1
|
Li E, Yan R, Qiao H, Sun J, Zou P, Chang J, Li S, Ma Q, Zhang R, Liao B. Combined transcriptomics and proteomics studies on the effect of electrical stimulation on spinal cord injury in rats. Heliyon 2024; 10:e23960. [PMID: 38226269 PMCID: PMC10788535 DOI: 10.1016/j.heliyon.2023.e23960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
Electrical stimulation (ES) of the spinal cord is a promising therapy for functional rehabilitation after spinal cord injury (SCI). However, the specific mechanism of action is poorly understood. We designed and applied an implanted ES device in the SCI area in rats and determined the effect of ES on the treatment of motor dysfunction after SCI using behavioral scores. Additionally, we examined the molecular characteristics of the samples using proteomic and transcriptomic sequencing. The differential molecules between groups were identified using statistical analyses. Molecular, network, and pathway-based analyses were used to identify group-specific biological features. ES (0.5 mA, 0.1 ms, 50 Hz) had a positive effect on motor dysfunction and neuronal regeneration in rats after SCI. Six samples (three independent replicates in each group) were used for transcriptome sequencing; we obtained 1026 differential genes, comprising 274 upregulated genes and 752 downregulated genes. A total of 10 samples were obtained: four samples in the ES group and six samples in the SCI group; for the proteome sequencing, 48 differential proteins were identified, including 45 up-regulated and three down-regulated proteins. Combined transcriptomic and proteomic studies have shown that the main enrichment pathway is the hedgehog signaling pathway. Western blot results showed that the expression levels of Sonic hedgehog (SHH) (P < 0.001), Smoothened (SMO) (P = 0.0338), and GLI-1 (P < 0.01) proteins in the ES treatment group were significantly higher than those in the SCI group. The immunofluorescence results showed significantly increased expression of SHH (P = 0.0181), SMO (P = 0.021), and GLI-1 (P = 0.0126) in the ES group compared with that in the SCI group. In conclusion, ES after SCI had a positive effect on motor dysfunction and anti-inflammatory effects in rats. Moreover, transcriptomic and proteomic sequencing also provided unique perspectives on the complex relationships between ES on SCI, where the SHH signaling pathway plays a critical role. Our study provides a significant theoretical foundation for the clinical implementation of ES therapy in patients with SCI.
Collapse
Affiliation(s)
- Erliang Li
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rongbao Yan
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huanhuan Qiao
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Jin Sun
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Peng Zou
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiaqi Chang
- School of Automation Science and Electrical Engineering, Beihang University, 37th Xueyuan Road, Beijing, China
| | - Shuang Li
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Qiong Ma
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Rui Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Liao
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Nazerian Y, Nazerian A, Mohamadi-Jahani F, Sodeifi P, Jafarian M, Javadi SAH. Hydrogel-encapsulated extracellular vesicles for the regeneration of spinal cord injury. Front Neurosci 2023; 17:1309172. [PMID: 38156267 PMCID: PMC10752990 DOI: 10.3389/fnins.2023.1309172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Spinal cord injury (SCI) is a critical neurological condition that may impair motor, sensory, and autonomous functions. At the cellular level, inflammation, impairment of axonal regeneration, and neuronal death are responsible for SCI-related complications. Regarding the high mortality and morbidity rates associated with SCI, there is a need for effective treatment. Despite advances in SCI repair, an optimal treatment for complete recovery after SCI has not been found so far. Therefore, an effective strategy is needed to promote neuronal regeneration and repair after SCI. In recent years, regenerative treatments have become a potential option for achieving improved functional recovery after SCI by promoting the growth of new neurons, protecting surviving neurons, and preventing additional damage to the spinal cord. Transplantation of cells and cells-derived extracellular vesicles (EVs) can be effective for SCI recovery. However, there are some limitations and challenges related to cell-based strategies. Ethical concerns and limited efficacy due to the low survival rate, immune rejection, and tumor formation are limitations of cell-based therapies. Using EVs is a helpful strategy to overcome these limitations. It should be considered that short half-life, poor accumulation, rapid clearance, and difficulty in targeting specific tissues are limitations of EVs-based therapies. Hydrogel-encapsulated exosomes have overcome these limitations by enhancing the efficacy of exosomes through maintaining their bioactivity, protecting EVs from rapid clearance, and facilitating the sustained release of EVs at the target site. These hydrogel-encapsulated EVs can promote neuroregeneration through improving functional recovery, reducing inflammation, and enhancing neuronal regeneration after SCI. This review aims to provide an overview of the current research status, challenges, and future clinical opportunities of hydrogel-encapsulated EVs in the treatment of SCI.
Collapse
Affiliation(s)
- Yasaman Nazerian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Sodeifi
- School of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Maryam Jafarian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hossein Javadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Chen SY, Yang RL, Wu XC, Zhao DZ, Fu SP, Lin FQ, Li LY, Yu LM, Zhang Q, Zhang T. Mesenchymal Stem Cell Transplantation: Neuroprotection and Nerve Regeneration After Spinal Cord Injury. J Inflamm Res 2023; 16:4763-4776. [PMID: 37881652 PMCID: PMC10595983 DOI: 10.2147/jir.s428425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
Spinal Cord Injury (SCI), with its morbidity characteristics of high disability rate and high mortality rate, is a disease that is highly destructive to both the physiology and psychology of the patient, and for which there is still a lack of effective treatment. Following spinal cord injury, a cascade of secondary injury reactions known as ischemia, peripheral inflammatory cell infiltration, oxidative stress, etc. create a microenvironment that is unfavorable to neural recovery and ultimately results in apoptosis and necrosis of neurons and glial cells. Mesenchymal stem cell (MSC) transplantation has emerged as a more promising therapeutic options in recent years. MSC can promote spinal cord injury repair through a variety of mechanisms, including immunomodulation, neuroprotection, and nerve regeneration, giving patients with spinal cord injury hope. In this paper, it is discussed the neuroprotection and nerve regeneration components of MSCs' therapeutic method for treating spinal cord injuries.
Collapse
Affiliation(s)
- Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Rui-Lin Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Xiang-Chong Wu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - De-Zhi Zhao
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Sheng-Ping Fu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Feng-Qin Lin
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Lin-Yan Li
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Li-Mei Yu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| |
Collapse
|
4
|
Zhang Q, Zhao W, Li S, Ding Y, Wang Y, Ji X. Intermittent Hypoxia Conditioning: A Potential Multi-Organ Protective Therapeutic Strategy. Int J Med Sci 2023; 20:1551-1561. [PMID: 37859700 PMCID: PMC10583178 DOI: 10.7150/ijms.86622] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
Severe hypoxia can induce a range of systemic disorders; however, surprising resilience can be obtained through sublethal adaptation to hypoxia, a process termed as hypoxic conditioning. A particular form of this strategy, known as intermittent hypoxia conditioning hormesis, alternates exposure to hypoxic and normoxic conditions, facilitating adaptation to reduced oxygen availability. This technique, originally employed in sports and high-altitude medicine, has shown promise in multiple pathologies when applied with calibrated mild to moderate hypoxia and appropriate hypoxic cycles. Recent studies have extensively investigated the protective role of intermittent hypoxia conditioning and its underlying mechanisms using animal models, demonstrating its potential in organ protection. This involves a range of processes such as reduction of oxidative stress, inflammation, and apoptosis, along with enhancement of hypoxic gene expression, among others. Given that intermittent hypoxia conditioning fosters beneficial physiological responses across multiple organs and systems, this review presents a comprehensive analysis of existing studies on intermittent hypoxia and its potential advantages in various organs. It aims to draw attention to the possibility of clinically applying intermittent hypoxia conditioning as a multi-organ protective strategy. This review comprehensively discusses the protective effects of intermittent hypoxia across multiple systems, outlines potential procedures for implementing intermittent hypoxia, and provides a brief overview of the potential protective mechanisms of intermittent hypoxia.
Collapse
Affiliation(s)
- Qihan Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Emergency Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Soh S, Han S, Ka HI, Mun SH, Kim W, Oh G, Yang Y. Adiponectin affects the migration ability of bone marrow-derived mesenchymal stem cells via the regulation of hypoxia inducible factor 1α. Cell Commun Signal 2023; 21:158. [PMID: 37370133 PMCID: PMC10294307 DOI: 10.1186/s12964-023-01143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Bone marrow (BM) is progressively filled with adipocytes during aging process. Thus, BM adipocytes-derived adiponectin (APN) affects the function of bone marrow-derived mesenchymal stem cells (BMSCs). However, little is known about the effect of APN on migration ability of BMSCs cultured under hypoxic conditions, which is similar to the BM microenvironment. RESULTS We found that the population and migration ability of BMSCs from APN KO mice was higher than that of WT mice due to increased stability of hypoxia inducible factor 1α (HIF1α). Stem cell factor (SCF)-activated STAT3 stimulated the induction of HIF1α which further stimulated SCF production, indicating that the SCF/STAT3/HIF1α positive loop was highly activated in the absence of APN. It implies that APN negatively regulated this positive loop by stimulating HIF1α degradation via the inactivation of GSK3β. Furthermore, APN KO BMSCs were highly migratory toward EL-4 lymphoma, and the interaction between CD44 in BMSCs and hyaluronic acid (HA) from EL-4 enhanced the migration of BMSCs. On the other hand, the migrated BMSCs recruited CD8+ T cells into the EL-4 tumor tissue, resulting in the retardation of tumor growth. Additionally, gradually increased APN in BM on the aging process affects migration and related functions of BMSCs, thus aged APN KO mice showed more significant suppression of EL-4 growth than young APN KO mice due to higher migration and recruitment of CD8+ T cells. CONCLUSION APN deficiency enhances CD44-mediated migration ability of BMSCs in the hypoxic conditions by the SCF/STAT3/HIF1α positive loop and influences the migration ability of BMSCs for a longer time depending on the aging process. Video Abstract.
Collapse
Affiliation(s)
- Sujung Soh
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Sora Han
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Hye In Ka
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Se Hwan Mun
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Woojung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Gaeun Oh
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
6
|
Wu J, Yu L, Liu Y, Xiao B, Ye X, Zhao H, Xi Y, Shi Z, Wang W. Hypoxia regulates adipose mesenchymal stem cells proliferation, migration, and nucleus pulposus-like differentiation by regulating endoplasmic reticulum stress via the HIF-1α pathway. J Orthop Surg Res 2023; 18:339. [PMID: 37158945 PMCID: PMC10169485 DOI: 10.1186/s13018-023-03818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023] Open
Abstract
OBJECTIVE Hypoxia can promote stem cell proliferation and migration through HIF-1α. Hypoxia can regulate cellular endoplasmic reticulum (ER) stress. Some studies have reported the relationship among hypoxia, HIF-α, and ER stress, however, while little is known about HIF-α and ER stress in ADSCs under hypoxic conditions. The purpose of the study was to investigate the role and relationship of hypoxic conditions, HIF-1α and ER stress in regulating adipose mesenchymal stem cells (ADSCs) proliferation, migration, and NPC-like differentiation. METHOD ADSCs were pretreated with hypoxia, HIF-1α gene transfection, and HIF-1α gene silence. The ADSCs proliferation, migration, and NPC-like differentiation were assessed. The expression of HIF-1α in ADSCs was regulated; then, the changes of ER stress level in ADSCs were observed to investigate the relationship between ER stress and HIF-1α in ADSCs under hypoxic conditions. RESULT The cell proliferation and migration assay results show that hypoxia and HIF-1α overexpression can significantly increase the ADSCs proliferation and migration, while HIF-1α inhibition can significantly decrease the ADSCs proliferation and migration. The HIF-1α and co-cultured with NPCs played an important role in the directional differentiation of ADSCs into NPCs. The hypoxia-regulated ER stress in ADSCs through the HIF-1α pathway, thereby regulating the cellular state of ADSCs, was also observed. CONCLUSION Hypoxia and HIF-1α play important roles in proliferation, migration, and NPC-like differentiation of ADSCs. This study provides preliminary evidence that HIF-1α-regulated ER stress thus affects ADSCs proliferation, migration, and differentiation. Therefore, HIF-1α and ER may serve as key points to improve the efficacy of ADSCs in treating disc degeneration.
Collapse
Affiliation(s)
- Jianxin Wu
- Department of Orthopaedics, First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Shanghai, People's Republic of China
| | - Lei Yu
- Department of Orthopedic Surgery and Neurosurgery, No. 906 Hospital of the People's Liberation Army, Ningbo, Zhejiang, People's Republic of China
| | - Yi Liu
- Department of Orthopedics, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Kangfu Road, Tianjin, People's Republic of China
| | - Bing Xiao
- Department of Orthopaedics, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, People's Republic of China
| | - Xiaojian Ye
- Department of Orthopaedics, Tongren Hospital of Shanghai Jiaotong University, No. 1111, Xianxia Road, Shanghai, People's Republic of China
| | - Hong Zhao
- Department of Orthopedics, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Kangfu Road, Tianjin, People's Republic of China
| | - Yanhai Xi
- Department of Orthopaedics, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, People's Republic of China
| | - Zhicai Shi
- Department of Orthopaedics, First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Shanghai, People's Republic of China
| | - Weiheng Wang
- Department of Orthopaedics, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, People's Republic of China.
| |
Collapse
|
7
|
David BT, Curtin JJ, Brown JL, Scorpio K, Kandaswamy V, Coutts DJC, Vivinetto A, Bianchimano P, Karuppagounder SS, Metcalfe M, Cave JW, Hill CE. Temporary induction of hypoxic adaptations by preconditioning fails to enhance Schwann cell transplant survival after spinal cord injury. Glia 2023; 71:648-666. [PMID: 36565279 PMCID: PMC11848738 DOI: 10.1002/glia.24302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 12/25/2022]
Abstract
Hypoxic preconditioning is protective in multiple models of injury and disease, but whether it is beneficial for cells transplanted into sites of spinal cord injury (SCI) is largely unexplored. In this study, we analyzed whether hypoxia-related preconditioning protected Schwann cells (SCs) transplanted into the contused thoracic rat spinal cord. Hypoxic preconditioning was induced in SCs prior to transplantation by exposure to either low oxygen (1% O2 ) or pharmacological agents (deferoxamine or adaptaquin). All preconditioning approaches induced hypoxic adaptations, including increased expression of HIF-1α and its target genes. These adaptations, however, were transient and resolved within 24 h of transplantation. Pharmacological preconditioning attenuated spinal cord oxidative stress and enhanced transplant vascularization, but it did not improve either transplanted cell survival or recovery of sensory or motor function. Together, these experiments show that hypoxia-related preconditioning is ineffective at augmenting either cell survival or the functional outcomes of SC-SCI transplants. They also reveal that the benefits of hypoxia-related adaptations induced by preconditioning for cell transplant therapies are not universal.
Collapse
Affiliation(s)
- Brian T. David
- Burke Neurological Institute, White Plains, NY, United States
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - Jessica J. Curtin
- Burke Neurological Institute, White Plains, NY, United States
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - Jennifer L. Brown
- Burke Neurological Institute, White Plains, NY, United States
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - Kerri Scorpio
- Burke Neurological Institute, White Plains, NY, United States
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - Veena Kandaswamy
- Burke Neurological Institute, White Plains, NY, United States
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - David J. C. Coutts
- Burke Neurological Institute, White Plains, NY, United States
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - Ana Vivinetto
- Burke Neurological Institute, White Plains, NY, United States
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - Paola Bianchimano
- Burke Neurological Institute, White Plains, NY, United States
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - Saravanan S. Karuppagounder
- Burke Neurological Institute, White Plains, NY, United States
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - Mariajose Metcalfe
- Burke Neurological Institute, White Plains, NY, United States
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - John W. Cave
- InVitro Cell Research, LLC, Englewood, NJ, United States
| | - Caitlin E. Hill
- Burke Neurological Institute, White Plains, NY, United States
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
- Neural Stem Cell Institute, Rensselaer, NY, United States
| |
Collapse
|
8
|
Luo S, Wu J, Qiu Y, Xiao B, Xi Y, Yang C, Shi Z, Wang W. Hydrogen Promotes the Effectiveness of Bone Mesenchymal Stem Cell Transplantation in Rats with Spinal Cord Injury. Stem Cells Int 2023; 2023:8227382. [PMID: 37181828 PMCID: PMC10175019 DOI: 10.1155/2023/8227382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Although bone mesenchymal stem cell (BMSC) transplantation has been applied to the treatment of spinal cord injury (SCI), the effect is unsatisfactory due to the specific microenvironment (inflammation and oxidative stress) in the SCI area, which leads to the low survival rate of transplanted cells. Thus, additional strategies are required to improve the efficacy of transplanted cells in the treatment of SCI. Hydrogen possesses antioxidant and anti-inflammatory properties. However, whether hydrogen can enhance the effect of BMSC transplantation in the treatment of SCI has not yet been reported. This study was aimed at investigating whether hydrogen promotes the therapeutic effect of BMSC transplantation in the treatment of SCI in rats. In vitro, BMSCs were cultured in a normal medium and a hydrogen-rich medium to study the effect of hydrogen on the proliferation and migration of BMSCs. BMSCs were treated with a serum-deprived medium (SDM), and the effects of hydrogen on the apoptosis of BMSCs were studied. In vivo, BMSCs were injected into the rat model of SCI. Hydrogen-rich saline (5 ml/kg) and saline (5 ml/kg) were given once a day via intraperitoneal injection. Neurological function was evaluated using the Basso, Beattie, and Bresnahan (BBB) and CatWalk gait analyses. Histopathological analysis, oxidative stress, inflammatory factors (TNF-α, IL-1β, and IL-6), and transplanted cell viability were detected at 3 and 28 days after SCI. Hydrogen can significantly enhance BMSC proliferation and migration and tolerance to SDM. Hydrogen and BMSC codelivery can significantly enhance neurological function recovery by improving the transplant cell survival rate and migration. Hydrogen can enhance the migration and proliferation capacity of BMSCs to repair SCI by reducing the inflammatory response and oxidative stress in the injured area. Hydrogen and BMSC codelivery is an effective method to improve BMSC transplantation in the treatment of SCI.
Collapse
Affiliation(s)
- Shengchang Luo
- Department of Orthopaedics, The First People's Hospital of Huzhou, No. 158, Plaza Back Road, Huzhou, 313099 Zhejiang Province, China
| | - Jianxin Wu
- Department of Orthopaedics, The First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Yuanyuan Qiu
- School Hospital of Shanghai University of Sport, No. 399, Changhai Road, Shanghai 200433, China
| | - Bing Xiao
- Department of Orthopaedics, The Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - Yanhai Xi
- Department of Orthopaedics, The Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - Chengwei Yang
- Department of Spinal Surgery, The 940th Hospital of Joint Logistics Support Force of People's Liberation Army, No. 333 South Binhe Road, Lanzhou, 730050 Gansu Province, China
| | - Zhicai Shi
- Department of Orthopaedics, The First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Weiheng Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| |
Collapse
|
9
|
Fu SP, Chen SY, Pang QM, Zhang M, Wu XC, Wan X, Wan WH, Ao J, Zhang T. Advances in the research of the role of macrophage/microglia polarization-mediated inflammatory response in spinal cord injury. Front Immunol 2022; 13:1014013. [PMID: 36532022 PMCID: PMC9751019 DOI: 10.3389/fimmu.2022.1014013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
It is often difficult to regain neurological function following spinal cord injury (SCI). Neuroinflammation is thought to be responsible for this failure. Regulating the inflammatory response post-SCI may contribute to the recovery of neurological function. Over the past few decades, studies have found that macrophages/microglia are one of the primary effector cells in the inflammatory response following SCI. Growing evidence has documented that macrophages/microglia are plastic cells that can polarize in response to microenvironmental signals into M1 and M2 macrophages/microglia. M1 produces pro-inflammatory cytokines to induce inflammation and worsen tissue damage, while M2 has anti-inflammatory activities in wound healing and tissue regeneration. Recent studies have indicated that the transition from the M1 to the M2 phenotype of macrophage/microglia supports the regression of inflammation and tissue repair. Here, we will review the role of the inflammatory response and macrophages/microglia in SCI and repair. In addition, we will discuss potential molecular mechanisms that induce macrophage/microglia polarization, with emphasis on neuroprotective therapies that modulate macrophage/microglia polarization, which will provide new insights into therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qi-Ming Pang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Meng Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiang-Chong Wu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xue Wan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei-Hong Wan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,*Correspondence: Tao Zhang,
| |
Collapse
|
10
|
Exosomes Derived from Baicalin-Pretreated Mesenchymal Stem Cells Alleviate Hepatocyte Ferroptosis after Acute Liver Injury via the Keap1-NRF2 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8287227. [PMID: 35910831 PMCID: PMC9334037 DOI: 10.1155/2022/8287227] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022]
Abstract
Acute liver injury (ALI) is characterized as a severe metabolic dysfunction caused by extensive damage to liver cells. Ferroptosis is a type of cell death dependent on iron and oxidative stress, which differs from classical cell death, such as apoptosis and necrosis. Ferroptosis has unique morphological features, which mainly include mitochondrial dissolution and mitochondrial outline reduction. Furthermore, the intracellular accumulation of lipid peroxides directly affects the occurrence of ferroptosis. Baicalin, the main compound isolated from Scutellaria baicalensis, has anti-inflammatory and antioxidative effects. Recently, exosomes derived from preconditioned mesenchymal stem cells (MSCs) have shown great potential in the treatment of various diseases including ALI. This study investigates the ability of exosomes derived from baicalin-pretreated MSCs (Ba-Exo) to promote liver function recovery in mice with ALI compared with those without pretreatment. Through in vivo and in vitro experiments, this study demonstrates for the first time that Ba-Exo greatly attenuates D-galactosamine and lipopolysaccharide (D-GaIN/LPS)-induced liver damage and inhibits reactive oxygen species (ROS) production and lipid peroxide-induced ferroptosis. Moreover, P62 was significantly upregulated in Ba-Exo, whereas its downregulation in Ba-Exo counteracted the beneficial effect of Ba-Exo. P62 regulates hepatocyte ferroptosis by activating the Keap1-NRF2 pathway. The beneficial effect of Ba-Exo in inhibiting ferroptosis was also attenuated after the NRF2 pathway was inhibited. Therefore, baicalin pretreatment is an effective and promising approach to optimize the therapeutic efficacy of MSC-derived exosomes in ALI.
Collapse
|
11
|
Pang QM, Chen SY, Fu SP, Zhou H, Zhang Q, Ao J, Luo XP, Zhang T. Regulatory Role of Mesenchymal Stem Cells on Secondary Inflammation in Spinal Cord Injury. J Inflamm Res 2022; 15:573-593. [PMID: 35115806 PMCID: PMC8802142 DOI: 10.2147/jir.s349572] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qi-Ming Pang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Hui Zhou
- The First School of Clinical Medicine, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Jun Ao
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Xiao-Ping Luo
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Correspondence: Tao Zhang; Qian Zhang, Email ;
| |
Collapse
|
12
|
Di Mattia M, Mauro A, Citeroni MR, Dufrusine B, Peserico A, Russo V, Berardinelli P, Dainese E, Cimini A, Barboni B. Insight into Hypoxia Stemness Control. Cells 2021; 10:cells10082161. [PMID: 34440930 PMCID: PMC8394199 DOI: 10.3390/cells10082161] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
Recently, the research on stemness and multilineage differentiation mechanisms has greatly increased its value due to the potential therapeutic impact of stem cell-based approaches. Stem cells modulate their self-renewing and differentiation capacities in response to endogenous and/or extrinsic factors that can control stem cell fate. One key factor controlling stem cell phenotype is oxygen (O2). Several pieces of evidence demonstrated that the complexity of reproducing O2 physiological tensions and gradients in culture is responsible for defective stem cell behavior in vitro and after transplantation. This evidence is still worsened by considering that stem cells are conventionally incubated under non-physiological air O2 tension (21%). Therefore, the study of mechanisms and signaling activated at lower O2 tension, such as those existing under native microenvironments (referred to as hypoxia), represent an effective strategy to define if O2 is essential in preserving naïve stemness potential as well as in modulating their differentiation. Starting from this premise, the goal of the present review is to report the status of the art about the link existing between hypoxia and stemness providing insight into the factors/molecules involved, to design targeted strategies that, recapitulating naïve O2 signals, enable towards the therapeutic use of stem cell for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
- Correspondence: ; Tel.: +39-086-1426-6888; Fax: +39-08-6126-6860
| | - Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Beatrice Dufrusine
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
- Center of Advanced Studies and Technology (CAST), 66100 Chieti, Italy
| | - Alessia Peserico
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Enrico Dainese
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| |
Collapse
|
13
|
Liu J, Gu Y, Guo M, Ji X. Neuroprotective effects and mechanisms of ischemic/hypoxic preconditioning on neurological diseases. CNS Neurosci Ther 2021; 27:869-882. [PMID: 34237192 PMCID: PMC8265941 DOI: 10.1111/cns.13642] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
As the organ with the highest demand for oxygen, the brain has a poor tolerance to ischemia and hypoxia. Despite severe ischemia/hypoxia induces the occurrence and development of various central nervous system (CNS) diseases, sublethal insult may induce strong protection against subsequent fatal injuries by improving tolerance. Searching for potential measures to improve brain ischemic/hypoxic is of great significance for treatment of ischemia/hypoxia related CNS diseases. Ischemic/hypoxic preconditioning (I/HPC) refers to the approach to give the body a short period of mild ischemic/hypoxic stimulus which can significantly improve the body's tolerance to subsequent more severe ischemia/hypoxia event. It has been extensively studied and been considered as an effective therapeutic strategy in CNS diseases. Its protective mechanisms involved multiple processes, such as activation of hypoxia signaling pathways, anti-inflammation, antioxidant stress, and autophagy induction, etc. As a strategy to induce endogenous neuroprotection, I/HPC has attracted extensive attention and become one of the research frontiers and hotspots in the field of neurotherapy. In this review, we discuss the basic and clinical research progress of I/HPC on CNS diseases, and summarize its mechanisms. Furthermore, we highlight the limitations and challenges of their translation from basic research to clinical application.
Collapse
Affiliation(s)
- Jia Liu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yakun Gu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Mengyuan Guo
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Johnson LDV, Pickard MR, Johnson WEB. The Comparative Effects of Mesenchymal Stem Cell Transplantation Therapy for Spinal Cord Injury in Humans and Animal Models: A Systematic Review and Meta-Analysis. BIOLOGY 2021; 10:biology10030230. [PMID: 33809684 PMCID: PMC8001771 DOI: 10.3390/biology10030230] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/28/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
Animal models have been used in preclinical research to examine potential new treatments for spinal cord injury (SCI), including mesenchymal stem cell (MSC) transplantation. MSC transplants have been studied in early human trials. Whether the animal models represent the human studies is unclear. This systematic review and meta-analysis has examined the effects of MSC transplants in human and animal studies. Following searches of PubMed, Clinical Trials and the Cochrane Library, published papers were screened, and data were extracted and analysed. MSC transplantation was associated with significantly improved motor and sensory function in humans, and significantly increased locomotor function in animals. However, there are discrepancies between the studies of human participants and animal models, including timing of MSC transplant post-injury and source of MSCs. Additionally, difficulty in the comparison of functional outcome measures across species limits the predictive nature of the animal research. These findings have been summarised, and recommendations for further research are discussed to better enable the translation of animal models to MSC-based human clinical therapy.
Collapse
Affiliation(s)
- Louis D. V. Johnson
- Chester Medical School, University of Chester, Chester CH1 4BJ, UK
- Correspondence: (L.D.V.J.); (W.E.B.J.); Tel.: +44-7557-353206 (L.D.V.J.); +44-774-5616225 (W.E.B.J.)
| | - Mark R. Pickard
- University Centre Shrewsbury, University of Chester, Shrewsbury SY3 8HQ, UK;
| | - William E. B. Johnson
- Chester Medical School, University of Chester, Chester CH1 4BJ, UK
- University Centre Shrewsbury, University of Chester, Shrewsbury SY3 8HQ, UK;
- Correspondence: (L.D.V.J.); (W.E.B.J.); Tel.: +44-7557-353206 (L.D.V.J.); +44-774-5616225 (W.E.B.J.)
| |
Collapse
|
15
|
Filho DM, de Carvalho Ribeiro P, Oliveira LF, Dos Santos ALRT, Parreira RC, Pinto MCX, Resende RR. Enhancing the Therapeutic Potential of Mesenchymal Stem Cells with the CRISPR-Cas System. Stem Cell Rev Rep 2020; 15:463-473. [PMID: 31147819 DOI: 10.1007/s12015-019-09897-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mesenchymal stem cells (MSCs), also known as multipotent mesenchymal stromal stem cells, are found in the perivascular space of several tissues. These cells have been subject of intense research in the last decade due to their low teratogenicity, as well as their ability to differentiate into mature cells and to secrete immunomodulatory and trophic factors. However, they usually promote only a modest benefit when transplanted in experimental disease models, one of the limitations for their clinical application. The CRISPR-Cas system, in turn, is highlighted as a simple and effective tool for genetic engineering. This system was tested in clinical trials over a relatively short period of time after establishing its applicability to the edition of the mammalian cell genome. Similar to the research evolution in MSCs, the CRISPR-Cas system demonstrated inconsistencies that limited its clinical application. In this review, we outline the evolution of MSC research and its applicability, and the progress of the CRISPR-Cas system from its discovery to the most recent clinical trials. We also propose perspectives on how the CRISPR-Cas system may improve the therapeutic potential of MSCs, making it more beneficial and long lasting.
Collapse
Affiliation(s)
- Daniel Mendes Filho
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Patrícia de Carvalho Ribeiro
- Laboratory of Immunology and Experimental Transplantation, São José do Rio Preto Medical School, São José do Rio Preto, São Paulo, Brazil.,Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Lucas Felipe Oliveira
- Department of Physiology, Biological and Natural Sciences Institute, Triangulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil.,National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA-CNPq), Rio de Janeiro, RJ, Brazil.,Minas Gerais Network for Tissue Engineering and Cell Therapy (REMETTECFAPEMIG), Belo Horizonte, MG, Brazil
| | | | - Ricardo Cambraia Parreira
- Department of Pharmacology, Biological Sciences Institute, Goias Federal University, Goiania, Goias, Brazil.
| | - Mauro Cunha Xavier Pinto
- Department of Pharmacology, Biological Sciences Institute, Goias Federal University, Goiania, Goias, Brazil
| | - Rodrigo Ribeiro Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
16
|
Kwon H, Park M, Nepali S, Lew H. Hypoxia-Preconditioned Placenta-Derived Mesenchymal Stem Cells Rescue Optic Nerve Axons Via Differential Roles of Vascular Endothelial Growth Factor in an Optic Nerve Compression Animal Model. Mol Neurobiol 2020; 57:3362-3375. [PMID: 32524519 DOI: 10.1007/s12035-020-01965-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Human placenta-derived stem cells (hPSCs) with the therapeutic potential to recover from optic nerve injury have been reported. We have recently demonstrated that hPSCs have protective abilities against hypoxic damage. To improve the capacity of hPSCs, we established a hypoxia-preconditioned strain (HPPCs) using a hypoxic chamber. The hPSCs were exposed to short-term hypoxic conditions of 2.2% O2 and 5.5% CO2. We also performed in vivo experiments to demonstrate the recovery effects of HPPCs using an optic nerve injury rat model. Naïve hPSCs (and HPPCs) were injected into the optic nerve. After 1, 2, or 4 weeks, we analyzed changes in target proteins in the optic nerve tissues. In the retina, GAP43 expression was higher in both groups of naïve hPSCs and HPPCs versus sham controls. Two weeks after injection, all hPSC-injected groups showed recovery of tuj1 expression in damaged retinas. We also determined GFAP expression in retinas using the same model. In optic nerve tissues, HIF-1α levels were significantly lower in the HPPC-injected group 1 week after injury, and Thy-1 levels were higher in the hPSC-injected group at 4 weeks. There was also an enhanced recovery of Thy-1 expression after HPPC injection. In addition, R28 cells exposed to hypoxic conditions showed improved viability through enhanced recovery of HPPCs than naïve hPSCs. VEGF protein was a mediator in the recovery pathway via upregulation of target proteins regulated by HPPCs. Our results suggest that HPPCs may be candidates for cell therapy for the treatment of traumatic optic nerve injury.
Collapse
Affiliation(s)
- Heejung Kwon
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Mira Park
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sarmila Nepali
- Department of Ophthalmology, University of Miami, Coral Gables, FL, USA
| | - Helen Lew
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
17
|
Hypoxia-Inducible Factor 1α (HIF-1α) Counteracts the Acute Death of Cells Transplanted into the Injured Spinal Cord. eNeuro 2020; 7:ENEURO.0092-19.2019. [PMID: 31488552 PMCID: PMC7215587 DOI: 10.1523/eneuro.0092-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/10/2019] [Accepted: 08/19/2019] [Indexed: 01/13/2023] Open
Abstract
Cellular transplantation is in clinical testing for a number of central nervous system disorders, including spinal cord injury (SCI). One challenge is acute transplanted cell death. To prevent this death, there is a need to both establish when the death occurs and develop approaches to mitigate its effects. Here, using luciferase (luc) and green fluorescent protein (GFP) expressing Schwann cell (SC) transplants in the contused thoracic rat spinal cord 7 d postinjury, we establish via in vivo bioluminescent (IVIS) imaging and stereology that cell death occurs prior to 2–3 d postimplantation. We then test an alternative approach to the current paradigm of enhancing transplant survival by including multiple factors along with the cells. To stimulate multiple cellular adaptive pathways concurrently, we activate the hypoxia-inducible factor 1α (HIF-1α) transcriptional pathway. Retroviral expression of VP16-HIF-1α in SCs increased HIF-α by 5.9-fold and its target genes implicated in oxygen transport and delivery (VEGF, 2.2-fold) and cellular metabolism (enolase, 1.7-fold). In cell death assays in vitro, HIF-1α protected cells from H2O2-induced oxidative damage. It also provided some protection against camptothecin-induced DNA damage, but not thapsigargin-induced endoplasmic reticulum stress or tunicamycin-induced unfolded protein response. Following transplantation, VP16-HIF-1α increased SC survival by 34.3%. The increase in cell survival was detectable by stereology, but not by in vivo luciferase or ex vivo GFP IVIS imaging. The results support the hypothesis that activating adaptive cellular pathways enhances transplant survival and identifies an alternative pro-survival approach that, with optimization, could be amenable to clinical translation.
Collapse
|
18
|
Deng X, Jing D, Liang H, Zheng D, Shao Z. H₂O₂ Damages the Stemness of Rat Bone Marrow-Derived Mesenchymal Stem Cells: Developing a "Stemness Loss" Model. Med Sci Monit 2019; 25:5613-5620. [PMID: 31353362 PMCID: PMC6683726 DOI: 10.12659/msm.914011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background The number of patients with spinal cord injury caused by motor vehicle accidents, violent injuries, and other types of trauma increases year by year, and bone marrow mesenchymal stem cell (BMSC) transplants are being widely investigated to treat this condition. However, the success rate of BMSCs transplants is relatively low due to the presence of oxidative stress in the new microenvironment. Our main goals in the present study were to evaluate the damaging effects of H2O2 on BMSCs and to develop a model of “stemness loss” using rat BMSCs. Material/Methods Bone marrow-derived mesenchymal stem cells were obtained from the bone marrow of young rats reared under sterile conditions. The stem cells were used after 2 passages following phenotypic identification. BMSCs were divided into 4 groups to evaluate the damaging effects of H2O2: A. blank control; B. 100 uM H2O2; C. 200 uM H2O2 and D. 300 uM H2O2. The ability of the BMSCs to differentiate into 3 cell lineages and their colony formation and migration capacities were analyzed by gene expression, colony formation, and scratch assays. Results The cells we obtained complied with international stem cell standards demonstrated by their ability to differentiate into 3 cell lineages. We found that 200–300 uM H2O2 had a significant effect on the biological behavior of BMSCs, including their ability to differentiate into 3 cell lineages, the expression of stemness-related proteins, and their migration and colony formation capacities. Conclusions H2O2 can damage the stemness ability of BMSCs at a concentration of 200–300 uM.
Collapse
Affiliation(s)
- Xiangyu Deng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Doudou Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Hang Liang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Dong Zheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
19
|
Luo Z, Wu F, Xue E, Huang L, Yan P, Pan X, Zhou Y. Hypoxia preconditioning promotes bone marrow mesenchymal stem cells survival by inducing HIF-1α in injured neuronal cells derived exosomes culture system. Cell Death Dis 2019; 10:134. [PMID: 30755595 PMCID: PMC6372680 DOI: 10.1038/s41419-019-1410-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/20/2019] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
Bone marrow derived stem cells (BMSCs) transplantation are viewed as a promising therapeutic candidate for spinal cord injury (SCI). However, the inflammatory microenvironment in the spinal cord following SCI limits the survival and efficacy of transplanted BMSCs. In this study, we investigate whether injured neuronal cells derived exosomes would influence the survival of transplanted BMSCs after SCI. In order to mimic the microenvironment in SCI that the neuronal cells or transplanted BMSCs suffer in vivo, PC12 cells conditioned medium and PC12 cell’s exosomes collected from H2O2-treated PC12 cell’s culture medium were cultured with BMSCs under oxidative stress in vitro. PC12 cells conditioned medium and PC12 cell’s exosomes significantly accelerated the apoptosis of BMSCs induced by H2O2. Moreover, the cleaved caspase-3, cytochrome (Cyt) C, lactate dehydrogenase (LDH) releases, and apoptotic percentage were increased, and the ratio of Bcl-2/Bax and cell viability were decreased. Inhibition of exosome secretion via Rab27a small interfering RNA prevented BMSCs apoptosis in vitro. In addition, hypoxia-preconditioned promoted the survival of BMSCs under oxidative stress both in vivo after SCI and in vitro. Our results also indicate that HIF-1α plays a central role in the survival of BMSCs in hypoxia pretreatment under oxidative stress conditions. siRNA-HIF-1α increased apoptosis of BMSCs; in contrast, HIF-1α inducer FG-4592 attenuated apoptosis of BMSCs. Taken together, we found that the injured PC12 cells derived exosomes accelerate BMSCs apoptosis after SCI and in vitro, hypoxia pretreatment or activating expression of HIF-1α to be important in the survival of BMSCs after transplantation, which provides a foundation for application of BMSCs in therapeutic potential for SCI.
Collapse
Affiliation(s)
- Zucheng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang, 325000, P. R. China.,The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Fangfang Wu
- The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China.,Emergency Department, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Enxing Xue
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Linlin Huang
- The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Ping Yan
- The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Xiaoyun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China. .,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang, 325000, P. R. China.
| | - Yulong Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China. .,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang, 325000, P. R. China.
| |
Collapse
|