell proliferation and exacerbate the IUA pathogenic process. However, overexpression of rno-miR-204-3p and rno-miR-3578 can inhibit cell behavior and IUA progression. The above results can provide detailed information for the understanding of IUA molecular mechanisms.
Collapse
|
9
|
Averyanov A, Koroleva I, Konoplyannikov M, Revkova V, Lesnyak V, Kalsin V, Danilevskaya O, Nikitin A, Sotnikova A, Kotova S, Baklaushev V. First-in-human high-cumulative-dose stem cell therapy in idiopathic pulmonary fibrosis with rapid lung function decline. Stem Cells Transl Med 2020; 9:6-16. [PMID: 31613055 PMCID: PMC6954714 DOI: 10.1002/sctm.19-0037] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/18/2019] [Indexed: 12/17/2022] Open
Abstract
Previous phase I studies demonstrated safety and some beneficial effects of mesenchymal stem cells (MSCs) in patients with mild to moderate idiopathic pulmonary fibrosis (IPF). The aim of our study was to evaluate the safety, tolerability, and efficacy of a high cumulative dose of bone marrow MSCs in patients with rapid progressive course of severe to moderate IPF. Twenty patients with forced ventilation capacity (FVC) ≥40% and diffusing capacity of the lung for carbon monoxide (DLCO) ≥20% with a decline of both >10% over the previous 12 months were randomized into two groups: one group received two intravenous doses of allogeneic MSCs (2 × 108 cells) every 3 months, and the second group received a placebo. A total amount of 1.6 × 109 MSCs had been administered to each patient after the study completion. There were no significant adverse effects after administration of MSCs in any patients. In the group of MSC therapy, we observed significantly better improvement for the 6-minute walk distance in 13 weeks, for DLCO in 26 weeks, and for FVC in 39 weeks compared with placebo. FVC for 12 months in the MSCs therapy group increased by 7.8% from baseline, whereas it declined by 5.9% in the placebo group. We did not find differences between the groups in mortality (two patients died in each group) or any changes in the high-resolution computed tomography fibrosis score. In patients with IPF and a rapid pulmonary function decline, therapy with high doses of allogeneic MSCs is a safe and promising method to reduce disease progression.
Collapse
Affiliation(s)
- Alexander Averyanov
- Federal Research and Clinical Center of Federal Medical‐Biologic AgencyMoscowRussia
- Pulmonology Scientific Research Institute under Federal Medical‐Biologic AgencyMoscowRussia
| | - Irina Koroleva
- Federal Research and Clinical Center of Federal Medical‐Biologic AgencyMoscowRussia
| | | | - Veronika Revkova
- Federal Research and Clinical Center of Federal Medical‐Biologic AgencyMoscowRussia
| | - Victor Lesnyak
- Federal Research and Clinical Center of Federal Medical‐Biologic AgencyMoscowRussia
| | - Vladimir Kalsin
- Federal Research and Clinical Center of Federal Medical‐Biologic AgencyMoscowRussia
| | - Olesya Danilevskaya
- Federal Research and Clinical Center of Federal Medical‐Biologic AgencyMoscowRussia
- Pulmonology Scientific Research Institute under Federal Medical‐Biologic AgencyMoscowRussia
| | - Alexey Nikitin
- Federal Research and Clinical Center of Federal Medical‐Biologic AgencyMoscowRussia
- Pulmonology Scientific Research Institute under Federal Medical‐Biologic AgencyMoscowRussia
| | - Anna Sotnikova
- Federal Research and Clinical Center of Federal Medical‐Biologic AgencyMoscowRussia
- Pulmonology Scientific Research Institute under Federal Medical‐Biologic AgencyMoscowRussia
| | - Svetlana Kotova
- Institute for Regenerative MedicineI. M.Sechenov First Moscow State Medical UniversityMoscowRussia
- Semenov Institute of Chemical PhysicsMoscow
| | - Vladimir Baklaushev
- Federal Research and Clinical Center of Federal Medical‐Biologic AgencyMoscowRussia
- Pulmonology Scientific Research Institute under Federal Medical‐Biologic AgencyMoscowRussia
| |
Collapse
|
10
|
Zhang E, Yang Y, Chen S, Peng C, Lavin MF, Yeo AJ, Li C, Liu X, Guan Y, Du X, Du Z, Shao H. Bone marrow mesenchymal stromal cells attenuate silica-induced pulmonary fibrosis potentially by attenuating Wnt/β-catenin signaling in rats. Stem Cell Res Ther 2018; 9:311. [PMID: 30428918 PMCID: PMC6234553 DOI: 10.1186/s13287-018-1045-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/27/2018] [Accepted: 10/14/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pulmonary fibrosis induced by silica dust is an irreversible, chronic, and fibroproliferative lung disease with no effective treatment at present. Previous studies have shown that early intervention with bone marrow mesenchymal stem/stromal cells (BMSCs) has positive effect on anti-pulmonary fibrosis caused by silica dust. However, early intervention using BMSCs is not practical, and the therapeutic effects of BMSCs advanced intervention on pulmonary fibrosis have rarely been reported. In this study, we investigated the effects of advanced transplantation (on the 28th day after exposure to silica suspension) of BMSCs on an established rat model of pulmonary fibrosis. METHODS Sprague Dawley (SD) rats were randomly divided into four groups including (1) control group (n = 6) which were normally fed, (2) silica model group (n = 6) which were exposed to silica suspension (1 mL of 50 mg/mL/rat), (3) BMSC transplantation group (n = 6) which received 1 mL BMSC suspension (2 × 106 cells/mL) by tail vein injection on the 28th day after exposure to silica suspension, and (4) BMSC-CM (conditioned medium) transplantation group (n = 6) which received CM from the same cell number by tail vein injection on the 28th day after exposure to silica suspension. On the 56th day after exposure to silica suspension, we used computed tomography (CT), hematoxylin and eosin (H&E), and Masson's trichrome staining to evaluate the changes in lung tissue. We examined the expression of epithelial-mesenchymal transition (EMT) and Wnt/β-catenin pathway-related proteins in lung tissue using immunohistochemistry and western blotting. RESULTS Successful construction of a pulmonary fibrosis model was confirmed by H&E and Masson's trichrome staining on the 28th day after exposure to silica suspension. On the 56th day after exposure, pulmonary CT examination showed a relieving effect of BMSCs on silica-induced pulmonary fibrosis which was confirmed by H&E and Masson's trichrome staining. Treatment of BMSCs increased the expression of epithelial marker proteins including E-cadherin (E-cad) and cytokeratin19 (CK19) and reduced the expression of fibrosis marker proteins including Vimentin (Vim) and α-Smooth actin (α-SMA) after exposure to silica suspension. Furthermore, we found that Wnt/β-catenin signaling pathway is abnormally activated in silica-induced pulmonary fibrosis, and exogenous transplantation of BMSCs may attenuate their expression. CONCLUSIONS BMSC transplantation inhibits the EMT to alleviate silica-induced pulmonary fibrosis in rats and the anti-fibrotic effect potentially by attenuating Wnt/β-catenin signaling. ᅟ: ᅟ.
Collapse
Affiliation(s)
- Enguo Zhang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Ye Yang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Shangya Chen
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China
| | - Cheng Peng
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.,Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland, Australia
| | - Martin F Lavin
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.,University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Abrey J Yeo
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.,University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Chao Li
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China
| | - Xiaoshan Liu
- Department of Radiology, Shandong Tumor Hospital, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Yingjun Guan
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China
| | - Xinjing Du
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China
| | - Zhongjun Du
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.
| | - Hua Shao
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.
| |
Collapse
|